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Series RLC Circuit

• This is a very important circuit and we’ll spend some time 
understanding the behavior of the circuit.
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KVL For Series RLC Circuit

• Due to interaction between current in inductor and voltage on 
capacitor, we end up with a 2nd order differential equation

• We must specify two initial conditions, the voltage (or charge) 
on the capacitor and the current (or flux) in the inductor
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Solution for Constant Inputs

• We’ll solve the situation when we apply a constant input to the 
circuit at some time.

• Note the final value of the state of the circuit is predictable 
based on DC steady-state:
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Steady-State Solution

• Let’s simply plug in the steady-state solution and solve for the 
unknown transientsolution, which is the solution to the 
homogeneous differential equation:
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Homogeneous Solution

• Try an exponential solution as before to satisfy the 
homogeneous equation:
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General Solution:  Constants

• If the roots are distinct, the form of the general solution is as 
follows.  We can find constants A and B from initial conditions.

• If both roots are real, we have two decaying exponentials:
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Damped vs. Oscillatory

• We have a parameter zeta that determines 
the nature of the solution.  We can 
categorize the solution into three types:
– Overdamped solutions are decaying 

exponentials.
– Underdamped solutions also decay 

exponentially, but with a twist. They may 
overshoot and oscillate before fizzling out

– What’s the physical reason ?
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Under vs Over Damped

• Overdamped solutions don’t oscillate.
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Distince Roots: Details

• A and B satisfy the initial and final conditions:
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Critically Damped

• If the roots are identical, we can obtain the second solution
through a limiting process:
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Underdamped

• If the roots of the 
equation are 
underdamped, they 
are complex and 
lead to oscillatory 
behavior
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Underdamped Solution Procedure

• We find that A and B are complex conjugates and so we can 
combine the terms as follows:
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How much energy is stored in the “tank”?

• An “LCR” circuit is often referred to as a “tank”
• Let’s assume the tank is lossless. Then the energy stored in the 

inductor and capacitor is given by:
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Total Tank Energy

• If we sum the energy stored in the inductor and capacitor at 
any given time, we find that the sum is constant.

• Since the tank is lossless, this is logical and a statement of the 
conservation of energy.

• We observe that the maximum energy of the inductor or 
capacitor occurs when other is storing zero energy:
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Lossy Case

• Now let’s introduce loss.  The energy dissipated by the resistor 
per cycle is given by:

• Comparing the energy lost to the energy stored in the inductor, 
we have:
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Parallel LCR

• Using the concept of “duality”, we expect the equations to take 
on the exam same form as before: 


