


Module 5: RLC Circuits

EECS 16B



Series RLC Circuit
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* This is a very important circuit and we’ll spend some time
understanding the behavior of the circuit.






KVL For Series RLC Circuit
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* Due to interaction between current in inductor and voltage on
capacitor, we end up with a 2"9 order differential equation

* We must specify two initial conditions, the voltage (or charge)
on the capacitor and the current (or flux) in the inductor
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Solution for Constant Inputs

 We’ll solve the situation when we apply a constant input to the
circuit at some time.

* Note the final value of the state of the circuit is predictable
based on DC steady-state:
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Steady-State Solution

e Let’s simply plug in the steady-state solution and solve for the
unknown transientsolution, which is the solution to the
homogeneous differential equation:
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Homogeneous Solution

* Try an exponential solution as before to satisfy the
homogeneous equation:
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General Solution: Constants

If the roots are distinct, the form of the general solution is as
follows. We can find constants A and B from initial conditions.

If both roots are real, we have two decaying exponentials:
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Damped vs. Oscillatory

* We have a parameter zeta that determines
the nature of the solution. We can

categorize the solution into three types: ¢ <1 Underdamped

( =1 Critically Damped
— Overdamped solutions are decaying ¢ >1 Overdamped

exponentials.

— Underdamped solutions also decay
exponentially, but with a twist. They may
overshoot and oscillate before fizzling out

— What'’s the physical reason ?



Under vs Over Damped
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* Overdamped solutions don’t oscillate.

EECS 16B Spring 2023 Module 5, Slide 10 Instructors: Prof. Niknejad/Ramchandran




Distince Roots: Details

* A and B satisfy the initial and final conditions:
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Critically Damped

* If the roots are identical, we can obtain the second solution
through a limiting process:
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Underdamped

* |f the roots of the
equation are
underdamped, they
are complex and

lead to oscillatory Vi

behavior
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Underdamped Solution Procedure

 We find that A and B are complex conjugates and so we can
combine the terms as follows:
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How much energy is stored in the “tank”?

e An “LCR” circuit is often referred to as a “tank”

e Let’s assume the tank is lossless. Then the energy stored in the
inductor and capacitor is given by:
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Total Tank Energy

* |f we sum the energy stored in the inductor and capacitor at
any given time, we find that the sum is constant.

* Since the tank is lossless, this is logical and a statement of the
conservation of energy.

* We observe that the maximum energy of the inductor or
canacitor occiirs when other is storing 7ero enerov:
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Lossy Case

* Now let’s introduce loss. The energy dissipated by the resistor
per cycle is given by:
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 Comparing the energy lost to the energy stored in the inductor,
we have:
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Parallel LCR

* Using the concept of “duality”, we expect the equations to take
on the exam same form as before:
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