EECS 16B
 Designing Information Devices and Systems II

Prof. Ali Niknejad and Prof. Kannan Ramchandran
Department of Electrical Engineering and Computer Sciences, UC Berkeley, niknejad@berkeley.edu

Module 5: RLC Circuits

EECS 16B

Series RLC Circuit

- This is a very important circuit and we'll spend some time understanding the behavior of the circuit.

$$
i=c \frac{d \psi c}{d t} \quad \Rightarrow \quad \frac{d i}{d t}=c \frac{d^{2} v_{c}}{d t^{2}}
$$

$$
\begin{aligned}
r_{S} & =L \frac{d i}{d t}+\frac{i \cdot R}{}+r_{c} \\
& \left.=L C \frac{d^{2} K}{d t}\right)+R C \frac{d V_{c}}{d t}+r_{c}
\end{aligned}
$$

KVL For Series RLC Circuit

$$
v_{s}(t)=v_{C}(t)+R C \frac{d v_{C}}{d t}+L C \frac{d^{2} v_{C}}{d t^{2}}
$$

$$
\left.\begin{array}{l}
v_{0}(t)=v_{C}(t)=0 \mathrm{~V} \\
i(0)=i_{L}(0)=0 \mathrm{~A}
\end{array}\right\} \begin{aligned}
& \text { condition }
\end{aligned}
$$

- Due to interaction between current in inductor and voltage on capacitor, we end up with a $2^{\text {nd }}$ order differential equation
- We must specify two initial conditions, the voltage (or charge) on the capacitor and the current (or flux) in the inductor

$$
\{\text { lnitial State of the system }\}
$$

Solution for Constant Inputs

- We'll solve the situation when we apply a constant input to the circuit at some time.
- Note the final value of the state of the circuit is predictable based on DC steady-state:

$$
\begin{array}{ll}
\left.\frac{t=0}{V_{d d}=v_{C}(t)}\right\} r g \frac{d v_{C}}{d t}+L C \frac{d d^{2} v_{C}}{d t^{2}} & V_{d d}=v_{C}(\infty) \\
r_{C}(t)=r_{d d} & \frac{d_{c}}{d t}=0
\end{array} \frac{d^{2} v_{c}}{d t^{2}}=u
$$

DC Steady State

$$
\begin{array}{ll}
V_{c} \rightarrow \text { constant } \\
\frac{d v_{c}}{d t} & =0 \\
V & =L \frac{d i}{d t}=0
\end{array}
$$

Steady-State Solution

- Let's simply plug in the steady-state solution and solve for the unknown transientsolution, which is the solution to the homogeneous differential equation:

$$
\begin{gathered}
v_{C}(t)=\underline{V_{d d}}+v(t) \\
V_{d d}=V_{d d}+v(t)+R C \frac{d v}{d t}+L C \frac{d^{2} v}{d t^{2}} \\
v_{(}(t)=V_{\rho}(t) \\
\gamma^{\prime}(t)=V_{p}(t)+A V_{n}(t)
\end{gathered}
$$

$D E$
homugeneos
soln
natucal soly
transient
complementan
Solution
inhomogencours soly $\left.\begin{array}{l}\text { forced } \\ \text { particuler }\end{array}\right\}$ soln

Homogeneous Solution

- Try an exponential solution as before to satisfy the homogeneous equation:

$$
\begin{aligned}
& 0=v(t)+R C \frac{d v}{d t}+L C \frac{d^{2} v}{d t^{2}} \quad v(t)=A e^{s t} \\
& \tau=\frac{1}{\omega_{0}} \quad \begin{array}{l}
0=A \dot{q}^{s t}+R C \cdot A \underline{s} e^{s+}+L C A \underline{s}^{2} \dot{q}^{s t} \\
0=1+\underline{R C s+\left(\underline{L C} s^{2}\right.}=1+(s \tau) 2 \underline{\zeta}+(s \tau)^{2} \\
\\
\end{array} \\
& \tau=\frac{1}{\omega_{0}} \quad \begin{array}{l}
0=A \dot{q}^{s t}+R C \cdot A \underline{s} e^{s+}+L C A \underline{s}^{2} \dot{q}^{s t} \\
0=1+\underline{R C s+\left(\underline{L C} s^{2}\right.}=1+(s \tau) 2 \underline{\zeta}+(s \tau)^{2} \\
\\
\end{array} \\
& \tau=\frac{1}{\omega_{0}} \quad \begin{array}{l}
0=A e^{s t}+R C \cdot A \underline{s} e^{s t}+L C A \underline{s}^{2} e^{s t} \\
0=1+\underline{R C s+L C S s^{2}}=1+(s \tau) 2 \underline{\zeta}+(s \tau)^{2} \\
\tau
\end{array} \\
& \zeta=\frac{1}{2 Q} \\
& s \tau=-\zeta \pm \sqrt{\zeta^{2}-1} \\
& \omega_{0}=\frac{1}{\tau}=\frac{1}{\sqrt{L C}} \\
& R_{C}=2 \xi
\end{aligned}
$$

$$
\begin{aligned}
& S \tau=-\left\{ \pm \sqrt{\xi^{2}-1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { RONTS ARE } \\
\text { NEGATIUE }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S=\frac{1}{\tau}\left(\xi \pm \sqrt{\xi^{2}-1}\right) \\
& S=a+j b \\
& e^{j t}=e^{a t} e^{j b t} \Rightarrow \operatorname{vext}
\end{aligned}
$$

$$
e^{s t}=\underbrace{e^{\omega t}}_{\substack{\text { exponenticl } \\ \text { desay } \\ a<0}} \underbrace{e^{j b t}}
$$

RC

$$
w_{0}^{2}=\frac{1}{L C}
$$

$$
0 \triangleq \frac{\omega_{0} L}{R}
$$

General Solution: Constants

- If the roots are distinct, the form of the general solution is as follows. We can find constants A and B from initial conditions.
- If both roots are real, we have two decaying exponentials:

Damped vs. Oscillatory

- We have a parameter zeta that determines the nature of the solution. We can categorize the solution into three types:
- Overdamped solutions are decaying exponentials.
- Underdamped solutions also decay exponentially, but with a twist. They may overshoot and oscillate before fizzling out
- What's the physical reason ?

Under vs Over Damped

- Overdamped solutions don't oscillate.

$\sqrt{S^{2}-1}$

$\zeta<1$ Underdamped
$\zeta=1 \quad$ Critically Damped $\zeta>1$ Overdamped

$$
\begin{aligned}
& (s \tau)^{2}+\underset{\uparrow}{(S \tau)} 2 \xi+1=\sigma \\
& \bar{\tau}=\frac{1}{\omega_{0}} \quad \omega_{0}{ }^{2}=\frac{1}{L C}
\end{aligned}
$$

$$
\xi=\frac{1}{2} R C=0 \quad R=0 \Omega
$$

Distince Roots: Details

- A and B satisfy the initial and final conditions:

$$
\begin{aligned}
& s=\frac{1}{\tau}\left(-\zeta \pm \sqrt{\zeta^{2}-1}\right)=\left\{\begin{array}{l}
s_{1} \\
s_{2}
\end{array}<0\right. \\
& \text { Q } 1 \quad A s_{1}+B s_{2}=0 \\
& \text { 4 } 2 \quad A+B=-V_{d d} \\
& A=\frac{-V_{d d}}{1-\sigma} \\
& A^{*}=\frac{-V_{d d}}{1-\sigma^{*}} \\
& \sigma=\frac{s_{1}}{s_{2}} . \\
& \sigma^{\prime \prime}=\left(\frac{\alpha+j \beta}{\alpha-j \beta}\right)^{\infty}=\frac{\alpha-j \beta}{\alpha f j \beta} \\
& v_{C}(t)=V_{d d}\left(1-\frac{1}{1-\sigma}\left(e^{s_{1} t}-\sigma e^{s_{2} t}\right)\right) \\
& \sigma^{*}=\frac{1}{\sigma}
\end{aligned}
$$

Critically Damped

- If the roots are identical, we can obtain the second solution through a limiting process:

$$
\begin{gathered}
s=\frac{1}{\tau}\left(-\zeta \pm \sqrt{\zeta^{2}-1}\right)=-\frac{1}{\tau} \\
\lim _{\zeta \rightarrow 1} v_{C}(t)=V_{d d}\left(1-e^{-t / \tau}-\frac{t}{\tau} e^{-t / \tau}\right)
\end{gathered}
$$

Underdamped

- If the roots of the equation are underdamped, they are complex and lead to oscillatory behavior

$$
s \tau=-\zeta \pm j \sqrt{1-\zeta^{2}}=a \pm j b
$$

$$
\begin{aligned}
& S_{1,2} \tau=-\sum_{\substack{\text { real } \\
\text { puct }}}^{\substack{1-\xi^{2}}} \begin{array}{l}
\text { incy. } \\
S_{1}=-\xi+i \sqrt{1-s^{2}} \\
S_{2}=\bar{s}_{1}
\end{array}
\end{aligned}
$$

Underdamped Solution Procedure

- We find that A and B are complex conjugates and so we can combine the terms as follows:

$$
\begin{array}{lr}
A^{*}=\frac{-V_{d d}}{1-\sigma^{*}}=\frac{V_{d d}}{\sigma^{-1}-1}=\frac{\sigma V_{d d}}{1-\sigma}=\text { B } & |A|=\frac{V_{d d}}{|1+\sigma|} \\
v_{C}(t)=V_{d d}+e^{a t / \tau} \underbrace{\left(A e^{j b t \tau}+A^{*} e^{-j b t \tau}\right.}) & \phi=\angle \frac{V_{d d}}{1+\sigma}
\end{array}
$$

How much energy is stored in the "tank"?

- An "LCR" circuit is often referred to as a "tank"
- Let's assume the tank is lossless. Then the energy stored in the inductor and capacitor is given by:

$$
w_{L}=\frac{1}{2} L i^{2}(t)=\frac{1}{2} L I_{M}^{2} \cos ^{2} \omega_{0} t \leftharpoonup
$$

$$
i=I_{\mu} \cos \omega_{0} t
$$

$$
\begin{array}{r}
w_{C}=\frac{1}{2} C v_{C}^{2}(t)=\frac{1}{2} C(\underbrace{\frac{1}{C}}) \\
w_{C}=\frac{1}{2} \frac{I_{M}^{2}}{\omega_{0}^{2} C} \sin ^{2} \omega_{0} t
\end{array}
$$

Total Tank Energy

- If we sum the energy stored in the inductor and capacitor at any given time, we find that the sum is constant.
- Since the tank is lossless, this is logical and a statement of the conservation of energy.
- We observe that the maximum energy of the inductor or canacitor occurs when other is storing fern energy:

$$
\begin{aligned}
& w_{s}=w_{L}+w_{C}=\frac{1}{2} I_{M}^{2}\left(L \cos ^{2} \omega_{0} t+\frac{1}{\omega_{0}^{2} C} \sin ^{2} \omega_{0} t\right)=\frac{1}{2} I_{M}^{2} \underline{L} \quad \begin{array}{l}
L \\
\\
w_{L, \max }=w_{s}=\frac{1}{2} I_{M}^{2} L \quad \frac{1}{w_{0}^{2} C} \\
w_{C, \max }=w_{s}=\frac{1}{2} V_{M}^{2} C
\end{array}
\end{aligned}
$$

Lossy Case

- Now let's introduce loss. The energy dissipated by the resistor per cycle is given by:

$$
w_{d}=P \cdot T=\left(\frac{1}{2} I_{M}^{2} R\right) \cdot\left(\frac{2 \pi}{\omega_{0}}\right)
$$

- Comparing the energy lost to the energy stored in the inductor, we have:

$$
\begin{aligned}
& \xi=\frac{1}{2} R C=\frac{1}{2} \frac{R \cdot}{L \omega_{0}^{2}}=\frac{1}{2} \frac{R}{w_{0} L} \cdot\left(\frac{1}{w_{0}}\right) \\
& \omega_{0}^{2}=\frac{L}{L C} \quad C=\frac{1}{L \omega_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
P_{S} & =\frac{1}{2} L I_{p c a}^{2} \\
R_{L} & =\frac{1}{2} I_{p C a}^{2} \cdot R \cdot \alpha \\
& I_{I}^{2}
\end{aligned}
$$

Parallel LCR

- Using the concept of "duality", we expect the equations to take on the exam same form as before:

$$
\begin{aligned}
& i_{S} \sum_{2} \quad i_{L} \sum_{2}^{+} \quad \sum_{v}^{+} i_{R}=v / R \\
& i_{S}^{\prime}=i_{L}^{\prime}+C\left(\frac{d v}{d t}\right)^{\prime}+\frac{1}{R} v^{\prime} \\
& \omega_{0}^{2}=\frac{1}{2 c} \\
& V=L \frac{d i_{L}}{d t} \\
& i_{s}^{\prime}=\frac{v}{2}+C \frac{d^{2} v}{d t^{2}}+\frac{1}{R} \frac{d v}{d t} \\
& Q=\frac{R}{W_{0} L} \\
& =w_{0} R C
\end{aligned}
$$

$$
\left\{\begin{array}{l}
r_{s}=r_{c_{1}}+\left(\frac{d i}{d t}+r_{c_{2}}\right. \\
i=c_{2} \frac{d v_{c_{2}}}{d t}+\frac{v_{c 2}}{R} \\
i^{\prime}=c_{1}\left(\frac{d r_{1}}{d t}\right)^{\prime}
\end{array}\right\} \begin{aligned}
& 3 c_{q} \\
& 3 \text { vinh }
\end{aligned}
$$

$$
\begin{aligned}
& r_{s}=r_{c_{1}}+L \frac{d i}{d t}+{ }^{V} r_{c_{2}} \\
& \left(i=c_{2} \frac{d v_{z_{2}}}{d t}+\frac{v_{c_{2}}}{e}\right) \\
& i=C_{1}\left(\frac{d V_{1}}{d t}\right) \\
& \stackrel{\rightharpoonup}{x}=\left(\begin{array}{c}
V_{c_{1}} \\
r_{c_{2}} \\
i
\end{array}\right) \\
& \text { State of } \\
& \frac{d v_{c 1}}{d t}=\frac{1}{c_{1}} i \quad \text { system } \\
& \left.\begin{array}{l}
\frac{d V_{C_{L}}}{d t}=-\frac{1}{C_{2}} i-\frac{1}{C_{2} R} V_{C_{2}} \\
\frac{d i}{d t}=+\frac{V_{S}}{L}-\frac{V_{C_{2}}}{L}-\frac{V_{C_{2}}}{L}
\end{array}\right\} \quad \frac{d}{d t} \vec{x}=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{1} \\
0 & 1 & 1 \\
0 & -2 & c_{2} \\
-1 & -1 & 0 \\
L & 0 \\
\frac{1}{L}\left(\begin{array}{c}
0 \\
0 \\
2
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

