

Module 6: Change of Basis

EECS 16B

Where do you live?

- In a 2D plane, we only need to specify three points:
- Origin (Downtown Library)
- Location 1 (Cream on Telegraph)
- Location 2 (Cory Hall)
- Equivalently, we need to specify two vectors
- As long as the vectors are not co-linear, we can specify any other location
- In other words, the vectors must be linearly independent
$-\overrightarrow{v_{1}} \neq a \overrightarrow{v_{2}}$

Generalize to 3D and Beyond

- Any N vectors that are linearly independent can form a basis in an N dimensional space.

Standard Basis

- $\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{N}$ are just one representation of mutually orthogonal vectors.
- Note that even the standard basis is not unique as we can easily rotate the standard basis to find a new basis

Sather Gate

- Here we take \hat{e}_{1} and \hat{e}_{2} to be North and East
- Which directions are better?
- Both get you to the same location, so they are equivalent.

How to change basis?

- Say you know a location using basis set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots$ but you're talking to someone who has no idea where Cory Hall or another other place in Berkeley resides
- What to do? Tell them to pull out a compass and walk along e_{1}, e_{2} instead
- Since the destination is the same, we have:

Matrix Product: Standard Basis

- Recall that a matrix-vector multiplication is just a linear combination of the columns of a matrix.
- If we form two matrices, we have:
- But $E=I$, so we have:
- Likewise, since V has independent columns

Non-Standard Basis

- In the previous calculation one basis was the standard basis
- What if we have two non-standard basis vectors A and B
- Why can we always invert A?
- The columns of A are linearly independent!

Standard Basis to New Basis

- We found that:
- If B is the standard basis, then $B=I$ and we have

Linear Transformations

- Let's see how a linear transformation in one basis can be written in another basis
- Say L_{v} is a linear transformation (mapping) from \vec{x} to \vec{y} both represented in basis A
- In other words, for all x we have
- To represent L_{v} as a matrix, we note that \vec{x} can be written as

Transformation Matrix

- In other words, the matrix columns are the result of applying the transformation to $\overrightarrow{a_{1}}, \overrightarrow{a_{2}} \ldots$
- We form a matrix of columns of $L_{A}=L_{v}\left(\overrightarrow{a_{k}}\right)$

Transformation in Another Basis

- Now we can always use another basis B, and define L_{B} in the same way
- Since both transformations applied to the same input must map to the same point, we can say

Manipulating...

- Moving vectors from basis A to B :
- Since the matrix is invertible:
- The mappings are therefore related as follows:

Diagonalizing Basis

- Is there a natural basis ? Earlier we argued that all basis vectors were equivalent but with respect to a particular linear mapping, what's the best basis ?
- If a particular basis turns a transformation into a diagonal matrix, we say that the basis is the simplest basis for a transformation T
- Recall the definition of an eigenvector:
$-T \vec{v}=\lambda \vec{v}$
- where the eigenvector is \vec{v} and eigenvalue is λ

Eigenvector Basis

- If the set of eigenvectors forms a basis (linearly independent), we know that the transformation is invertible, and we can use the eigenvectors as a basis.
- Let's perform a transformation using the eigenfunction basis vectors:
- We see the result is very simple as each vector is mapped to itself times a constant

Matrix Form of Eigenvector Basis

- Let's rewrite:

$$
-T \vec{u}=\mathrm{u}_{1} \lambda_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{u}_{2} \lambda_{2} \overrightarrow{\mathrm{v}}_{2}+\mathrm{u}_{3} \lambda_{3} \overrightarrow{\mathrm{v}}_{3}+\ldots
$$

- As:
- Here we form the eigenvector matrix Q , diagonal matrix Λ

Eigenvector Basis (cont)

- So far, we have found that
- Now let's write $\overrightarrow{\mathrm{u}}$ in terms of the standard basis:
- The transformation:

Deconvolving a Linear Mapping

- How is this useful? Suppose we want to solve
- Recall that \vec{u} is the vector \vec{u} in the basis of eigenvectors of T
- Like $Q^{-1} \vec{b}$ is simply \vec{b} transformed into the eigenspace

The World's Easiest Matrix To Invert

- If we know the eigenvectors of a linear transform, it can save us a ton of work.
- Instead of solving a difficult $n \times n$ problem we solve just n equations:
- Λ is a diagonal matrix!
- Clearly the eigenvector basis is the most "natural" for solving problems involving a linear transform T

Use the best "map"

- Summarizing what we have learned, we can say that if we change our perspective (basis) and view things in terms of the eigenspace, then a linear transformation is very simple and only involves multiplying by a diagonal matrix
- Can we apply this to circuit and other dynamic systems described by linear differential equations ... ?

Power to the Matrix

- Consider the n'th power of a matrix:
- Note that raising a diagonal matrix is trivial !

Preview: Frequency Domain Basis

- We have found that complex exponentials pretty much solve any homogeneous constant coefficient differential equations
- These equations arise from time-invariant circuits and in general time-invariant systems
- The component values don't change with time
- Another way to see this is to say that the complex exponential is an eigenfunction of a linear dynamic system!
- Does it form a basis?
- Yes, in fact it forms a continuous orthogonal basis

Preview (cont)

- The Fourier Transform and Laplace Transform (EE 120) take you from the time domain to the frequency domain, in other words they are a change of basis operation
- If we solve problems in the frequency domain, these complicated differential equations collapse into simple "diagonal" systems that we can solve ...
- "Convolution" turns into multiplication

