

Module 6: Change of Basis

EECS 16B

Where do you live?

- In a 2D plane, we only need to specify three points:
- Origin (Downtown Library)
- Location 1 (Cream on Telegraph)
- Location 2 (Cory Hall)
- Equivalently, we need to specify two vectors
- As long as the vectors are not co-linear, we can specify any other location
- In other words, the vectors must be linearly independent
$-\overrightarrow{v_{1}} \neq a \overrightarrow{v_{2}}$

Generalize to 3D and Beyond

- Any N vectors that are linearly independent can form a basis in an N dimensional space.

Standard Basis

- $\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{N}$ are just one representation of mutually orthogonal vectors.
- Note that even the standard basis is not unique as we can easily rotate the standard basis to find a new basis

Sather Gate

- Here we take \hat{e}_{1} and \hat{e}_{2} to be North and East
- Which directions are better?
- Both get you to the same location, so they are equivalent.

How to change basis?

- Say you know a location using basis set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots$ but you're talking to someone who has no idea where Cory Hall or another other place in Berkeley resides
- What to do? Tell them to pull out a compass and walk along e_{1}, e_{2} instead
- Since the destination is the same, we have:

$$
\begin{aligned}
& \vec{z}=\frac{x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}}{\vec{v}_{1} \neq k \vec{v}_{2}}=y_{1} \vec{v}_{1}+y_{2} \vec{v}_{2} \\
& \vec{v}_{1} \& \vec{r}_{2} \text { inderdy inderent }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \hat{e}_{1}+\lambda_{2} \hat{e}_{2}+\cdots+x_{n} \hat{e}_{n}=I \cdot \vec{x} \\
& I \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 &
\end{array}\right]=I \vec{x} \\
& I \vec{x}=y_{1} \vec{v}_{1}+4_{2} \vec{v}_{2}+\cdots+y_{n} \vec{r}_{n} \\
& I \vec{x}=V \vec{y} \quad \vec{y}^{\prime}=V^{-1} \vec{x}
\end{aligned}
$$

Transformation Matrix

$$
\begin{array}{rlrl}
\vec{z} & =A \vec{x}_{A}=B \vec{x}_{g} & A & =\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right] \\
\vec{x}_{B} & =\underbrace{B A} A \vec{x}_{A} & B=\left[\begin{array}{llll}
\vec{b} & \vec{b}_{1} & \ldots & \vec{b}_{n}
\end{array}\right] \\
& =T_{B A} \vec{x}_{A} &
\end{array}
$$

Matrix Product: Standard Basis

- Recall that a matrix-vector multiplication is just a linear combination of the columns of a matrix.
- If we form two matrices, we have:
- But $E=I$, so we have:
- Likewise, since V has independent columns

Non-Standard Basis

- In the previous calculation one basis was the standard basis
- What if we have two non-standard basis vectors A and B
- Why can we always invert A?
- The columns of A are linearly independent!

Standard Basis to New Basis

- We found that:
- If B is the standard basis, then $B=I$ and we have

Linear Transformations

- Let's see how a linear transformation in one basis can be written in another basis
- Say L_{v} is a linear transformation (mapping) from \vec{x} to \vec{y} both represented in basis A
- In other words, for all x we have
- To represent L_{v} as a matrix, we note that \vec{x} can be written as

$$
\begin{aligned}
& \mathcal{L}\{\vec{v}\} \longrightarrow \vec{z} \\
& \vec{v}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3} \ldots \cdot \\
& \mathcal{L}\{\vec{v}\}=x_{1} \underbrace{\sum\left\{\vec{v}_{1}\right\}}_{\vec{a}_{1}}+x_{2} \underbrace{\mathcal{Z}\left\{\vec{v}_{2}\right\}}_{\vec{a}_{2}}+\cdots \cdot \\
& =\lambda_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}+\cdots \cdot \\
& =A \vec{x}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{i}\{ \}=V \\
& \mathcal{Z}_{y}\{3=Y
\end{aligned}
$$

\mathcal{L} same m-pping

$$
\begin{aligned}
& \vec{z}=V \vec{r}_{r} \\
& \vec{r}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
&\left(\begin{array}{c}
0 \\
\alpha \\
\vdots \\
0
\end{array}\right) \neq \alpha \vec{r}_{2}
\end{aligned}
$$

