

Module 6: Change of Basis

EECS 16B

Where do you live?

- In a 2D plane, we only need to specify three points:
- Origin (Downtown Library)
- Location 1 (Cream on Telegraph)
- Location 2 (Cory Hall)
- Equivalently, we need to specify two vectors
- As long as the vectors are not co-linear, we can specify any other location
- In other words, the vectors must be linearly independent
$-\overrightarrow{v_{1}} \neq a \overrightarrow{v_{2}}$

Generalize to 3D and Beyond

- Any N vectors that are linearly independent can form a basis in an N dimensional space.

Standard Basis

- $\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{N}$ are just one representation of mutually orthogonal vectors.
- Note that even the standard basis is not unique as we can easily rotate the standard basis to find a new basis

Sather Gate

- Here we take \hat{e}_{1} and \hat{e}_{2} to be North and East
- Which directions are better?
- Both get you to the same location, so they are equivalent.

How to change basis?

- Say you know a location using basis set $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots$ but you're talking to someone who has no idea where Cory Hall or another other place in Berkeley resides
- What to do? Tell them to pull out a compass and walk along e_{1}, e_{2} instead
- Since the destination is the same, we have:

$$
\begin{aligned}
& \vec{z}=\frac{x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}}{\vec{v}_{1} \neq k \vec{v}_{2}}=y_{1} \vec{v}_{1}+y_{2} \vec{v}_{2} \\
& \vec{v}_{1} \& \vec{r}_{2} \text { inderdy inderent }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \hat{e}_{1}+\lambda_{2} \hat{e}_{2}+\cdots+x_{n} \hat{e}_{n}=I \cdot \vec{x} \\
& I \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 &
\end{array}\right]=I \vec{x} \\
& I \vec{x}=y_{1} \vec{v}_{1}+4_{2} \vec{v}_{2}+\cdots+y_{n} \vec{r}_{n} \\
& I \vec{x}=V \vec{y} \quad \vec{y}^{\prime}=V^{-1} \vec{x}
\end{aligned}
$$

Transformation Matrix

$$
\begin{array}{rlrl}
\vec{z} & =A \vec{x}_{A}=B \vec{x}_{g} & A & =\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right] \\
\vec{x}_{B} & =\underbrace{B A} A \vec{x}_{A} & B=\left[\begin{array}{llll}
\vec{b} & \vec{b}_{1} & \ldots & \vec{b}_{n}
\end{array}\right] \\
& =T_{B A} \vec{x}_{A} &
\end{array}
$$

Matrix Product: Standard Basis

- Recall that a matrix-vector multiplication is just a linear combination of the columns of a matrix.
- If we form two matrices, we have:
- But $E=I$, so we have:
- Likewise, since V has independent columns

Non-Standard Basis

- In the previous calculation one basis was the standard basis
- What if we have two non-standard basis vectors A and B
- Why can we always invert A?
- The columns of A are linearly independent!

Standard Basis to New Basis

- We found that:
- If B is the standard basis, then $B=I$ and we have

Linear Transformations

- Let's see how a linear transformation in one basis can be written in another basis
- Say L_{v} is a linear transformation (mapping) from \vec{x} to \vec{y} both represented in basis A
- In other words, for all x we have
- To represent L_{v} as a matrix, we note that \vec{x} can be written as

$$
\begin{aligned}
& \mathcal{L}\{\vec{v}\} \longrightarrow \vec{z} \\
& \vec{v}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3} \ldots \cdot \\
& \mathcal{L}\{\vec{v}\}=x_{1} \underbrace{\sum\left\{\vec{v}_{1}\right\}}_{\vec{a}_{1}}+x_{2} \underbrace{\mathcal{Z}\left\{\vec{v}_{2}\right\}}_{\vec{a}_{2}}+\cdots \cdot \\
& =\lambda_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+x_{3} \vec{a}_{3}+\cdots \cdot \\
& =A \vec{x}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{i}\{ \}=V \\
& \mathcal{Z}_{y}\{3=Y
\end{aligned}
$$

\mathcal{L} same m-pping

$$
\begin{aligned}
& \vec{z}=V \vec{r}_{r} \\
& \vec{r}_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
&\left(\begin{array}{c}
0 \\
\alpha \\
\vdots \\
0
\end{array}\right) \neq \alpha \vec{r}_{2}
\end{aligned}
$$

Transformation Matrix

- In other words, the matrix columns are the result of applying the transformation to $\overrightarrow{a_{1}}, \overrightarrow{a_{2}} \ldots$
- We form a matrix of columns of $L_{A}=L_{v}\left(\overrightarrow{a_{k}}\right)$

Transformation in Another Basis

- Now we can always use another basis B, and define L_{B} in the same way
- Since both transformations applied to the same input must map to the same point, we can say

$$
\begin{array}{lll}
\vec{y}=T \vec{x} & T \text { in standard basis } \\
\vec{y}_{B}=T_{B} \vec{x}_{B} & T \text { \& } T_{3} \text { should be } \\
& \text { related }
\end{array}
$$

Review

$$
\vec{b}_{1}, \vec{b}_{2}, \cdots, \vec{b}_{n}
$$

Standard basis $\vec{x}=x \hat{e}_{1}+x_{2} \hat{e}_{2}+\cdots$

$$
\begin{gathered}
B=\left[\vec{b}_{1} ; \vec{b}_{2} ; \ldots ; \vec{b}_{n}\right] \\
\vec{x}_{B}=B^{-1} \vec{x}
\end{gathered}
$$

Manipulating...

- Moving vectors from basis $\frac{1}{K^{\prime}}$ to B :

$$
\begin{array}{ll}
\vec{y}=T \vec{x} & B^{-1} \vec{y}=B^{-} \Gamma \vec{x} \\
\text { natrix is invertible: } & \vec{y}_{B}=B^{-1} \Gamma \vec{x}
\end{array}
$$

- Since the matrix is invertible:

$$
\vec{x}_{B}=B^{-1} \vec{x} \quad \vec{x}=\left(B \vec{x}_{B}\right)
$$

- The mappings are therefore related as follows:
T \& T_{B} are "similar metrices"

$$
\begin{aligned}
& T_{B}=B^{-1} T B \\
& B T_{B} B^{-1}=T B B K \\
& B T_{B} B^{T}=T
\end{aligned}
$$

Diagonalizing Basis

- Is there a natural basis ? Earlier we argued that all basis vectors were equivalent but with respect to a particular linear mapping, what's the best basis ?
- If a particular basis turns a transformation into a diagonal matrix, we say that the basis is the simplest basis for a transformation T
- Recall the definition of an eigenvector:

$$
-T \vec{v}=\lambda \vec{v} \quad \text { By definite }
$$

- where the eigenvector is \vec{v} and eigenvalue is λ

$$
B^{-1} T B=D \text { diagonal }
$$

whet basis B turns our transformation T into a diagonal matrix?

Eigenvector Basis

- If the set of eigenvectors forms a basis (linearly independent), we know that the transformation is invertible, and we can use the eigenvectors as a basis: $\quad \vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{\gamma}_{n}$
- Let's perform a transformation using the eigenfunction basis vectors:

$$
\begin{aligned}
& T \vec{u}=T\left(u_{1} \vec{v}_{1}+u_{2} \vec{v}_{2}+\cdots\right) \\
& =u_{1} T \vec{v}_{1}+u_{2} T \overrightarrow{v_{2}}+\cdots \\
& =u_{1} \lambda_{1} \vec{r}_{1}+u_{2} \lambda_{2} \vec{v}_{2}+\cdots
\end{aligned} \vec{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

- We see the result is very simple as each vector is mapped to itself times a constant

Matrix Form of Eigenvector Basis

- Let's rewrite:

$$
T \vec{u}=u_{1} \lambda_{1} \vec{v}_{1}+u_{2} \lambda_{2} \vec{v}_{2}+u_{3} \lambda_{3} \vec{v}_{3}+\ldots
$$

$$
\begin{aligned}
\text { As: } & Q=\left[\vec{r}_{1} ; \vec{v}_{2} ; \cdots\right] \\
T \vec{u} & =Q \Lambda \vec{u} \\
& =Q\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right] \vec{u}
\end{aligned}
$$

transtimatio matrix from standard basis to eigen-basis

- Here we form the eigenvector matrix Q, diagonal matrix Λ

$$
\begin{aligned}
\Omega \vec{u} & =\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \\
& & \\
\hline
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1} u_{1} \\
\lambda_{1} & u_{2} \\
\vdots \\
\lambda_{n} & u_{n}
\end{array}\right) \\
Q \Lambda \vec{u} & =Q\left(\begin{array}{c}
\lambda_{1} u_{1} \\
\vdots \\
\lambda_{1} \\
u_{1}
\end{array}\right) \\
& =\vec{j}_{1} \lambda_{1} u_{1}+\vec{\gamma}_{2} \lambda_{2} u_{2}+\cdots
\end{aligned}
$$

Eigenvector Basis (cont)

- So far, we have found that

$$
T \vec{u}=Q \Lambda(\stackrel{\rightharpoonup}{u})
$$

- Now let's write $\overrightarrow{\mathrm{u}}$ in terms of the standard basis:

$$
\vec{u}=Q^{-1} \vec{x}
$$

$$
\text { In the new basis } T \text { is } \Omega
$$

Deconvolving a Linear Mapping

- How is this useful? Suppose we want to solve

$$
T \vec{x}=\vec{b}
$$

$Q \Omega \underbrace{2^{-1} \vec{x}}=\vec{b}$

- Recall that \vec{u} is the vector \vec{u} in the basis of eigenvectors of T

$$
\vec{u}=2^{y} \vec{x} \quad Q \wedge \vec{u}=\vec{b}
$$

- Like $Q^{-1} \vec{b}$ is simply \vec{b} transformed into the eigenspace

$$
\underbrace{Q^{1} Q}_{x} \Omega \vec{a}=Q^{-1} \vec{b} \quad \vec{b} \text { is } \vec{b} \text { in eimentarass }
$$

The World's Easiest Matrix To Invert

- If we know the eigenvectors of a linear transform, it can save us a ton of work.
- Instead of solving a difficult $n \times n$ problem we solve just n equations:

- Λ is a diagonal matrix!
- Clearly the eigenvector basis is the most "natural" for solving problems involving a linear transform T

Use the best "map"

- Summarizing what we have learned, we can say that if we change our perspective (basis) and view things in terms of the eigenspace, then a linear transformation is very simple and only involves multiplying by a diagonal matrix
- Can we apply this to circuit and other dynamic systems described by linear differential equations ... ?

Power to the Matrix

- Consider the nth power of a matrix:

$$
\begin{aligned}
& A^{n}=A \cdots A=(Q \Lambda \underbrace{Q^{-1}}_{I})\left(Q \Omega Q^{-1}\right) \cdots\left(Q \Omega Q^{-1}\right) \\
& =Q \Omega I \Omega Q^{-1} \cdots \cdot \\
& =Q \Omega^{2} \underbrace{Q^{I}}_{Q^{-1}(Q} \Omega Q^{-1}) \ldots \underbrace{\left(Q \Omega Q^{-1}\right)} \\
& \text { • Note that raising a diagonal matrix is trivial ! }=Q \Lambda^{n} Q^{-1}
\end{aligned}
$$

Preview: Frequency Domain Basis

- We have found that complex exponentials pretty much solve any homogeneous constant coefficient differential equations
- These equations arise from time-invariant circuits and in general time-invariant systems
- The component values don't change with time
- Another way to see this is to say that the complex exponential is an eigenfunction of a linear dynamic system!
- Does it form a basis?
- Yes, in fact it forms a continuous orthogonal basis

Preview (cont)

- The Fourier Transform and Laplace Transform (EE 120) take you from the time domain to the frequency domain, in other words they are a change of basis operation
- If we solve problems in the frequency domain, these complicated differential equations collapse into simple "diagonal" systems that we can solve ...
- "Convolution" turns into multiplication

