EECS 16B Designing Information Devices and Systems II

Prof. Ali Niknejad and Prof. Kannan Ramchandran Department of Electrical Engineering and Computer Sciences, UC Berkeley, niknejad@berkeley.edu

Module 6: Change of Basis

EECS 16B

Where do you live?

- In a 2D plane, we only need to specify three points:
 - Origin (Downtown Library)
 - Location 1 (Cream on Telegraph)
 - Location 2 (Cory Hall)
- Equivalently, we need to specify two vectors
- As long as the vectors are not co-linear, we can specify any other location
- In other words, the vectors must be linearly independent
 - $-\overrightarrow{v_1} \neq a\overrightarrow{v_2}$

Generalize to 3D and Beyond

• Any *N* vectors that are linearly independent can form a basis in an *N* dimensional space.

Standard Basis

- $\hat{e}_1, \hat{e}_2, \dots, \hat{e}_N$ are just one representation of mutually orthogonal vectors.
- Note that even the standard basis is not unique as we can easily rotate the standard basis to find a new basis

Sather Gate

- Here we take \hat{e}_1 and \hat{e}_2 to be North and East
- Which directions are better?
- Both get you to the same location, so they are equivalent.

How to change basis?

- Say you know a location using basis set $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots$ but you're talking to someone who has no idea where Cory Hall or another other place in Berkeley resides
- What to do? Tell them to pull out a compass and walk along *e*₁, e₂ instead
- Since the destination is the same, we have:

$$\vec{z} = \chi_1 \hat{e}_1 + \chi_2 \hat{e}_2 = y_1 \vec{\chi}_1 + y_2 \vec{\chi}_2$$

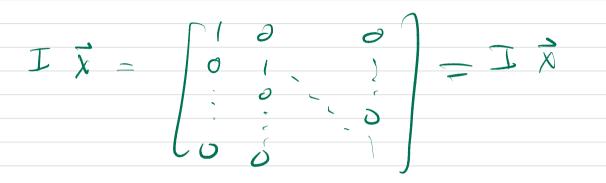
$$\vec{\chi}_1 \neq k \vec{\chi}_2 = \vec{\chi}_1 & \vec{\chi}_2 + y_2 \vec{\chi}_2$$

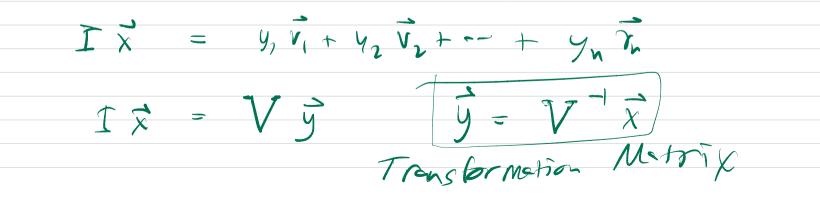
$$\vec{\chi}_1 \neq k \vec{\chi}_2 = \vec{\chi}_1 & \vec{\chi}_2 & lineardy$$

$$\vec{\chi}_1 \neq k \vec{\chi}_2 = \vec{\chi}_1 & \vec{\chi}_2 & lineardy$$

$$\vec{\chi}_1 \neq k \vec{\chi}_2 = \vec{\chi}_1 & \vec{\chi}_2 & lineardy$$

$$\vec{\chi}_1 \neq k \vec{\chi}_2 = \vec{\chi}_1 & \vec{\chi}_2 & lineardy$$





 $A = \left[\overline{a}_{1} \ \overline{a}_{2} \ \cdots \ \overline{a}_{n} \right]$ $\vec{z} = A \vec{x}_A = B \vec{x}_g$

 $\ddot{X}_{B} = B A \dot{X}_{A}$

 $= T_{BA} \breve{\chi}_{A}$

Matrix Product: Standard Basis

- Recall that a matrix-vector multiplication is just a linear combination of the columns of a matrix.
- If we form two matrices, we have:

• But E = I, so we have:

• Likewise, since V has independent columns

Non-Standard Basis

- In the previous calculation one basis was the standard basis
- What if we have two non-standard basis vectors A and B

- Why can we always invert A?
 - The columns of A are linearly independent !

Standard Basis to New Basis

• We found that:

• If B is the standard basis, then B = I and we have

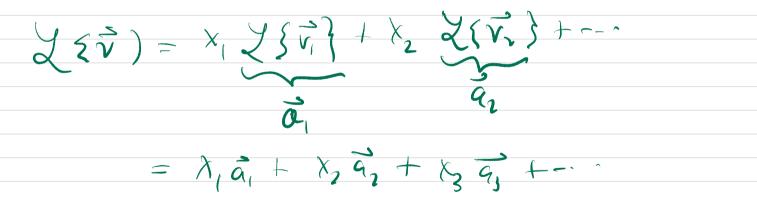
Linear Transformations

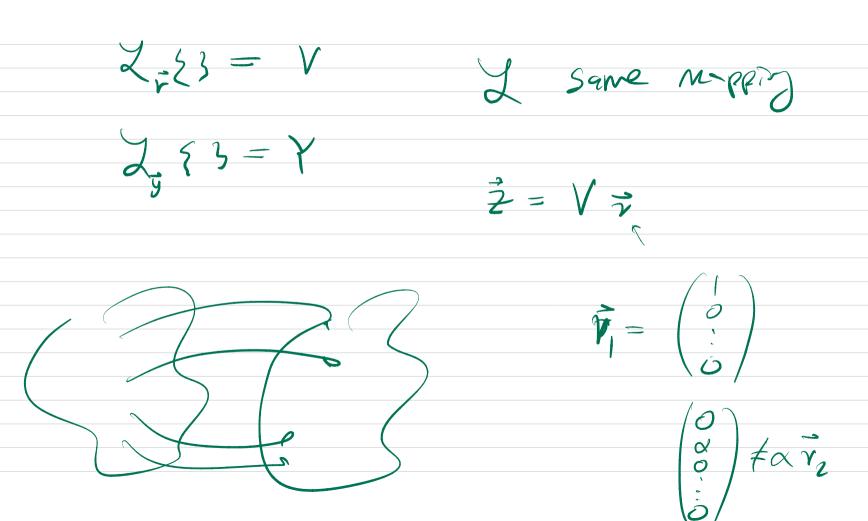
- Let's see how a linear transformation in one basis can be written in another basis
- Say L_v is a linear transformation (mapping) from \vec{x} to \vec{y} both represented in basis A
- In other words, for all x we have

• To represent L_v as a matrix, we note that \vec{x} can be written as

Z fig - z

 $\vec{\gamma} = \chi_1 \vec{\tau}_1 + \chi_2 \vec{\gamma}_2 + \chi_5 \vec{\gamma}_2 + \cdots$





Transformation Matrix

- In other words, the matrix columns are the result of applying the transformation to $\overrightarrow{a_1}$, $\overrightarrow{a_2}$...
- We form a matrix of columns of $L_A = L_v(\overrightarrow{a_k})$

Transformation in Another Basis

- Now we can always use another basis \underline{B} , and define L_B in the same way
- Since both transformations applied to the same input must map to the same point, we can say
 Time Standard basis

T& Tz Should be retailed

Standard basis $\vec{X} = X_1 \vec{e}_1 + X_2 \vec{e}_2 + \cdots$



Manipulating...

- Moving vectors from basis \overleftarrow{X} to *B*: $\overrightarrow{y} = \overrightarrow{x}$ $\overrightarrow{y} = \overrightarrow{y} = \overrightarrow{x}$ Since the matrix is invertible:

$$\vec{X}_{B} = \vec{B} \cdot \vec{X} \qquad \vec{X} = (\vec{B} \cdot \vec{X}_{B})$$

• The mappings are therefore related as follows:

$$\tilde{y}_{\theta} = \tilde{B}^{T} \tilde{T} \tilde{B} \tilde{X}_{\theta}$$

 $\tilde{T}_{B} = \tilde{B}^{T} \tilde{T} \tilde{B}$

 $\tilde{T}_{B} = \tilde{B}^{T} \tilde{T} \tilde{B}$

 $\tilde{T}_{T} \tilde{D} \tilde{D} \tilde{D} \tilde{S} \tilde{B}$

T& TB are "Similar Metrices" $T_{A} = B^{-1}TB$ BTBB=TBBZ $BT_3B = T$

Diagonalizing Basis

- Is there a natural basis ? Earlier we argued that all basis vectors were equivalent but with respect to a particular linear mapping, what's the best basis ?
- If a particular basis turns a transformation into a diagonal matrix, we say that the basis is the simplest basis for a transformation *T*
- Recall the definition of an eigenvector:
 - $-T\vec{v} = \lambda\vec{v}$ By definition
 - where the eigenvector is \vec{v} and eigenvalue is λ

BTB = D dirgonel Whet basis B turns our transformation Tinto a diagonal metrix?

Eigenvector Basis

- If the set of eigenvectors forms a basis (linearly independent), we know that the transformation is invertible, and we can use the eigenvectors as a basis: $\vec{\gamma}_1, \vec{v}_2, \dots, \vec{\gamma}_n$
- Let's perform a transformation using the eigenfunction basis $T\vec{u} = T\left(u_{1}\vec{v}_{1}+u_{2}\vec{v}_{2}+\cdots\right) \qquad \begin{pmatrix} u_{1}\\ u_{2}\\ u_{2}\\ \vdots\\ \vdots\\ \vdots\\ u_{n}\vec{v}_{1}+u_{n}\vec{v}_{n}\vec{v}_{n}+\cdots\right) \qquad \vec{u} = \begin{pmatrix} u_{1}\\ u_{2}\\ \vdots\\ u_{n}\\ \vdots\\ u_{n} \end{pmatrix}$ vectors:
- We see the result is very simple as each vector is mapped to itself times a constant

Matrix Form of Eigenvector Basis

• Let's rewrite:

$$T \vec{u} = u_1 \lambda_1 \vec{v}_1 + u_2 \lambda_2 \vec{v}_2 + u_3 \lambda_3 \vec{v}_3 + \dots$$

• As: $Q = \left(\vec{r}_{1} \right) \vec{v}_{2}$; ---]

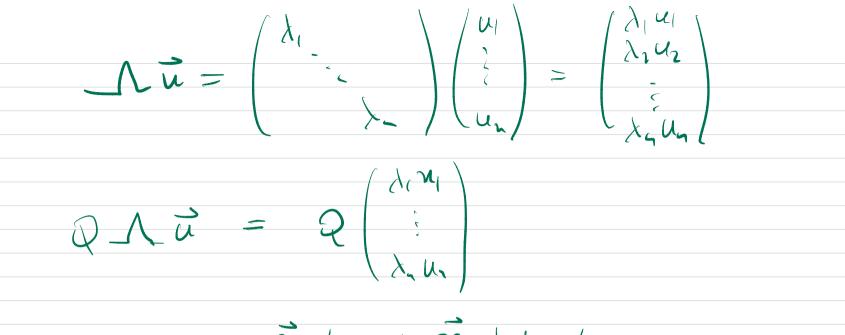
$$T\vec{a} = Q A \vec{n}$$

= $Q \left[\begin{array}{c} \lambda & 0 \\ 0 & -\lambda \end{array} \right] \vec{n}$

- Here we form the eigenvector matrix Q, diagonal matrix $\boldsymbol{\Lambda}$

Q transtamentin metrix 600

Standard basis to eigen-basis



$$= \tilde{1}_{1} d_{1} u_{1} + \tilde{1}_{2} d_{2} u_{1} + \cdots$$

Eigenvector Basis (cont)

- So far, we have found that $\mathcal{T}_{\mathcal{U}} = \mathcal{Q}_{\mathcal{U}}(\mathcal{U})$
- Now let's write \vec{u} in terms of the standard basis:

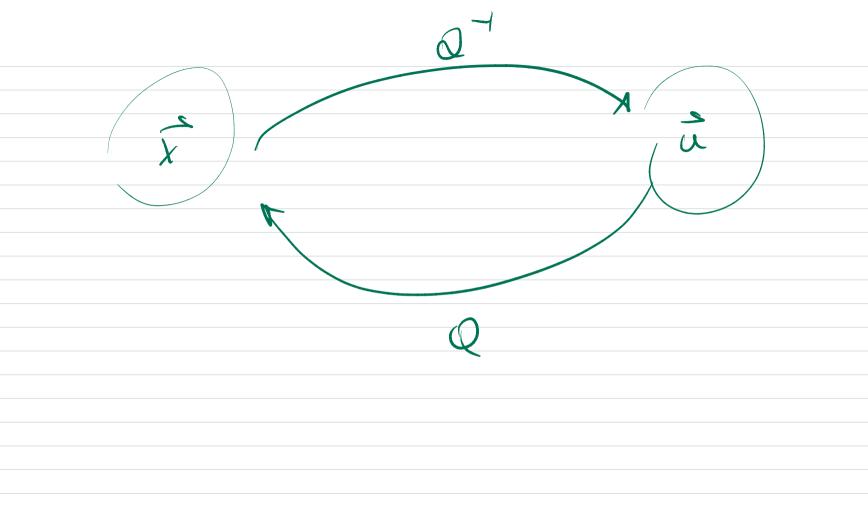
$$\vec{u} = Q^{\dagger} \vec{x}$$

• The transformation: $T\vec{u} = T\vec{v}\vec{x} = \vec{v}\vec{v}\vec{x}$

Deconvolving a Linear Mapping

- How is this useful? Suppose we want to solve
 - $T\vec{x} = \vec{b}$ $Q \wedge Q \vec{x} = \vec{b}$
- Recall that \vec{u} is the vector \vec{u} in the basis of eigenvectors of T $\vec{u} = \vec{v} \cdot \vec{x}$ $\vec{v} = \vec{b}$
- Like $Q^{-1}\vec{b}$ is simply \vec{b} transformed into the eigenspace

I is b in eigen-basis



The World's Easiest Matrix To Invert

- If we know the eigenvectors of a linear transform, it can save us a ton of work.
- Instead of solving a difficult $n \times n$ problem we solve just n equations:
 - equations: $\int \frac{Y_{\lambda_{i}}}{\sqrt{1-x_{i}}} = \begin{cases} \frac{Y_{\lambda_{i}}}{\sqrt{1-x_{i}}} \\ 0 & \frac{Y_{\lambda_{i}}}{\sqrt{1-x_{i}}} \end{cases}$
- Λ is a diagonal matrix !
- Clearly the eigenvector basis is the most "natural" for solving problems involving a linear transform *T*

Use the best "map"

- Summarizing what we have learned, we can say that if we change our perspective (basis) and view things in terms of the eigenspace, then a linear transformation is very simple and only involves multiplying by a diagonal matrix
- Can we apply this to circuit and other dynamic systems described by linear differential equations ... ?

Power to the Matrix

• Consider the n'th power of a matrix:

$$A^{n} = A - A = (2A2^{-1})(2A2^{-1}) - (2A2^{-1})$$

$$= 2AIA2^{-1} - \cdots$$

$$= 2A^{2}2^{-1}(2A2^{-1}) - (2A2^{-1})$$
Note that raising a diagonal matrix is trivial ! = $2A^{-1}2^{-1}$

Preview: Frequency Domain Basis

- We have found that complex exponentials pretty much solve any homogeneous constant coefficient differential equations
- These equations arise from time-invariant circuits and in general time-invariant systems
 - The component values don't change with time
- Another way to see this is to say that the complex exponential is an *eigenfunction* of a linear dynamic system !
- Does it form a basis ?
 - Yes, in fact it forms a continuous orthogonal basis

Preview (cont)

- The Fourier Transform and Laplace Transform (EE 120) take you from the time domain to the frequency domain, in other words they are a change of basis operation
- If we solve problems in the frequency domain, these complicated differential equations collapse into simple "diagonal" systems that we can solve ...
 - "Convolution" turns into multiplication