

Module 6: Vector Differential Equations and State-Space Representation

EECS 16B

Summary

- Systematic method to setup VDE
- How to solve vector differential equation (VDE)
- Solution of VDE in eigenspace with sources
- Steady-state solution of VDE
- Example

$$
\vec{x}=\left(\begin{array}{l}
V_{G 1} \\
V_{C_{2}} \\
I_{l 1} \\
I_{L_{2}}
\end{array}\right)
$$

\vec{x} is the state of the system

$$
\dot{\vec{x}}=A \vec{x}+\vec{b}_{s}
$$

Example

- Suppose we have the following circuit.

- We can by "inspection" (KCL/KVL) setup a VDE. The key point is the write all voltages and currents only in terms of the "state" variables
- The state variables are the voltages of the capacitors and the currents of the inductors.

Systematic Way of Setting Up VDE

- There are efficient systematic ways of setting up the VDE but that's beyond what we've learned in 16AB (see Basic Circuit Theory by Desoer and Kuh) + Chua
- We'll use repeated application of Thevenin's theorem

OR Norton

Replace State Variables

- For each capacitor C or inductor L,
- Replace it with a source that has the same voltage / current as the state variable
- Inductors become independent current sources
- Capacitors become independent voltage sources
- Note that everything about the circuit is known for time t
- How does the system evolve?

Evolution of a Particular State

- For each state variable L/C
- Look into the circuit from the terminals of the L/C using the modified schematic
- Find the Thevenin equivalent voltage and Thevenin equivalent resistance seen by this terminal (or Norton)
- Note these sources are going to be a function of only the actual sources and the state variables
- Write a simple first-order differential equation for the state transition
- You now have the VDE

Example Circuit

c_{1}

$$
\left.i_{\text {out }}=\frac{R_{N}}{R_{N}+R_{L}} \cdot i_{N}\right\} \begin{gathered}
\text { current } \\
\text { divider }
\end{gathered}
$$

$\underline{\sim} i_{N}$ AS $R_{N} \rightarrow \infty \Omega$
C_{2}

$$
\begin{aligned}
& i_{N}=i_{L_{2}} \\
& R_{N}=R_{L}
\end{aligned} i_{i} \underbrace{1+\left\{R_{L}\right.}+\underbrace{i_{L 2}-\frac{r_{C 2}}{R_{L}}}_{\text {StIte raribles }}
$$

$\underline{L_{2}} \quad L_{2} \frac{d i_{2}}{d t}=V_{c_{1}}-V_{c_{2}}$
do at home

Complete VDE

- Key points: For the matrix A, each row is a linear combination of the sources ... the sources are the true external stimuli and the other state variables

Solve VDE Using Diagonalization

$$
\begin{aligned}
Q^{-1} \dot{\vec{x}} & =\Omega \vec{u}+\overrightarrow{\widetilde{b}}_{s} \\
Q^{-1} \dot{x}=Q^{-1} \frac{d}{d t} \vec{x} & =\frac{d}{d t}\left(Q^{-1} \vec{x}\right)=\frac{d}{d t} \vec{u}=\vec{u} \\
\vec{u} & =\Lambda \vec{u}+\vec{\rightharpoonup}_{s} \\
\frac{d}{d t} \vec{u} & =\Omega \vec{u}+\vec{\sigma}_{c}
\end{aligned}
$$

VDE Solution (cont)

$$
\begin{aligned}
& \frac{d}{d t} u_{1}=\lambda_{1} u_{1}+\tilde{b}_{51} \\
& \frac{d u r}{d t}=\lambda_{1} u_{1} \quad u_{1}=A e^{\lambda_{1} t} \\
& A X_{1} e^{\lambda^{\lambda} t}=\lambda_{1} A e^{\lambda_{1} y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ISt order } \\
& \text { constart coetficient }
\end{aligned}
$$

dift eq.

