EEC 16 B Lecture 18 : (Module 2 Lecture 6)
Today: - wrap up controllability
-orthonormal bases \& Gram-Schmidt procedme
Reminder: MT Redo's due tomorrow.
Recap: Controllability: .
Recall son. of discrete-time system:

$$
\vec{x}[i+1]=A \vec{x}[i]+B_{u}[i] \quad\binom{\text { assume single }}{\text { input, }}
$$

$*$
$n: \operatorname{dim} . o f \vec{x}$
A: $n \times n$
$m: \operatorname{dim}_{(m=1}$ for $_{0} \vec{n}\left[i=\frac{i}{}\right.$
B: $n \times 1$
$l:$ time-index $(0,1,2, \ldots l-1, \ell)$
C_{l} : $n \times \operatorname{lm} \quad(=n \times l$ for our

$$
\text { case of } m=1 \text {) }
$$

Q) Can we find input sequence $u[0], u[1] \ldots v[l-1]$ that brings state $\vec{x}[0]$ @ hume 0 to a target $\vec{x}_{\text {target }}$ at tine l ?

$$
\underbrace{\vec{x}[l]}_{\substack{\text { target } \\
\text { state }}}-\underbrace{A^{l} \vec{x}[0]}_{\substack{\text { init. } \\
\text { state }}}=\underbrace{\left[\begin{array}{llll}
A^{l-1} B \mid & A^{l-2} B & & |A B| B
\end{array}\right]}_{l}\left[\begin{array}{c}
u[0] \\
w_{[i]} \\
\vdots \\
u[l-1]
\end{array}\right]
$$

Yes, if $\overrightarrow{x_{\text {tape }}}-A^{l} \vec{x}[0]$ lies in the column span of

$$
C_{l} \triangleq\left[\begin{array}{lll}
A^{l-1} Z \mid & \ldots & |A B| B
\end{array}\right] .
$$

Depp: A system is called controllable if, given any target state $\vec{x}_{\text {target }}$ and initial condition $\vec{x}[0]$, we can find a time l and an input sequence $\{u[0], u[1], \ldots u[l-1]\}$ such that $\vec{x}[l]=\vec{x}_{\text {ta get }}$.

Informally, controllable \equiv ability to go from anyobrer in an on-dim. in \mathbb{R}^{n} to any where in \mathbb{R}^{n} system by exerting the right control action
Q) How do we check this? If C_{l} has n linearly indep, columns for arne l, then colum space is \mathbb{R}^{n} (where n is the state dimensom.) This means we can make " $C_{l}\left[\begin{array}{c}u[0] \\ \vdots \\ n[l-n\end{array}\right]$ "anything wo wart in \mathbb{R}^{n} by choosing the input control sequence $\{u[0], x[i])$.. u $[l-1]\}$.

ExaMPLE -2

$$
\begin{aligned}
& \frac{-2}{S_{x}(\dot{t}+1)}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right]}_{A} \overrightarrow{x(i)}+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{B} u(i) \\
& B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; A B=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& C_{1}=B \quad\left(d_{n}=1\right) \\
& C_{2}=\left[\begin{array}{ll}
A B & B
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \quad\left(d_{m}=2\right. \\
& \left(\begin{array}{l}
=n
\end{array}\right)
\end{aligned}
$$

CONT ROLLABLE
ExAMPLE 3

$$
\vec{x}[i+1]=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]}_{A} \vec{x}[i]+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{B} u[i]
$$

$C_{1}=B \quad\left(d_{m}=1\right)$

$$
\begin{aligned}
& C_{2}=\left[\begin{array}{ll}
A B & B
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad\left(\text { dem. }^{A}=1\right) \\
& C_{3}=\left[\begin{array}{lll}
A^{2} B & A B & B
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \quad\left(d_{m}=1\right)
\end{aligned}
$$

Dim. can't increase further: stuck at $1<n=2$ UNCONTROLLABLE)

$$
\begin{aligned}
& x_{1}[i+1]=x_{1}[i]+x_{2}[i]+u[i] \\
& x_{2}[i+1]=2 x_{2}[i]
\end{aligned}
$$

Say we want to go from $\vec{x}[0]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ to $\vec{x}_{\text {tagat }}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in l steps, can we do it by appropuate desipn of $\vec{u}[i]$?

$$
\begin{aligned}
& \vec{x}_{\text {target }}=\left[\begin{array}{lll}
A B & B
\end{array}\right]\left[\begin{array}{l}
n[0\rangle \\
n[i)
\end{array}\right] \\
& \left.\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\text { devign doice } \\
* \\
*
\end{array}\right] ? \begin{array}{cc}
X & X
\end{array}\right]
\end{aligned}
$$

What we observe about dim. getting stuck is She to the following result:
Erma: If $A^{l} B$ is linearly dependent on $\left\{A^{k}{ }_{B}, \ldots A B, B\right\}$, then $A^{l+1} B$ is also linearly dependent on $\left\{A^{l-1} B, \ldots A B B\right.$.

Theorem
Semroma implies.
if $\operatorname{dim} \operatorname{span}\left(C_{l+1}\right)=\operatorname{dim} \operatorname{span}\left(C_{e}\right)=d_{0}$
then $\operatorname{dim} \operatorname{span}\left(C_{l+2}\right)=\operatorname{dim} \operatorname{span}\left(C_{l+1}\right)=d$.
Once the dimension stays grocorng, it stops growing for food!
we know that dim span (C_{l+1}) cannot exceed n_{T} as $C_{\text {lt }}$ has n rows, and
$\operatorname{dim}\left(C_{l+1}\right)=\max \left[\operatorname{dim}\left(\right.\right.$ row pace of $\left.C_{l+1}\right)$, $\operatorname{dim}\left(c_{0} l\right.$ space of $\left.\left.C_{l+1}\right)\right]$

Controllability condition: $\operatorname{dim} \operatorname{spon}\left(C_{n}\right)=R$ ie., $C_{n}=\left[\begin{array}{lll}A^{-1} B & \cdots & A B\end{array}\right]$ has n in early indep, columns.

Example 1:
Example 2:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$n=2: A B, B$ linearly independent?
No:

$$
A B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\beta
$$

Uncontrollable

$$
\begin{aligned}
& x_{1}[i+1]=x_{1}[i]+x_{2}[i]+u[i] \\
& x_{2}[i+1]=2 x_{2}[i]
\end{aligned}
$$

$\rightarrow X_{2}[l]=2^{l} x_{2}[0]$

1. evalue of 2 remains regorless of feed 1 ark
2. we con't take de component anywhere we went

Yes:

$$
A B=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { indep. of } B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Controllable

$$
x_{1}[i+1]=x_{1}[i]+x_{2}[i]
$$

$$
x_{2}[i+1]=2 x_{2}[i]+u[i]
$$

u doesnta appear is
x_{1} eq' n but can influere ।
x_{l} indirectly through $x_{2}-1$

Note from the above that we con central n variables with fewer than n inputs - you actually do this when you drive a car: using two inputs (steering and longitudmal forces generated by gaslbrake pedals) you cone not only to the desired x, y coordinates but also to the desired orientation e.g. parallel poking.

$\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$: - state vector con be brought to target value.
(CC)

Controller Canonical Form (single input, $m=1$)
A special structure of A and B in which we con orbitrorily assign evalues of

$$
A C L=A+B F
$$

with the choice of F : I_{n-1}

$$
A_{\bar{n}}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & & 0 & \vdots \\
0 & 0 & 0 & 0 \\
a_{1} & a_{2} & \cdots & - & 1 \\
a_{n}
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Example 2 had this form: $n=2, a_{1}=3, a_{2}=2$

1) Characteristic polynomial of A is transparent: $\operatorname{det}(\lambda I-A)=\lambda^{n}-a_{n} \lambda^{n-1}-a_{n-1} \lambda^{n-2} \cdots-a_{2} \lambda-a_{1}$
Example 2: $\lambda^{2}-2 \lambda-3$

$$
\operatorname{det}(\lambda I-A)=\lambda^{2}-\cos \lambda-a
$$

For $n=3$: $\lambda^{3}-a_{3} \lambda^{2}-a_{2} \lambda-a_{1}$ is the characteristic polynomial of

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a_{1} & a_{2} & 93
\end{array}\right] \text {. (Check.) }
$$

2) $A+B F$ has the same structure as A :

$$
\begin{aligned}
& \left[\begin{array}{cccc}
0 & 1 & c & \cdots \\
& & & \\
a_{1} & & \cdots & 1 \\
a_{n}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right] \underbrace{f_{1}} \ldots \ldots f_{n}] \\
& {\left[\begin{array}{ccc}
0 & - & 0 \\
\vdots & \cdots & 0 \\
f_{1} & \cdots & -f_{1}
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
& & & \\
a_{1}+f_{1} & \cdots & 1 \\
a_{n}+f_{2}
\end{array}\right] \\
& \text { Some structure as } A \text {, but } \\
& a_{k} \rightarrow a_{k}+f_{k}, k=1, \ldots n \text {. }
\end{aligned}
$$

From Properties 1 and 2,

$$
\operatorname{det}(\lambda I-A c L)=\lambda^{n}-\left(a_{n}+f_{n}\right) \lambda^{n-1} \cdots-\left(a_{2}+f_{2}\right) \lambda-\left(a_{1}+f_{1}\right) \text {. }
$$

Suppose we want $A C L=A+B F$ to have evalues $\lambda_{1}, \ldots \lambda_{n}$. Then, the characteristic polynomial of Acc should be:

$$
\begin{aligned}
& \left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right) \\
& =\lambda^{n}-\left(\lambda_{1}+\cdots \lambda_{n}\right) \lambda^{n-1} \cdots+(-1)^{n} \lambda_{1} \cdots \lambda_{n} \\
& a_{1}+f_{1}=-(-1)^{n} \lambda_{1} \cdots \lambda_{n}=(-1)^{n+1} \lambda_{1} \ldots \lambda_{n} \Rightarrow f_{n}=(-1)^{n-1} \lambda_{1} \cdots \lambda_{n} \\
& a_{n}+f_{n}=a_{1}+\cdots+\lambda_{n}
\end{aligned}
$$

Quiz:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad A+B F
$$

If we want to place eigenvalues of $A_{C L}$ at $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$,
(a) whet is the char. poly.
of A_{2} ?
(b) What are the feedback values finforfs?

$$
\begin{aligned}
A_{C L}=A+B F & =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1+f_{1} & 2+f_{2} & 3+f_{3}
\end{array}\right]
\end{aligned}
$$

char. poly. of $A_{c_{L}}$

$$
\begin{array}{cc}
=\operatorname{det}\left(\lambda I-A_{c}\right)=\lambda^{3}-\left(3+f_{3}\right) \lambda^{2}-\left(2+f_{2}\right) \lambda-\left(1+f_{1}\right) \\
\operatorname{want} \lambda_{1}=\lambda_{2}=\lambda_{3}=0 & =0 \\
\operatorname{det}\left(\lambda I-A_{c L}\right)=\lambda^{3} & =0 \\
f_{3}=-3 ; f_{2}=-2 ; f_{1}=-1
\end{array}
$$

FACT: Any controllable system

$$
\vec{x}[n+1]=A \vec{x}[n]+B n[n] ;
$$

(ire. one having controllability matrix

$$
C_{n}=\left[A^{n-1}|\ldots| A^{2} B|A B| B\right] \text { that }
$$ is rank-n $\&$ therefore invertible) can be "transformed" to a canonicalforn.

$$
\vec{y}[n+1]=A_{y} \vec{x}[n]+B_{y} \quad u[n]
$$

where $A_{y}=\left[\begin{array}{cc}0 & \\ \hdashline & I_{n-1} \\ \hdashline x_{2} & \cdots \\ \cdots & \bar{x}_{n}\end{array}\right]\left\{B_{y}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right.$
where $\vec{y}[n]=P \vec{x}[n]$ for a carefully chosen invertible transformation $\times T$. ($H W$ problem on how to find TI)

Orthenormal baser and Grom-Schmitt Procedure:
Column vectors $\vec{q}_{1}, \ldots \vec{q}_{k}$ are called arthenormal if $\vec{n}_{1} \quad \vec{a}_{i}^{\top} \vec{q}_{j}=\left\{\begin{array}{lll}0 & \text { if } i \neq j & \text { (ortho) } \\ 1 & \text { if } i=j & \text { (rormal) }\end{array} \quad \cdots(1)\right.$
A matrix $Q=\left[\vec{q}_{1} \ldots \vec{q}_{k}\right]$ with erthenomal colunes Satrosfies:

$$
\begin{aligned}
& Q^{\top} Q=1 \\
& =I_{k \times k} \text { by } \operatorname{def}^{\prime} / 2 \text { (1). }
\end{aligned}
$$

If Q is square $Q^{\top} Q=1$, meons:

$$
Q^{\top}=Q^{-1}
$$

(Q is called arthogonal.)

Example: $Q=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ (rotation matrix)

$$
\begin{aligned}
& \vec{q}_{1} \quad \vec{q}_{2} \quad \vec{q}_{1}^{T} \vec{q}_{2}=-\cos \theta \sin \theta 1 \\
&+\sin \theta \cos \theta 1 \\
&= 0 \\
& \vec{q}_{i}^{T} \vec{q}_{i}=\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

Useful features of matrices with orthonormal columns:

1) $\|Q \vec{x}\|=\|\vec{x}\|$ (preserves length: what we
$\begin{aligned} & \sqrt{(Q \vec{x})^{\top}(Q \vec{x})} \\ &= \sqrt{\vec{x}^{\top} Q^{\top} Q \vec{x}}=\sqrt{\vec{x}^{\top} \vec{x}} \\ &=1\end{aligned}$ obsoved in example above is true for other Q with orthen anal columns)
2) Q also preserves dot product:

$$
\begin{aligned}
&(Q \vec{x})^{\top}(Q \vec{y}) \\
&= \vec{x}^{\top} Q^{\top} Q \vec{y} \\
&=I \\
&==\vec{x}^{\top} y
\end{aligned}
$$

3) Easy visualization of column space:
column space of $D=\left[\overrightarrow{d_{1}} \vec{d}_{2}\right]$
if \vec{d}_{1}, \vec{d}_{e} were orthonownal

and projection onto column space is trivial:

Projection of 3 onto colum space of D
Recall Least-Squares: $=\left(\vec{d}_{1}{ }^{\top} \vec{s}\right) d_{1}+\left(d_{2} \vec{s}\right) \vec{d}_{2}$

$$
\begin{aligned}
& \vec{s}=D \vec{p}+\vec{e} \\
& \hat{p}=\left(D^{\top} D\right)^{-1} D^{\top} \vec{s}
\end{aligned}
$$

What if (by some miracle) D had orthonormal column? $D^{\top} D=I \Rightarrow \hat{P}=D^{T} \vec{S} \quad$ (n omatrix inversion 1)

Grom-Schmidt:

Even if columns of D ore not orthonormal, we con construct on orthonormal bases for the column space

Example
"Internet of Things"

ग)) $\overrightarrow{s_{1}}$
D) $\overrightarrow{s_{2}}$

ग)) \vec{s}_{3}
83)
干 - - נכנצ

Av traffic controller
for drones
(r) "samatumen 4

0
dis
$\left.\sum \quad \nu\right) \overrightarrow{s_{4}}$

$$
\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, ' \vec{S}_{3}, \overrightarrow{s_{4}}
$$

Goal:

Estimate $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ using $L_{\text {east squares! }}$

$$
\overrightarrow{\hat{x}_{L S}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

What if we learn about each device/drone one-by-one ("on-li ne"fashion)
Initially: $\quad \overrightarrow{z_{1}}, \vec{r}$
Q) How well does $\overrightarrow{s_{1}}$ explain received \vec{r} ?

$$
\begin{aligned}
& \hat{\alpha}_{1}=\left(\vec{s}_{1}^{\top} \vec{s}_{1}\right)^{-1} \vec{s}^{\top} \vec{r} \\
& \text { LS est. \& } \alpha_{1}
\end{aligned}
$$

Expanded set: $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \vec{r}\right\}$

$$
L S: \underbrace{\left[\begin{array}{cc}
\frac{1}{S_{1}} & \overrightarrow{S_{2}} \\
1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]}_{\overrightarrow{\neq}}=\underbrace{\left[\begin{array}{c}
1 \\
r \\
1
\end{array}\right]}_{\frac{1}{1}}
$$

New set: $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}, \vec{r}\right\}$
LS: $\left[\begin{array}{ccc}1 & 1 & 1 \\ \overrightarrow{s_{1}} & \overrightarrow{s_{2}} & \overrightarrow{s_{3}} \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ r_{2} \\ 1\end{array}\right]$

Observe: A keeps getting "fatter""

$$
\underbrace{\left[\begin{array}{l}
s_{1}
\end{array}\right]}_{A_{1}} \Rightarrow \underbrace{\left[\overrightarrow{s_{1}} \overrightarrow{s_{2}}\right.}_{A_{2}}]^{\left[\begin{array}{l}
A_{3}
\end{array}\right.} \Rightarrow \underbrace{\left[\overrightarrow{s_{1}} \overrightarrow{s_{2}} \overrightarrow{s_{3}}\right.}_{A_{1}}] \Rightarrow \ldots
$$

$A^{\top} A \longrightarrow$ more \{ more work "from scratch" $\left(A^{\top} A\right)^{-1} \longrightarrow$ inverses of growing matrices OUCH!

Recall properties of orthonormality:
Least-squares is easy if columns of matrix A are orthonormal.

$$
\underbrace{\left[\begin{array}{ccc}
1 & 1 & 1 \\
\vec{q}_{1} & \overrightarrow{q_{2}} & \\
1 & \overrightarrow{q_{n}} \\
1 & 1 & 1
\end{array}\right]}_{A}
$$

$$
\begin{aligned}
& \left\|\overrightarrow{q_{i}}\right\|=1=\left\langle\overrightarrow{q_{i}}, \overrightarrow{q_{i}}\right\rangle \quad \text { Normalized } . \\
& \left\langle\overrightarrow{q_{i}}, \overrightarrow{q_{j}}\right\rangle=0 \quad \forall i, j, i \neq j
\end{aligned}
$$

Orthogonal.

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& A=\left[\begin{array}{ll}
\frac{1}{q_{1}} & \frac{1}{q_{2}} \\
1 & p_{2}
\end{array}\right] \\
& \vec{q}_{1}, \vec{q}_{2} \\
& \text { LS } \\
& \vec{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \\
& =\underbrace{\left(\left[\begin{array}{ll}
-\vec{q}_{1}^{\top} \\
- & \overrightarrow{q_{2}}-
\end{array}\right]\left[\begin{array}{cc}
\vec{q}_{1} & \frac{1}{q_{2}} \\
1 & 1
\end{array}\right]\right.}_{1})^{-1}\left[\begin{array}{l}
-\vec{q}_{1}^{\top}- \\
-\vec{q}_{2}^{\top}-
\end{array}\right] \vec{b} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\overrightarrow{x_{L S}}}=\left[\begin{array}{l}
-\vec{q}_{1}^{\top}- \\
-\vec{q}_{2}^{\top}-
\end{array}\right] \vec{b}=\left[\begin{array}{l}
\left\langle\vec{q}_{1}, \vec{b}\right\rangle \\
\left\langle\overrightarrow{q_{2}}, b\right\rangle
\end{array}\right] \\
& A=\left[\begin{array}{lll}
\vec{q} & \overrightarrow{q_{2}} & \vec{q}_{3}
\end{array}\right] \xrightarrow{\rightarrow \text { Orthonormal. }} \begin{array}{ll}
& \\
& \\
& \\
&
\end{array} \\
& A^{\top} A=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\hat{x}}=\frac{\left(A^{\top} A\right)^{-1}}{I} A^{\top} \vec{b}
\end{aligned}
$$

$$
\begin{align*}
& =\left[\begin{array}{l}
\left\langle\overrightarrow{q_{1}}, \vec{b}\right\rangle \\
\left\langle\overrightarrow{q_{2}}, \vec{b}\right\rangle \\
\left\langle\overrightarrow{q_{3}}, \vec{b}\right\rangle
\end{array}\right]
\end{align*}
$$

$$
\begin{aligned}
& \langle\vec{x}, \vec{y}\rangle \\
& =\vec{x}^{\top} \vec{y} \\
& =\vec{y}^{\top} \vec{x}
\end{aligned}
$$

We can reuse our previous work!!!!
Goal: To find \vec{r} as a linear combination of $\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}} \cdots$, where we only find out the $\overrightarrow{S_{i}}$ vectors one at a time.
$\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{2}} \longrightarrow$ Convert them to

$$
\overrightarrow{q_{1}}, \overrightarrow{q_{2}}, \vec{q}_{3}
$$

such that $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$ etc. are all orthonormal.

Focus now: How to orthogonalize vectors?

$$
\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\}
$$

$\overrightarrow{s_{2}}$ in terms of $\overrightarrow{s_{1}}$

$$
\overrightarrow{s_{2}}=\underbrace{\beta \cdot \overrightarrow{s_{1}}}_{\substack{\text { aligned } \\
\text { with } \vec{s}_{1}}}+\underbrace{\vec{q}_{2}}_{\begin{array}{c}
\text { "new" dimension: } \\
\text { orthogond b }
\end{array}}
$$

$$
\begin{aligned}
& \vec{q}_{2}=\vec{s}_{2}-\beta \overrightarrow{s_{1}} \\
& \left\langle\overrightarrow{s_{1}}, \overrightarrow{q_{2}}\right\rangle=0 \\
& \Rightarrow\left\langle\overrightarrow{s_{1}}, \overrightarrow{s_{2}}-\overrightarrow{\beta s_{1}}\right\rangle=0 \\
& \Rightarrow\left\langle\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\rangle-\beta \cdot\left\|\overrightarrow{s_{1}}\right\|^{2}=0 \\
& \Rightarrow \quad \beta=\frac{\left\langle\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\rangle}{\left\|\overrightarrow{s_{1}}\right\|^{2}} \quad \operatorname{Proj}_{\overrightarrow{s_{1}}} \overrightarrow{s_{2}}=\frac{\left\langle\overrightarrow{s_{2}}, \overrightarrow{s_{1}}\right\rangle}{\| \overrightarrow{s_{1}, N_{1}}} \overrightarrow{s_{1}} \\
& \text { Review of } \\
& \text { projections }
\end{aligned}
$$

Gram-Schmidt Algorithm / Procedure
Given $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \ldots \overrightarrow{s_{n}}\right\}$
Convert this to a set

$$
\left\{\vec{q}_{1}, \vec{q}_{2}, \ldots \vec{q}_{n}\right\}
$$

such that: $\left\langle\overrightarrow{q_{i}}, \overrightarrow{q_{i}}\right\rangle=\left\|\overrightarrow{q_{i}}\right\|^{2}=1$

$$
\left\langle\overrightarrow{q_{i}}, \vec{q}_{j}\right\rangle=0
$$

and:

$$
\begin{aligned}
& \operatorname{span}\left\{\overrightarrow{s_{1}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}\right\} \\
& \operatorname{span}\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right\} . \\
& \vdots \\
& \operatorname{span}\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, . . \overrightarrow{s_{n}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}, \cdots \overrightarrow{q_{n}}\right\} .
\end{aligned}
$$

Consider: linearly independent set. $\left\{\overrightarrow{S_{1}}, \overrightarrow{S_{2}}, \ldots \overrightarrow{S_{n}}\right\}$ lin indep.

Gram - Schmidt - Alg.

$$
\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}\right\} .
$$

(1) $\left\{\overrightarrow{s_{1}}\right\} \rightarrow \overrightarrow{q_{1}}$ find.

$$
\frac{\overrightarrow{s_{1}}}{\|\left|\vec{s}_{1}\right| \mid}=\overrightarrow{q_{1}} \rightarrow \text { unit norm }
$$

$\operatorname{span}\left\{\overrightarrow{q_{1}}\right\}=\operatorname{span}\left\{\overrightarrow{s_{j}}\right\}$
(2) $\left\{\overrightarrow{S_{1}}, \overrightarrow{S_{2}}\right\}$

$$
\overrightarrow{q_{1}}=\frac{\overrightarrow{s_{1}}}{\left\|\overrightarrow{s_{1}}\right\|}
$$

What is new in $\overrightarrow{s_{2}}$, that is not captured by $\overrightarrow{q_{1}}$.
Remore from $\overrightarrow{s_{2}}$, the projection of ${\overrightarrow{s_{2}}}^{\text {n to }} \overrightarrow{q_{1}}$

$$
\begin{aligned}
& \overrightarrow{e_{2}}=\overrightarrow{s_{2}}-\frac{\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle}{\left\|\overrightarrow{q_{1}}\right\|^{2}} \cdot \overrightarrow{q_{1}} \\
& \overrightarrow{e_{2}}=\overrightarrow{s_{2}}-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle \cdot \overrightarrow{q_{1}}
\end{aligned}
$$

$$
\overrightarrow{q_{2}}=\frac{\overrightarrow{e_{2}}}{\left\|\overrightarrow{e_{2}}\right\|} \longrightarrow \text { unit norm }
$$

Check: $\left\langle\overrightarrow{q_{2}}, \overrightarrow{q_{1}}\right\rangle=\left\langle\frac{\overrightarrow{e_{2}}}{\left\|\overrightarrow{e_{2}}\right\|}, \overrightarrow{q_{1}}\right\rangle$

$$
\begin{aligned}
& =\left\langle\frac{\vec{s}_{2}-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle \cdot \vec{q}}{\left\|\overrightarrow{e_{2}}\right\|}, \overrightarrow{q_{1}}\right\rangle \\
& =\frac{1}{\left\|\overrightarrow{e_{2}}\right\|}\left[\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle\left\langle\overrightarrow{q_{2}}, \overrightarrow{q_{2}}\right\rangle\right.
\end{aligned}
$$

$=0 \quad \begin{aligned} & \text { Furthermes: } \begin{aligned} & \operatorname{span}\left\{s_{1}, \vec{s}_{2}\right\} \\ &=\operatorname{span}\left\{\overrightarrow{g_{1}}, \overrightarrow{g_{2}}\right\}\end{aligned} .\end{aligned}$

Project $\overrightarrow{s_{3}}$ onto span $\left\{\vec{q}, \overrightarrow{q_{2}}\right\}$

$$
\begin{aligned}
\text { proj } & =\left[\begin{array}{l}
\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \\
\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle
\end{array}\right]\left[\vec{q} \overrightarrow{q_{2}}\right] \\
& \left.=\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}}+\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle \overrightarrow{q_{2}}\right\rangle
\end{aligned}
$$

true by propection formula ξ the foct thet $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ are orthorormal

$$
\begin{aligned}
& \overrightarrow{e_{3}}=\overrightarrow{s_{3}}-\left(\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}}+\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle \overrightarrow{q_{2}}\right) \\
& \overrightarrow{q_{3}}=\frac{\overrightarrow{e_{3}}}{\left\|\overrightarrow{e_{3}}\right\|}
\end{aligned}
$$

Check: ${ }^{\text {span }}\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}=\operatorname{span}\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}$
Cher: $\left\langle\overrightarrow{q_{3}}, \overrightarrow{q_{1}}\right\rangle=\left\langle\overrightarrow{q_{3}}, \overrightarrow{q_{2}}\right\rangle=0$.

$$
\underbrace{\left[\begin{array}{ccc}
\frac{1}{s_{1}} & \overrightarrow{s_{2}} & \vec{b} \\
1 & 1 & 1
\end{array}\right]}_{\text {Columnspace }} \stackrel{A}{\substack{s_{3}}} \underbrace{\left[\begin{array}{lll}
\dot{q}_{1} & \overrightarrow{q_{2}} & \frac{1}{q_{3}} \\
1 & 1 & 1
\end{array}\right]}_{\text {Basis. for columns }}
$$

Basis. for columngace of A.

