EECS 16 B Lecture 19 (Module 2, Lecture 7)

Last time:

- Gram-Schmidt orthugonalization of linearly independent vector set.

Today:

- Recap of G-S or thogonalzation
- G-S w/ linearly dependent vector set
- Revisit BIBO stability:
- Upper - triangularigation: what to to when system matrix is not diagonalieable?

Cheek out $G-S$ 3-D animation on youtube:
https://youtu.be/79Ss_HkwthF

RECAP:

Orthonormal bases and Grom-Schmitt Procedure:
Column vectors $\vec{q}_{1}, \ldots \vec{q}_{k}$ are called orthonormal if

$$
\vec{q}_{i}^{\top} \vec{q}_{j}=\left\{\begin{array}{lll}
0 & \text { if } i \neq j & \text { (ortho) } \\
1 & \text { if } i=j & \text { (normal) }
\end{array} \quad-(1)\right.
$$

A matrix $Q=\left[\vec{q}_{1} \ldots \vec{q}_{k}\right]$ with orthonormal columns satisfies:

$$
\begin{aligned}
& Q^{\top} Q=1 \\
& =I_{\text {kkk }} \text { by } \operatorname{def}^{\prime} \text { (1) } \text {. }
\end{aligned}
$$

If Q is square ${Q^{\top}}^{\top}=1$, means:

$$
Q^{\top}=Q^{-1}
$$

(Q is called orthogonal.)

Gram-Schmidt Algorithm / Procedure
Given $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \ldots \overrightarrow{s_{n}}\right\}$
Convert this to a set

$$
\left\{\vec{q}_{1}, \vec{q}_{2}, \ldots \vec{q}_{n}\right\}
$$

such that: $\left\langle\overrightarrow{q_{i}}, \overrightarrow{q_{i}}\right\rangle=\left\|\overrightarrow{q_{i}}\right\|^{2}=1$

$$
\left\langle\overrightarrow{q_{i}}, \vec{q}_{j}\right\rangle=0
$$

and:

$$
\begin{aligned}
& \operatorname{span}\left\{\overrightarrow{s_{1}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}\right\} \\
& \operatorname{span}\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right\} . \\
& \vdots \\
& \operatorname{span}\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, . . \overrightarrow{s_{n}}\right\}=\operatorname{span}\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}, \cdots \overrightarrow{q_{n}}\right\} .
\end{aligned}
$$

Consider: linearly independent set. $\left\{\overrightarrow{S_{1}}, \overrightarrow{S_{2}}, \ldots \overrightarrow{S_{n}}\right\}$ lin indep.

Gram - Schmidt - Alg.

$$
\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}\right\} .
$$

(1) $\left\{\overrightarrow{s_{1}}\right\} \rightarrow \vec{q}_{1}$ find.

$$
\frac{\overrightarrow{s_{1}}}{\|\left|\vec{s}_{1}\right| \mid}=\overrightarrow{q_{1}} \rightarrow \text { unit norm }
$$

$\operatorname{span}\left\{\overrightarrow{q_{1}}\right\}=\operatorname{span}\left\{\overrightarrow{s_{\jmath}}\right\}$
(2) $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\}$

$$
\overrightarrow{q_{1}}=\frac{\overrightarrow{s_{1}}}{\left\|\overrightarrow{s_{1}}\right\|}
$$

What is new in $\overrightarrow{s_{2}}$, that is not captured by $\overrightarrow{q_{1}}$. Remorse from ${\overrightarrow{s_{2}}}_{2}$, the projection of $\overrightarrow{s_{2}}$ no $\overrightarrow{q_{1}}$

$$
\begin{aligned}
& \overrightarrow{e_{2}}=\overrightarrow{s_{2}}-\frac{\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle}{\left\|\overrightarrow{q_{1}}\right\|^{2}} \cdot \overrightarrow{q_{1}} \\
& \overrightarrow{e_{2}}=\overrightarrow{s_{2}}-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle \cdot \overrightarrow{q_{1}}
\end{aligned}
$$

$$
\overrightarrow{q_{2}}=\frac{\overrightarrow{e_{2}}}{\left\|\overrightarrow{e_{2}}\right\|} \longrightarrow \text { unit norm }
$$

Check: $\left\langle\overrightarrow{q_{2}}, \overrightarrow{q_{1}}\right\rangle=\left\langle\frac{\overrightarrow{e_{2}}}{\left\|\overrightarrow{e_{2}}\right\|}, \overrightarrow{q_{1}}\right\rangle$

$$
\begin{aligned}
& =\left\langle\frac{\overrightarrow{s_{2}}-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle \cdot \overrightarrow{q_{1}}}{\left\|\overrightarrow{e_{2}}\right\|}, \overrightarrow{q_{1}}\right\rangle \\
& =\frac{1}{\left\|\vec{e}_{2}\right\|}\left[\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right\rangle\left\langle\overrightarrow{q_{1}}, \vec{q}\right\rangle \mid\right.
\end{aligned}
$$

$=$ Furtherme: $\operatorname{span}\left\{s, \overrightarrow{s_{2}}\right\}$

$$
=\operatorname{span}\left\{\vec{q}_{1}, \vec{q}_{2}\right\} .
$$

(3) $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}\right\}$.
$\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$

Project \vec{s}_{3} onto $\operatorname{span}\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right\}$

$$
\begin{aligned}
\text { proj } & =\left[\begin{array}{l}
\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \\
\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle
\end{array}\right]\left[\overrightarrow{q_{1}} \overrightarrow{q_{2}}\right] \\
& \left.=\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}}+\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle \overrightarrow{q_{2}}\right\rangle
\end{aligned}
$$

true by projection formula $\}$ the foct thet $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ are orthonornd

$$
\begin{aligned}
\overrightarrow{e_{3}} & =\overrightarrow{s_{3}}-\left(\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}}+\left\langle\overrightarrow{s_{3}}, \overrightarrow{q_{2}}\right\rangle \overrightarrow{q_{2}}\right) \\
\overrightarrow{q_{3}} & =\frac{\overrightarrow{e_{3}}}{\left\|\overrightarrow{e_{3}}\right\|}
\end{aligned}
$$

Check: ${ }^{\text {span }}\left\{\vec{q}_{1}, \vec{q}_{2}, \overrightarrow{q_{3}}\right\}=\operatorname{span}\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}\right\}$
Chek: $\left\langle\overrightarrow{q_{3}}, \overrightarrow{q_{1}}\right\rangle=\left\langle\overrightarrow{q_{3}}, \overrightarrow{q_{2}}\right\rangle=0$.

Basis. for columnspace of A.

Check out 3-D arimation on: $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}, \overrightarrow{q_{3}}$
https:// youtu,be/79Ss_HkwthF

What if $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}} \ldots \overrightarrow{s_{n}}\right\}$ is not independent?
(1) $\left\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \overrightarrow{s_{3}}\right\}$

Suppose $\overrightarrow{s_{2}}=2 \overrightarrow{s_{1}} . \longrightarrow\left\{\overrightarrow{q_{1}}, \overrightarrow{q_{2}}, \overrightarrow{q_{s}}\right\}$?
Step (1): $\overrightarrow{s_{1}} \rightarrow$ normalize

$$
\vec{q}_{1}=\frac{\vec{s}^{n o r}}{15 x_{1}}
$$

Step (2):

Geometry when $\quad \overrightarrow{s_{2}}=2 \vec{s}$

No "new" dimension in
$\overrightarrow{s_{2}}$ compared to $\overrightarrow{S_{1}}$.
What do we do?
Ignore $\overrightarrow{s_{2}}$! Don't add a $\overrightarrow{q_{2}}$, corresponding to $\overrightarrow{s_{2}}$
(2) Gram-Schmidt for buildup a basis:

$$
\underbrace{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \ldots \overrightarrow{s_{k}} \in \mathbb{R}^{n} \quad k<n}_{\text {not a basis: why? }}
$$

Q) Can we create an ll-basis (orthonomd) using $\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \ldots \overrightarrow{s_{x}}$?

Consider: $\{\overrightarrow{s_{1}}, \overrightarrow{s_{2}}, \ldots \overrightarrow{s_{k}}, \underbrace{}_{\vec{e}_{1}}, \overrightarrow{e_{2}} \ldots, \overrightarrow{e_{n}}\}$
\Rightarrow "Standard" basis set for \mathbb{R}^{n}
$\overrightarrow{e_{s}}=\left[\begin{array}{l}1 \\ 0 \\ \vdots \\ 0\end{array}\right] ; \quad \overrightarrow{e_{i}}=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ 0 \\ 0\end{array}\right] \quad$ it position

\rightarrow Do G-S in this order

$$
\frac{\overrightarrow{s_{1}}}{\left|t s_{j}\right| \mid}=\overrightarrow{q_{1}}
$$

Q) Max \# of hnearly inelep. vectors that can come ont $=$?
A) n
$\left\{\overrightarrow{q_{0}}, \overrightarrow{q_{2}}, \ldots \overrightarrow{q_{n}}\right\} \rightarrow$ Guaranteed that all other vectors are linear combinations
Important: First vector \vec{q}_{1} is a scaclan multiple of $\overrightarrow{s i}$.

Example:

$$
\begin{aligned}
& \overrightarrow{s_{1}}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] ; \overrightarrow{s_{2}}=\left[\begin{array}{l}
4 \\
0
\end{array}\right] ; \\
& \overrightarrow{q_{1}}=\frac{\overrightarrow{s_{1}}}{\| \overrightarrow{s_{1} \|}}=\frac{1}{2}\binom{2}{0}=\binom{1}{0} \\
& \overrightarrow{r_{2}}=\overrightarrow{s_{2}}-\left\langle\overrightarrow{s_{2}}, \overrightarrow{q_{1}}\right) \overrightarrow{q_{1}}=\binom{4}{0}-\langle(4,0),(1,0)\rangle \\
& =\binom{4}{0}-4\binom{1}{0}=\binom{0}{0}
\end{aligned}
$$

Add $\overrightarrow{e_{1}}=\binom{1}{0} \quad \overrightarrow{e_{2}}=\binom{0}{1}$

$$
\overrightarrow{r_{3}}=\overrightarrow{e_{1}}-\left\langle\overrightarrow{e_{1}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}}=\binom{0}{0}
$$

q

$$
\begin{aligned}
& \vec{r}_{4}=\overrightarrow{e_{2}}-\left\langle\overrightarrow{e_{2}}, \overrightarrow{q_{1}}\right\rangle \overrightarrow{q_{1}} \\
&\left.=\binom{0}{1}-\binom{0}{0}=\binom{0}{1} \vee \quad \overrightarrow{q_{1}, q_{2}}\right] \\
&\left\{\overrightarrow{l_{1}}, \overrightarrow{b_{2}}, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{b_{3}}\right\} \longrightarrow\left\{\binom{1}{0},\left(\begin{array}{l}
0 \\
1
\end{array}\right\}\right.
\end{aligned}
$$

ON basis for \mathbb{R}^{2} !

BI BO stability

$$
\vec{x}[k+1]=A \vec{x}[k]+\vec{u}[k]
$$

Dragonalizable if linearty indep. e-vectors sustem is stable if all e-vals of

$$
A: \quad|\lambda|<1
$$

Q) What if A ir not liagoralizalle?

Ex. $\quad A=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$
-ervals if $A: \lambda, \lambda$
-e-vector of A we not independent

$$
A \vec{v}=\lambda \vec{v} \Rightarrow\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Solve: $\quad \lambda v_{1}+v_{2}=\lambda v_{1} \Rightarrow \dot{v}_{2}=0$

$$
\begin{aligned}
\lambda v_{2} & =\lambda v_{2} \\
& \text { Ae-vec. wo } \alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Next Best Thing: Uppa-thargular Matrix

$$
\begin{aligned}
& \frac{d \vec{x}(t)}{d t}=\left[\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{2}
\end{array}\right] \vec{x}(t) \\
& \frac{d x_{2}(t)=\lambda_{2} x_{2}(t)}{d t}
\end{aligned}
$$

$$
\frac{d x_{1}}{d t}=\lambda_{1} x_{1}(t)+x_{2}(t)
$$

Q) How can we correct a square matrix into UT (uppertriangulan) form using x change of basis?
"Similar to a "dleagondizing" ba sis or a "CCF-genatir"" basis that we hone seen earlier).
Q) If M is not deaponalizoble, can we find a U sit. $U^{-1} M U=7$

$$
U=\left[\begin{array}{lll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} \cdots & \overrightarrow{u_{n}}
\end{array}\right] \quad \begin{gathered}
\text { ON basis }
\end{gathered}
$$

A) $\quad \times \varepsilon S$!

ANY square matixx can be U Tired

Simplest Case: $M=|X|$ matrix

$$
M=m .
$$ "pper-trangalan:-

Later mild some intuition.
$M=2 \times 2$ case :

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] \\
& U=[? ?
\end{aligned}
$$

Assume M has all real e-vab (for convenience) only)
Try e-vector of M maybe?
(1) Say $\overrightarrow{V_{1}}$ is one ervec of M

$$
\begin{array}{r}
M \vec{v}_{1}=\lambda_{1} \vec{v}_{1} \longrightarrow \begin{array}{c}
\overrightarrow{v_{1}} \in \mathbb{R}^{2}
\end{array} \rightarrow \text { Assume } \begin{array}{l}
\text { WCOG that } \\
\left\|\overrightarrow{v_{1}}\right\|=1
\end{array} \\
U=\left[\overrightarrow{v_{1}},\right]
\end{array}
$$

(2) Build out the ON basis using G-S

Say \vec{r} " is the vector that "complete," the G-S procedure with $\overrightarrow{V_{1}}$ as the first or "axachr" vector.
\rightarrow We k ow that $\left[\begin{array}{ll}\overrightarrow{k_{1}} & \overrightarrow{r_{1}}\end{array}\right]$ form an ON basis.埌止

$$
\left.\left\langle\overrightarrow{v_{1}}, \overrightarrow{r_{1}}\right\rangle\right\rangle=0
$$

To cheale if U wosks tory $U^{-1} M U$.
Recall U is an ON basis by $G=S$ constinction)

$$
\begin{aligned}
U_{2}^{-1} M U_{2} & =U_{2}^{\top} M U_{2} \\
& =\left[\begin{array}{c}
-v_{1}^{\top}- \\
-r_{1}^{\top}-
\end{array}\right]\left[\begin{array}{cc}
M_{\overrightarrow{v_{1}}} & M \vec{r}_{1} \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\vec{v}_{1}^{\top} M \vec{v}_{1} & \vec{v}_{1}^{\top} M \overrightarrow{r_{1}} \\
\vec{r}_{1}^{\top} M \vec{v}_{1} & \overrightarrow{r_{1}^{\top}} M \vec{r}_{1}
\end{array}\right]
\end{aligned}
$$

Check: $\quad \vec{r}_{1}^{\top} M \overrightarrow{v_{1}}=\lambda_{1} \overrightarrow{r l}_{1}^{7} \overrightarrow{v_{1}}=0$

$$
\begin{aligned}
{\overrightarrow{v_{1}} M \overrightarrow{v_{1}}}^{\top} & =\lambda \overrightarrow{v_{1}}+\overrightarrow{v_{1}}=\lambda \\
U_{2}^{-1} M U_{2} & =\left[\begin{array}{ll}
\lambda & * \\
0 & *
\end{array}\right]=T_{2} /
\end{aligned}
$$

Let's kuild up from the 2×2 cax :
Casei 3×3

$$
\begin{aligned}
U_{3}^{-1} M U_{3} & =T_{3} \\
U_{3} & =\left[\begin{array}{ll}
\overrightarrow{v_{1}}
\end{array}\right] \\
\text { (1) } M \overrightarrow{v_{1}} & =\lambda_{1} \overrightarrow{v_{1}} \quad \text { (} \vec{v}_{\text {erec is an }} \text { ir M) }
\end{aligned}
$$

(2) Use $\overrightarrow{v_{i}}$ to start the G-S pracedine as kefore to "complete" an ON basis for \mathbb{R}^{3}.

$$
\left\{\overrightarrow{v_{1}}, \overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right\}
$$

Define $R=\left[\begin{array}{ll}\overrightarrow{r_{1}} & \overrightarrow{r_{2}}\end{array}\right]$

$$
\underset{(3 \times 3)}{U_{3}}=\left[\begin{array}{l}
\overrightarrow{v_{1}} \\
(3 \times 1) \\
\underbrace{}_{3 \times 2}
\end{array}\right]
$$

U_{3} is an $O N$ matis
Considen $\left[\begin{array}{ll}\vec{v}_{1} & R\end{array}\right]^{\top} M\left[\begin{array}{ll}\vec{v}_{1} & R\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{l}
\vec{v}_{1}^{\top} \\
R^{\top}
\end{array}\right] M\left[\begin{array}{ll}
\vec{v}_{1} & R
\end{array}\right] \\
& =\left[\begin{array}{ll}
\vec{v}_{1}^{\top} M \overrightarrow{v_{1}} & v_{1}^{\top} M R \\
R^{\top} M \vec{v}_{1} & R^{\top} M R
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} & v_{1}^{\top} M R \\
0 & R^{\top} M R
\end{array}\right] \\
R^{\top} M \vec{v}_{1} & =\lambda_{1} R^{\top} \vec{v}_{1}=0
\end{aligned}
$$

Need $R^{T} M R$ to also be UT?

