
 

EELS 16 B Lecture 19 Module 2 Lecture 7

Last time
o Gram Schmidt orthogonalization of linearly

independent vector set

Today

Recap of G S orthogonalzation

a G S w linearly dependent vector set

Revisit BIBO stability

Upper triangularisation what to do when

system matrix is not diagonalizable

Check out G S 3 D animation on youtube

https youtube 79Ss HkwthF
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Gram Schmidt Algorithm Procedure
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what if T E si is not independent

ST 5,5
Suppose 5 25 qt qt qt
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No new dimension in

ST compared to St
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Gram Schmidt for building a basis
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a Can we create an 1 basis ongoing using
5,5 si

consider ST St si ei.ecen3s'Standad'basiIfoIR
etal effigyith

position

Do G S in this order
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Example
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BIBO stability
READ A FEI ALI

Diagonalizable if linearly indep e vector
system is stable if all e vals of

A AKI
a What if A is not diagonalizable

Ex A 84
e valen A A A

e vector AA are not independent

At at TE af
Solve Aunt V2 TV V20

XVz XVz
ever an af

Next BestThing Upper triangular Matrix

Eat L Htt T.yy.toÉ c

daft 727214
days 1,747 7214



a How can we convert a square matrix into

UT upper triangular form using a

change of basis
Similar to a diagonalizing basis or

a CCF genating basis that we have
seen earlier

a If M is not diagonalizable can we

find a U s.t U MU I
v It A

IoTON basis

A YES

ANY square matrix can be UTied

Simplest Case M 1 1 matrix

M m upper triangular

Lets build some intuition



M 2 2 case
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Build out the ON basis using GS

say of is the vector that completes
the G S procedure with F as the first

or anchor vector
We know that CR rt form
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I IF I at O



To check if U works try U MU
Recall U is an ON
basis by GS construction
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Let's build up from the 2 2 case
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