EEC 16 B Lecture 20 (Module 2, Lecture 8)
Announcements:

- Student Support Hows: Mon 1-3pm Everyone welcome! Schedule an apps. on course calendar on class website
- 0.25 EC point for each lecture you attend for rest of the term.
links. cess 16 b. org / lecture-ec
Last time:
- Upper - triangularigation

Today:

- Recap of upper triangularrization: any square matrix M can he uppen-triouglanized. $\left(U^{T} M U=T\right)$ also known as Schur Decomposition
- Proof of upper-tnangulanzation:
- Eigenvalues of upper-triangnalar matinees
- Revisiting $B \pm B O$ stability: non-dingonalizable system matrix
(Read Note 13 for details)

Recap: (from last time)

$$
\vec{x}[k+1]=A \vec{x}[k]+B \vec{u}[k]
$$

- A diagonalizable if all n e-vectoss of A are independent.
- BIBO stable if all e-vals of $A: \quad\left|\lambda_{i}(A)\right|<1$
Q) What if A is not diagonalizable?

Example: $\quad A=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$

- e-vals of A are λ, λ.
- e-vectors of A are not independent

$$
\begin{aligned}
& A \vec{v}=\lambda \vec{v} \Rightarrow\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
& \lambda v_{1}+v_{2}=\lambda v_{1} \rightarrow v_{2}=0 \quad \Rightarrow \text { e-vecs. are } \alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \lambda v_{2}=\lambda v_{2} \quad
\end{aligned}
$$

Next best thing: Uppe-triangular matrix

$$
\frac{d \vec{x}(t)}{d t}=\left[\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{2}
\end{array}\right] \vec{x}(t)
$$

Start w/ second eq. $\frac{d x_{2}(t)}{d t}=\lambda_{2} x_{2}(t)$
Then, $\quad \frac{d x_{1}(t)}{d t}=\lambda_{1} x_{1}(t)+x_{2}(t)$
can solve/analyze system by back. substitution.
Q) Can we convert any matrix Minho upper-triangular (UT) form using a basis transformation?
A) Yes!

We can always find a change-of-busis:

$$
U_{U^{\top}}^{-1} M U=T \sim
$$

where U is an orthonormal (ON) basis.

$$
\text { ie. } U^{\top} U=I \Rightarrow U^{-1}=U^{\top}
$$

$$
\begin{aligned}
& V=\left[\overrightarrow{u_{1}} \overrightarrow{u_{2}} \cdots \overrightarrow{u_{n}}\right] \\
& \cdots b \text { form an } O N \text { basis } \\
& \left(\begin{array}{c}
\left\langle\overrightarrow{u_{i}}, \overrightarrow{u_{j}}\right\rangle=\left\{\begin{array}{cc}
0 & \text { if } i \neq j \\
1 & \text { if } i=j
\end{array} \text { for } i j=1,2_{1}, \ldots n\right.
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{i}^{\top} \vec{u}_{j}=0 \text { for all } i \neq j \\
\vec{u}_{i}^{\top} \vec{u}_{i}=1 \text { for } i=1,2 \ldots n
\end{array}\right]
\end{aligned}
$$

ANY SQUARE MATRIX CAN BE TRANSFORMED
INTO AN UPPER TRIANGULAR MATRix I

$$
U^{T} M U=T^{2} \Gamma_{\text {is also }}^{\text {(upper-triangalan) }}
$$

ca lied the SCHUR DECOMPOSITION of a square matrix

Simplest Case: $M:|x|$ "matrix"
$M=m$ upper-triangular
Let's build some intuition:
$M=2 \times 2$ case:

$$
M=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]
$$

Assume M has real eigenwhes. (for convenience only)
$U=[?$? Try eigenvector maybe?
(1) Say $\overrightarrow{v_{1}}$ is one e-vector of M

$$
\begin{aligned}
& \left.\left.M \vec{v}_{1}=\lambda, \overrightarrow{v_{1}} \quad \begin{array}{c}
\overrightarrow{v_{r}} \in \mathbb{R}^{2} \\
V=\left[\overrightarrow{v_{1}}\right.
\end{array}\right] \quad \text { (Assume }\left\|\vec{v}_{1}\right\|=1\right)
\end{aligned}
$$

(2) Build ont the basis using G-S.

Say \vec{r}_{1} is the vector that "completes" Gram-Schurdt (Gros) procedure with $\overrightarrow{V_{1}}$ as first basis vector. We know that $\left[\overrightarrow{v_{1}} \overrightarrow{r_{1}}\right]$ forms an 11 -basis

$$
\overrightarrow{v_{1}} \Perp \overrightarrow{r_{1}}\left\langle\overrightarrow{v_{1}}, \overrightarrow{r_{1}}\right\rangle=0
$$

To check if U works, try $U^{-1} M U=U^{\top} M U$.
recall U is an orthonormal
$U^{\top} M U$ tramform by G-S construction!)

$$
\left.\begin{array}{l}
=\underbrace{\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \vec{r}_{1}
\end{array}\right]^{\top}}_{2 \times 2} \underbrace{M}_{2 \times 2} \underbrace{M}_{2 \times 2} \\
=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \overrightarrow{r_{1}}
\end{array}\right] \\
-\vec{r}_{1}^{\top} \\
-r_{1}^{\top}-
\end{array}\right] M\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \overrightarrow{r_{1}}
\end{array}\right] \quad\left[\begin{array}{ll}
\vec{v}_{1}^{\top} M \overrightarrow{v_{1}} & \overrightarrow{r_{1}^{\top}} M \overrightarrow{r_{1}} \\
r_{1}^{\top} M \overrightarrow{r_{1}} & \vec{r}_{1}^{\top} M \vec{r}_{1}
\end{array}\right] .
$$

Check: $\quad \overrightarrow{r_{1}^{\top}} M \overrightarrow{v_{1}}=\overrightarrow{r_{1}^{T}} \lambda_{1} \overrightarrow{v_{1}}$

$$
\begin{aligned}
& =\lambda_{1} \overrightarrow{r_{1}} \overrightarrow{v_{1}}=0 \\
& \overrightarrow{v_{1}} \vec{T} M \overrightarrow{v_{1}}=\vec{y}_{1}^{\top} \lambda_{1} \vec{v}_{1}=\lambda_{1} \\
& U^{\top} M U=\left[\begin{array}{cc}
\lambda_{1} & * \\
0 & *
\end{array}\right]=T^{\tau^{\text {copper }}}
\end{aligned}
$$

Ex. of Schur-decomposition for a 2×2 matrix M
(see Note 13 Sec. 6)
$M=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] \Rightarrow$ Eigenvalues of A and corospondip e-vectors

$$
\begin{aligned}
& \operatorname{det}(\lambda I-M) \\
&=\operatorname{det}\left[\begin{array}{ll}
\lambda & -1 \\
2 & \lambda+3
\end{array}\right] \\
&=\lambda(\lambda+3+2 \\
&=\lambda^{2}+3 \lambda+2 \\
&=(\lambda+2)(\lambda+1) \\
& \lambda_{1}=-2 ; \lambda_{2}=-1
\end{aligned}
$$

are $\vec{v}_{1}=\left[\begin{array}{c}-1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right] ; \lambda_{1}=-2$
and $\overrightarrow{v_{2}}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right] ; \lambda_{2}=-1$
Applying the alooritlem with \vec{r}_{1} initially, we con extend $\overrightarrow{y_{1}}$ to an ON bags in \mathbb{R}^{2} using G-S algorithm on $\left\{\vec{V},\left(0_{0}^{1}\right),(0)\right\}$:
getting $U=\left[\begin{array}{ll}\vec{v}_{1} & \vec{r}_{1}\end{array}\right]$, where $\vec{r}_{1}=\left[\begin{array}{l}2 / \sqrt{5} \\ 1 / \sqrt{5}\end{array}\right]$
Thun, $V=\left[\begin{array}{cc}-1 / \sqrt{5} & 2 / \sqrt{5} \\ 2 / \sqrt{5} & 1 / \sqrt{5}\end{array}\right]$
Computing $V^{\top} M U$, we get:

$$
\begin{aligned}
U^{\top} M U & =\left[\begin{array}{cc}
-1 / \sqrt{5} & 2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{cc}
-1 / \sqrt{5} & 2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & -3 \\
0 & -1
\end{array}\right] \quad(1)
\end{aligned}
$$

Pan: Let's build up from the 2×2 case
Case: $M: 3 \times 3$ (having real)

$$
U^{\top} M U=T
$$

Try $\quad \tilde{U}=\left[\begin{array}{lll}\vec{V} & - & 0\end{array}\right]$
to show our uncertainty about whetter our idea nd
(1) $M \overrightarrow{v_{1}}=\lambda, \vec{r}_{1} \quad \overrightarrow{v_{1}}$ is an e-vector of M.
(2) Use $\overrightarrow{v_{1}}$ to do G-S ξ fill out an orthonormal basis.

$$
\left\{\vec{v}_{1}, \overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right\}
$$

$$
\begin{aligned}
& \text { Define: }\left[\overrightarrow{r_{1}} \overrightarrow{r_{2}}\right]=R \\
& {\underset{U}{(3 \times 3)}}_{\widetilde{U}}=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \underbrace{R}_{(3 \times 1)}
\end{array}\right]
\end{aligned}
$$

Consider $\widetilde{U}^{\top} M \widetilde{U}$

$$
=\left[\begin{array}{l}
\vec{V}_{1}^{\top} \\
R^{\top}
\end{array}\right] M\left[\begin{array}{ll}
\vec{V}_{1} & R
\end{array}\right]
$$

$\lambda, * *$
$0 \times *$
$00 *$
Q) What do we need of $R^{\top} M R$?
A) $R^{\top} M R$ should also be UT () ,
hooking at $\tilde{U}^{T} M \tilde{U}=\left[\begin{array}{ccc}\lambda_{1} & * & \star \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, we have good news $\begin{array}{r}\text { badnews. }\end{array}$
©: $\tilde{U}=\left[\begin{array}{ll}\overrightarrow{v_{1}} R\end{array}\right]$ doesf't quite work
(1): We have manged to convent the 3×3 UT problem into a 2×2 UT problem!

Rechced problem: $2 \times 2 R^{\top} M R$
From eartien 2×2 asse, we knowr that there exists an $O N U_{2}$ such that

$$
U_{2}^{\top} \underbrace{\left(R^{\top} M R\right)}_{2 \pi 2 \text { matic }} U_{2}=T_{2}
$$

$2 \pi=$ matic

$$
\begin{align*}
& U_{2}^{\top} R^{\top} M R U_{2} \\
& =(\underbrace{\left.R U_{2}\right)^{\top}}_{\text {nathe }} M(\underbrace{R U_{2}}_{\text {matn }})=T_{2} \tag{A}
\end{align*}
$$

Idea, instead of tryng $U_{3}=\left[\overrightarrow{v_{1}} R\right]$ as we did as our first tiy, (It didn't quite wosk. hand on abovo olservation, let's modify our trag to:

$$
U_{3}=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & R V_{2}
\end{array}\right]=\underset{\widetilde{V_{3}}}{\left[\begin{array}{ll}
\overrightarrow{v_{1}} & R
\end{array}\right]}\left[\begin{array}{l|l}
1 & \vec{o}_{2}^{\tau} \\
\vec{\sigma}_{2}^{7} & U_{2}
\end{array}\right]
$$

$U_{3}{ }^{T} M U_{3}$

$$
=\left[\begin{array}{c}
\vec{V}_{3}^{\top} \\
\left(R U_{2} T\right.
\end{array}\right] M\left[\begin{array}{cc}
1 & 1 \\
\vec{V}_{1} & R U_{2} \\
1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\vec{V}_{1}^{\top} M \vec{v}_{1} & \vec{v}_{1}^{\top} M R U_{2} \\
U_{2}^{\top} R^{\top} M \vec{v}_{1} & \left.\begin{array}{c}
U_{2}^{\top} R^{\top} M R U_{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
\lambda_{1} & v_{1}^{\top} M U_{2} \\
0 & 0 \\
0 & 0
\end{array}\right] \\
d U_{2}^{\top} R^{\top} M \overrightarrow{r_{1}}=U_{2}^{\top} R^{\top} \lambda_{1} \overrightarrow{v_{1}}=\lambda_{1} U_{2}^{\top} \frac{R^{\top} \vec{v}_{1}}{0}=
\end{array} .\right.
\end{aligned}
$$

So, $U_{3}=\left[\begin{array}{ll}\overrightarrow{r_{1}} & R U_{2}\end{array}\right]$ is an $O N$
basis that upper trangularijes

$$
M_{3 \times 3} \text {; ie } U_{3}^{\top} M U_{3}=T_{3}
$$

Check: Is $U_{3}=\left[\begin{array}{lll}\vec{v} & R U_{2}\end{array}\right]$ orthonormal ?

$$
\left\langle\vec{v}_{1}, R V_{2}\right\rangle=\vec{v}_{\vec{v}_{1}^{T}}^{\vec{v}^{T} R U_{2}}=\left(\begin{array}{l}
R=3 \times 2 \\
R T_{1}: 2 \times 3
\end{array}\right.
$$

$$
\left\langle R U_{2}, R V_{2}\right\rangle=\left(R U_{2}\right)^{\top} R U_{2}=U_{2}^{\top} \underbrace{R^{\top} R U_{2}}_{E_{2 \times 2}}=I_{2 n 2}
$$

$$
\begin{aligned}
& \tilde{U}_{3}^{\top} M_{3} \widetilde{U}_{3}=\tilde{T}_{3} \\
& U_{2}^{\top} M_{2} V_{2}=T_{2} \\
& \text { RECALL: } \\
& U_{3}=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & R V_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\overrightarrow{V_{1}} & R
\end{array}\right]}_{V_{3}}\left[\begin{array}{ll}
\frac{1}{\vec{e}_{2}} & \overrightarrow{\hat{o}_{2}^{+}} \\
V_{2}
\end{array}\right]
\end{aligned}
$$

Started with $(3 \times 3) \rightarrow$ reduced it to the (2×2) case: used the solution for $(2 \times 2) \longrightarrow$ to construct back the (3×3) solution.

General case: $\quad M \in R^{(k+1) x(k+1)}$

$$
M \overrightarrow{v_{1}}=\lambda_{1} \overrightarrow{x_{1}}
$$

$$
k \geqslant 1
$$

Sick $\widetilde{U_{k+1}}=\left[\begin{array}{ll}\overrightarrow{V_{1}} & R\end{array}\right]$
R constructed by Cram Schmidt

$$
\left.\begin{array}{rl}
\widetilde{U}_{k+1}^{\top} M \widetilde{U}_{k+1} & =\left[\begin{array}{c}
\vec{V}_{1}^{\top} \\
R^{\top}
\end{array}\right] M\left[\begin{array}{ll}
\vec{V}_{1} & R
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda & \vec{v}_{1}^{\top} M
\end{array}\right] \\
\begin{array}{ll}
0 \\
\vdots \\
\vdots
\end{array} \underbrace{R^{\top} M R}_{(k \times k)}
\end{array}\right]
$$

But $R^{\top} M R$ is not necessarily UT. Let's modify \tilde{U}_{k+1} to U_{k+1}, where

$$
U_{k+1}=\left[\begin{array}{ll}
\overrightarrow{V_{i}} & R U_{k}
\end{array}\right]
$$

where U_{k} uppen-trangularizes $\frac{k x^{*} \text { mafiix }}{R^{\top} M R \text {, i.e. }}$

$$
\begin{aligned}
& U_{k}^{\top} R^{\top} M R U_{k}=T_{k} \longleftarrow \quad \begin{array}{c}
\text { upper } \\
\text { triangular } \\
\text { matrix }
\end{array} \\
& \text { or }\left(R U_{k}\right)^{\top} M\left(R U_{k}\right)=T_{k}
\end{aligned}
$$

By following the exact analysis we did for the (3×3) case being built out of the (2×2) case, we can show that the $(k+1) \times(k+1)$ case can be built out of the $(k \times k)$ cane!
tee

$$
\begin{aligned}
& U_{k+1} M U_{k+1}=\left[\begin{array}{cc}
\lambda & V_{1}^{\top} M R \\
{\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]} & \underbrace{\left(R U_{k}^{\top} M\left(R U_{2}\right)\right.}_{\text {uppar-tronguber }}
\end{array}\right]
\end{aligned}
$$

and we are done!

Reduce to triangularizing $a(k \times k)$ matrix!

We know:
2×2 matrix
3×3 matrix

UT
UT V.

For $k \geqslant 1$,
if $(k \times k)$ matrix can be upper triangularized, then $a(k+1) \times(k+1)$ matrix can also be upper triangularized.

- Called proof by induction.
- Com also do prof by recursion (Note 13).
- Recursive proof is more intuitive as it lends itself to a Schur Decomposition ALGORTHMM: See Rote 13, Alg. 10 (g o to discussion sechons!l!)

Proof that $M=U^{-1} T \cdot E$ and T have
the same eigenvalues

$$
\text { If } M=U^{-1} T U \text {, then e-values }(M) \equiv \text { e-values }(T)
$$

Pf: Suppose (λ, \vec{v}) are e-val/e-vector pair assoc. with M.

$$
\begin{aligned}
& \text { nine. } M \vec{v}=\lambda \vec{v} \\
& \Rightarrow V^{-1} T \cup \vec{v}=\lambda \vec{v} \\
& \Rightarrow \quad T \underbrace{\cup \vec{v}}_{\vec{w}}=\lambda \underbrace{\Rightarrow}_{\frac{U_{w}}{\vec{v}}} \Rightarrow T \vec{w}=\lambda \vec{w} \\
&
\end{aligned}
$$

$$
\Rightarrow(\lambda, \vec{w}) \text { are an }
$$

e-val/e-vector
(where $\vec{w}=U \vec{v}$) pair for T

$$
P_{M}(\lambda)
$$

$$
p_{r}(\lambda)
$$

$\operatorname{det}(M-\lambda I)=\operatorname{det}(T-\lambda I)$.
\Rightarrow All e-values of M are e-vals of T ", $\quad T \quad$ a \quad : M

Special property of T :

$$
\eta=\left[\begin{array}{c}
\lambda_{1} \lambda_{2} \cdots \overline{\lambda_{n}} \\
0
\end{array}\right.
$$

For T, all entries along diagral are the eigenvalues!.

Fo find e-valus of T, we want to find λ such that $T-\lambda I$ has a nullspace.

$$
\begin{aligned}
& T=\left[\begin{array}{ccc}
\lambda_{1} & a_{1} & a_{2} \\
0 & \lambda_{2} & a_{3} \\
0 & 0 & \lambda_{3}
\end{array}\right] \quad 3 \times 3 \text { case } \\
& \underbrace{T-\lambda I}=\left[\begin{array}{ccc}
\lambda_{1}-\lambda & a_{1} & a_{2} \\
0 & \lambda_{2}-\lambda & a_{3} \\
0 & 0 & \lambda_{3}-\lambda
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\lambda_{1} \\
& T-\lambda_{1} I=\left[\begin{array}{ccc}
0 & a_{1} & a_{2} \\
0 & \lambda_{2}-\lambda_{1} & a_{3} \\
0 & 0 & \lambda_{3}-\lambda_{1}
\end{array}\right]
\end{aligned}
$$

$T-\lambda_{1} I$ has nullspace
$\Rightarrow \lambda_{1}$ must be an e-val of T !
Choose

$$
\lambda=\lambda_{2} \quad T-\lambda_{2} I=\left[\begin{array}{ccc}
\lambda_{1}-\lambda_{2} & a_{1} & a_{2} \\
0 & 0 & a_{3} \\
0 & 0 & \lambda_{3}-\lambda_{2}
\end{array}\right]
$$

$T-\lambda_{2} I$ has hullspore
$\Rightarrow \lambda_{2}$ is an eig.values. \because

General Case: $n \times n$ matrix

No pivot in col 3 .
\Rightarrow Free variable
\Rightarrow Matrix is not invertible
\Rightarrow It must have a nullspace.

BIBO stataility: if sxstems with non-dirgonalizthe matrices

$$
\vec{x}[i+1]=\underbrace{\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]}_{\text {not degondzable }} \vec{x}[i]+\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] u[i]
$$

a) Under what condition is this system BIBO stable?

$$
\begin{equation*}
x_{2}[i+1]=\lambda x_{2}[i]+\beta n[-i] \tag{1}
\end{equation*}
$$

$C_{\text {is scalan egn } ~}$ BIBO stahte?
If $|\lambda|<1$, then Bounded caput \Rightarrow Bundel outpat

$$
x_{1}[i+1]=\lambda x_{1}[i]+\underbrace{x_{2}[i]+\alpha u[i]}_{\text {ghenend in put }}
$$

$$
\left.x_{1}[i+1]=\lambda x_{1}[i]+\ln \text { Put }\right]
$$

If $A<1$, it is $B I B O$ stable!
then BIBO sable!

So, $\left|\lambda_{i}\right|<1 \quad \forall i$ true for all BIBO stabile system matrices?

