Module 2/3 Lecture 9

Announcements: · <u>Student Support Hown</u>: Mon 1-3 pm Everyone welcome! Schedule an appt. on course calendar on class website · <u>D:25 EC</u> point for each lecture you attend for rest of the term. lmks.eecs/6b.org/lecture-ec

Last time: · upper - triongularization : Sohur decomp. . proof by induction (see extra notes on class website)

Tokay: () Recap of implications of upper-triangularisation (2) Symmetric real matrices - Spectral theorem · eigenvalues & eigenvectors of symmetric real matrices 3 Min. energy control : motivation

 $\overline{x}[k+1] = A \overline{x}[k] + B \overline{u}[k]$ ·ANY SQUARE MATRIX CAN BE TRANSFORMED INTO AN UPPER TRIANGULAR MATRIX! $U^{T}MU = T^{a}$ is also called the SCHUR DECOMPOSITION of a square matrix · Proof: by induction (see extra notes on class webpage) · If UTMU=Te (upper triangular) (i) ergenvalues (M) = eigenvalues (T) (ii) eigenvalues (T) = diagonal intries of T • If $T = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ and $U^T A U = T$, then system $\overline{x}[k+1] = \overline{A} \overline{x}[k] + Bu[k]$ input is BIBO stable if and only if all the ergenvalues of A are inside the unit circle. r.e. A: (A) < 1 even if A is not diegonatizette)

BIBO stability if systems with
non-diagonalizable matrices.

$$\overline{z}[i+i] = \overbrace{o}_{1} \overline{z}[i] + [a]_{B} u[i]$$

not diagonalizable
Under what condition is this system BIBO stable?
 $\overline{z}[i] \cdot [x_{2}[i]]$.
 $\overline{z}[ii] = \lambda \cdot \overline{z}_{2}[i] + \beta \cdot u[i]$ (1)
 G is scalar sys? BIBO stable?
 $\overline{i} |\lambda| < 1$, then bounded $u \Rightarrow$ bounded
 \overline{z}_{2} .
 $\overline{z}_{1}[i+1] = \lambda \overline{z}_{1}[i] + \overline{z}_{2}[i] + d u[i]$ (2)
 $general input$

Q) What if we had a real symmetric matrix 5?

. When A is diagonalizable, we can find V such that $\sqrt{-2}A \sqrt{=} \sqrt{-2} \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{vmatrix}$ V is the eigenbasis of A, but V is not necessarily orthogonal 1. · If we upper-triangularize A we get an orthogonal U such that U AU=UAU=T AU=T AU (Schur degmposition)

Q) What if we had a real symmetric matrix 5?

Symmetric matrices get the best of both woolds i.e. Symmetric matrices are diaponalizable + cigenvectors of symm. matrices ane orthogonal!

Ex. $S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 0 \end{bmatrix}$ $(ST=S) = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 0 \end{bmatrix}$ E-values of S aredet (S-AI)=0 Solve for A $a_1 + a_2 + a_3$ $b_1 + a_3 + a_3 + a_3 + a_3$ $b_1 + a_3 + a_3 + a_3 + a_3$ $b_1 + a_3 + a_3 + a_3 + a_3$ $b_1 + a_3 + a_3 + a_3 + a_3 + a_3$ $b_1 + a_3 +$ Corresponding e-vectors Remarks: (1) E-values of S are all real (2) E-vector of S are orthogonal $\langle \vec{v}_1, \vec{v}_2 \rangle = 0; \langle \vec{v}_1, \vec{v}_3 \rangle = 0; \langle \vec{v}_2, \vec{v}_2 \rangle = 0$

Spectral Theorem:
Let
$$S \in IP^{MPT}$$
 be a (real) symmetric
matrix. Then,
(i) S can be deagonalized (whether
as not the evector of S form a basis)
(ii) The e-vector of S form an orthonormal
basis: the degonalizing basis for S .
(iii) The e-valy. of S are all real.
(i) $U^{T}SU = T \Rightarrow S = UTU^{T}$
Upper-thangalor S :
 $S = UTU^{T}$
Taking theospee, $ST = (UTU^{T})^{T} = UTU^{T}$
 $S = S^{T} \Rightarrow UTU^{T} = UTU^{T}$
 $T = T^{T}$
 $T = T^{T}$
 $T = T$
 $T = T$
 $T = T$
 T be O
 $T = T$ wust be degonal

 $S \overline{u_1} \overline{u_2} \dots \overline{u_n} = \overline{u_1} \overline{u_2} \dots \overline{u_n}$ $Su_{i} = \lambda_{i}u_{i}$ $Su_{e} = \lambda_{2}u_{e}$ i $Su_{n} = \lambda_{n}u_{n}$ $Su_{n} = \lambda_{n}u_{n}$ u_{i}, u_{e}, u_{n} u_{i}, u_{e}, u_{n} 2) The diagonalizing hasis/matrix, U, is made up of the e-vectors of S? Because U was orthonormal, Ti, not. . Vin are orthonormal A eigenvector of S are orthonormal!

 $SV = \lambda V$ (λ, V) ave an e-value/e-vector pair for S. (111) Let $\lambda = \lambda_r + j \lambda_i$ Let's try to show that $A = A^{*}$ (i.e. $A_i = 0$) Take conjugates of both sides A = 0 $S^{*} T^{*} = A^{*} V^{*}$ $\int S^{*} T^{*} = A^{*} V^{*}$ STA = A JA JSince S= St (real) Take transpose: $V^{*T}S^{T} = V^{*T} A^{*T} = A^{*} V^{*T}$ $V^{*T}S = A^{*} V^{*T}$ (Since $S^{T} = S$) Multiply on the noglet by v

 $\vec{V}^{*T}S\vec{V} = \chi^{*}\vec{V}^{*T}\vec{V}$ Sv= 2v0 Nultiply 1 by 27 on the left: VAT SV = AVATV B D { B have the same LHS
⇒ They must have the same RHS $= \frac{1}{2} \frac{V_{\text{rel}}}{V} \left(\begin{array}{c} V_{\text{rel}} \\ V_{\text{rel}} \\ V_{\text{rel}} \end{array} \right)$ 2X VYIIV $\overline{\sqrt{k}}^{\dagger} = \left(\sqrt{i}^{\ast} \sqrt{2} - \sqrt{n^{\ast}} \right)$ $mathcal{k} = \pi \chi$ $= \lambda x + j \lambda i = \lambda r - j \lambda i = v_i^* u_i + v_i^* v_i + v_i^* + v_i^*$ $=\lambda_r + j\lambda_i = \lambda_r - j\lambda_i$

3) Alle-vals of Sare real.

CONTROL

Statity (States?)
Controllakility: Can I get where I want?
Efficiency:

$$\frac{\text{Control = ystem:}}{\overline{x} [x+i] = A \overline{x} [ig] + \overline{b} u[\overline{k}]}$$

$$\overline{x} [k] = A^{k} \overline{x} [i] + A^{k-1} \overline{b} u[i] + \frac{1}{b} u[i] + \frac{1}{b} u[k-1]$$

$$(\text{onsder } k=100$$

$$\overline{x} [i] = 0,$$

