Module $2 / 3$ Lecture 9
Announcements:

- Student Support Hows: Mon 1-3pm Everyone welcome l Schedule an apps. on course calendar on class website
- 0.25 EC point for each lecture you attend for rest of the term.
links.eecs/6boorg/lecture-ec
Last time:
- upper - triamgularization: Schur decamp.
- Proof by induction (see extra notes on

Today:
(1) Recap of implications of upjen-triangulanisation
(2) Symmetric real matrices $\longrightarrow$ Spectival harem - eigenvalues $\xi$ eigenvectors of symmetric real mathias
(3) Min. energy control: motivation

$$
\vec{x}[k+1]=A \vec{x}[k]+B \vec{u}[k]
$$

- Any square matrix can be transformed INTO AN UPPER TRIANGULAR MATRix I

$$
U^{\top} M U=T^{2} \text { is also }
$$

called the Satur Decomposition
of a square matrix

- Proof: by induction (see extra notes on class webpage)
- If $U^{\top} M U=T \leftarrow$ (upper triangular)
(i) engenablues $(M) \equiv$ eigenvalues $(T)$
(ii) eigenvalues $(T) \equiv$ diagonal unties of $T$
- If $T=\left[\begin{array}{lll}\lambda_{1} & \lambda_{2} \\ 0 & - & \lambda_{n}\end{array}\right]$ and $U^{\top} A U=T$,
then system $\vec{x}[k+1]=A \vec{x}[k]+\underbrace{B u[k]}_{\text {input }}$
is BIBO stable if and only if all the engenmaluen of $A$ are inside the unit circle. i.e. $|\underbrace{\lambda_{i}(A)}_{=\lambda_{i}(T)}|<1$ even if $A$ is not

$$
=\lambda_{i}(T)
$$

BIBO stability if systems with non-diagmalizable matrices.

$$
\vec{x}[i+1]=\underbrace{\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]} \vec{x}[i]+\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] u[i]
$$

not diagmalizable
Under what condition is this system BIBO stable?

$$
\begin{align*}
& \vec{x}[i]=\left[\begin{array}{l}
x_{1}[i] \\
x_{2}[i]
\end{array}\right] . \\
& x_{2}[i+1]=\lambda \cdot x_{2}[i]+\beta \cdot u[i] \tag{1}
\end{align*}
$$

$G$ is scalar sys? BIBO stable?
if $|\lambda|<1$, then bounded $u \Rightarrow$ bounded $x_{2}$.

$$
\begin{equation*}
x_{1}[i+1]=\lambda x_{1}[i]+\underbrace{x_{2}[i]+\alpha u[i]}_{\text {general input }} \tag{2}
\end{equation*}
$$

$$
x_{1}[i+1]=\lambda x_{1}[i]+\text { input. }
$$

If $\mid \lambda 1<1$, is this B) BO stable?
Because $x_{2}[i]$ is bounded, we know input to (2) is bounded!
$\Rightarrow \quad x_{1}[i]$ is bounded!


So, $\mid e$ genvalue $\mid<1 \quad \forall i$ is true for all BI BO stable system matrices 1

We have seen that ("Schar" form)

Q) What if we had a real symmetric matrix S?

- When $A$ is diagonalizable, we can find $V$ such that

$$
V^{-1} A V=\Lambda \rightarrow\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & 0 \\
0^{2} & \lambda_{n}
\end{array}\right]
$$

$V$ is the ergenbasis of $A$, but $V$ is not necessarily or thogonal 1

- If we upper-triangularize $A$ we get an orthogonal $U$ such that
Q) What if we had a reel symmetric matrix $S$ ?


$$
S=S^{T}: \quad S_{i j}=S_{j i}
$$

Symmetric matrices get the best of both wolds!
i.e Symmetric matrices are diagonalizable + eigenvectors of sym. matrices are orthogonal!

Er.

$$
S=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 3 & 0
\end{array}\right]
$$

$$
\operatorname{det}(S-\lambda I)=0
$$

Solve for $\lambda$
( SIS)
E-values of $S$ are

$$
\overbrace{6}^{\lambda_{1}}, \overbrace{-3}^{\lambda_{2}}, \lambda_{-1}^{\lambda_{3}}
$$

corresponding e-vectors are:

Remarks:

$$
\underbrace{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}_{i} \underbrace{\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right]}_{i}, \underbrace{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]}_{V_{3}}
$$

(1) E-values of $S$ are all real
(2) E-vectios of $S$ are orthogonal

$$
\left\langle\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\rangle=0 ;\left\langle\overrightarrow{v_{1}}, \overrightarrow{v_{3}}\right\rangle=\overrightarrow{;}\left\langle\overrightarrow{v_{2}} \overrightarrow{x_{3}}\right\rangle=0
$$

Spectral Theorem:
Let $S \in \mathbb{R}^{n \times n}$ be a (real) symmetic matrix. Then,
(i) $S$ can he diagonalized (whether or not the e-vectos of $S$ form a basis)
(ii) The e-vector of $S$ form an orthonormal basis: the deogonaliging basis for $S$. (iii) The e-valy. of $S$ are all real.
(i) $U^{\top} S U=T \Rightarrow S=U T U^{\top}$
upper-tuangulor $S$ :

$$
S=U T U^{T}
$$

Taking transpose, $\quad S^{\top}=\left(U T U^{\top}\right)^{\top}=U T U^{\top}$

$$
\begin{aligned}
& S=S^{\top} \Rightarrow U T U^{\top}=U T^{\top} U^{\top} \\
& \Rightarrow T=T^{\top} \\
& T=\frac{O}{T} \Rightarrow T^{\top} \text { en ties } \\
& O T_{m}
\end{aligned}
$$

$\Rightarrow$ All nom-digonal entries or $T$ rust be 0 $\Rightarrow T$ must he dignol.
(ii) If $S$ is a symmetric matrix, 0 , the basis for UT actually drapondizen $s$ !

$$
\begin{aligned}
& S=U T U^{-1} \\
& S=U U^{-1}
\end{aligned}
$$

(If a matrix han deshuct e-vals, it can he diaynelzed $\rightarrow$ e-vector form basis)
(1) Symuehe matrix can he diagonalized.
ALWAYS!
(ii)

$$
\begin{aligned}
S & =U D U^{\top} \\
S U & =U D \underbrace{U^{\top} U}_{I} \\
S U & =U D
\end{aligned}
$$

$$
\begin{aligned}
& \delta \overrightarrow{u_{1}} \overrightarrow{u_{2}} \ldots \overrightarrow{u_{n}}=\overrightarrow{u_{1}} \overrightarrow{u_{2}} \ldots \overrightarrow{u_{n}} \boldsymbol{\lambda _ { 1 }} \\
& \left.\begin{array}{rl}
S \overrightarrow{u_{1}} & =\lambda_{1} \overrightarrow{u_{1}} \\
S \overrightarrow{u_{2}} & =\lambda_{2} \overrightarrow{u_{2}} \\
S \overrightarrow{u_{n}} & =\lambda_{n} \overrightarrow{u_{n}}
\end{array}\right\} \begin{array}{r}
\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \ldots \overrightarrow{u_{n}} \\
\text { must he the } \\
\text { e-vecton, } \\
\text { of } S \text { ? }
\end{array}
\end{aligned}
$$

(2) The diogonetizing hasis/matix, $U$, is made up of the e-vector of $S$ ?
Because $U$ was orthonormal, $\overrightarrow{u_{1}}, \overrightarrow{u_{a}}, \quad \overrightarrow{u_{n}}$ are orthonomel $\Rightarrow$ eigenvectors of $S$ ane or ittonomal!
(iii) $S \vec{v}=\lambda \vec{v}$

Let $\lambda=\lambda_{r}+j \lambda_{i}$
Let's try to show that $\lambda=\lambda^{*}$

$$
\text { (icel } \left.\lambda_{i}=0\right)
$$

Take conjugates of hot sides A (1)

$$
\begin{aligned}
& S^{*} \vec{V}^{*}=\lambda^{*} v^{*} \\
& \left.S \overrightarrow{v^{*}}=\lambda^{*} \overrightarrow{v^{*}}\left[\text { Since }(A B)^{*}=A^{*} B^{*}\right)\right] \\
& {\left[\text { Since } S=S^{*}(\text { real })\right]}
\end{aligned}
$$

Take transpose:

$$
\begin{aligned}
& \overrightarrow{V^{* T}} S^{\top}=\overrightarrow{x^{* T}} \lambda^{* \top}=\lambda^{* *} \overrightarrow{V^{*} T} \\
& \overrightarrow{V^{*} T} S=\lambda^{*} \overrightarrow{v^{* T} T} \\
& \text { (Since } S^{T}=S \text { ) }
\end{aligned}
$$

Multiply on the reglet by $\vec{v}$

$$
\begin{align*}
& \vec{v}^{v^{T}} S \vec{v}=\lambda^{*} \overrightarrow{v^{*}+\vec{v}}  \tag{A}\\
& S \vec{v}=\lambda \vec{v}(1
\end{align*}
$$

Multiply (1) my $\overrightarrow{x+T}$ on the left:

$$
\begin{equation*}
\overrightarrow{V+t} S \vec{V}=\lambda \overrightarrow{V T} \vec{v} \tag{B}
\end{equation*}
$$

(A) $\{(B)$ have the same $L H P$ $\Rightarrow$ they must have the same Rifts

$$
\begin{aligned}
& \overrightarrow{v_{t}^{*}}=\left(v_{1}^{*} v_{2}^{*}, v_{n}^{*}\right) \\
& \Rightarrow \lambda^{*}=\lambda \\
& =\lambda_{r}+j \lambda_{i}=\lambda_{r}-j \lambda_{i} \\
& \overrightarrow{v T} \vec{v} \\
& =v_{1}^{*} v_{1}+v_{1}^{*} v_{2} \\
& +\ldots+v_{n}^{*} v_{n} \\
& \Rightarrow \lambda \dot{x}=0 \\
& \lambda=\lambda_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\left|v_{1}\right|^{2}+\left(\left.v_{2}\right|^{2}\right. \\
=+\left(v_{n}\right)^{2} \\
=\neq 0
\end{array}
\end{aligned}
$$

(3) Alle-vuls of $S$ are real.

Control

- Stahtidy (blow atp?)
- Controllakuliy: Can I get where I want?
- Efficiency:

Control system:

$$
\begin{gathered}
\vec{x}[k+1]=A \vec{x}[k]+\vec{b} u[k] \\
\vec{x}[k]=A^{k} \vec{x}[0]+A^{k-1} \vec{b} u[0]+ \\
\cdots+\vec{b} u[k-1]
\end{gathered}
$$

Consider $K=100$
$\begin{array}{cc}\text { Consider } & k=100 \\ & \vec{x}[0]=0 .\end{array}$

$$
\begin{aligned}
& \vec{x}[100]=A^{99} \vec{b} u[0]+\ldots+\vec{b} u[99] \\
& \vec{x}[100]=\underbrace{\left[A^{99} \vec{b}\left|A^{88}\right| \ldots|\cdots \vec{b}| \vec{b}\right.}_{c}]_{c}^{\left\lvert\,\left[\begin{array}{c}
u[0] \\
\vdots \\
u[99]
\end{array}\right]_{\vec{u}}\right.}
\end{aligned}
$$

$$
\frac{\vec{x}[100]}{\vec{d}}=C \vec{u}
$$

$\min \|\vec{u}\|^{2}$
s.t. $\vec{x}[100]=\mathrm{Cu}$
"Minimunt, Enagy contal

$$
C_{(10 \times 100)} \vec{u}_{(10 \times 1)}=\vec{d}_{(10 \times 1)}
$$



Solve $\operatorname{mimil}\|\vec{u}\| \|^{2}$

$$
\text { s.t. } C \vec{v}=\vec{d}
$$

Solution to optimization problem * is $\overrightarrow{u^{*}}$ called the ninimum norm solutron.

