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BASKS Fundamental theorem of Linear Algebra
Reminder 14 fundamental spaces

81,9differ t.tt ei
is 4 A page

rank A r WCA

idly remintmin
din n r

dim m

r.fi Ar Kearn e Colla
us Auto e Null A
I ATT twelRM e RowspaceA

I Atwo e Null At

Gilbert Strang



Linear Algebra Fact
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Contrast with Least Squares setting
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ELI's nor recall our study of symmetric matrix S
Symmetric matrix S can always bet
diagonalized
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Warmup for the SVD
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a what is a good decomposition for a

general non square matrix A
We love an orthonormal basis and

we love diginalization but don't
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Consider ATA
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Consider Ctc
sorry we will use C and
A interchangeably

Fact CTC is symmetric

Proof TC CTC a

special property eigenvalues of S Ctc are

always real and non negative


