EECS 16 B: Module $3 /$ Lecture 1
Announcements:

- 0.25 EC point for each lecture you attend for rest of the term.
lnks.eecs/6boorg/lecture-ec
- My OH after lecture today (11:10-12:00-299 cory)

Last time:

- Symmetric real matrices \longleftrightarrow Spectral theorem
- eigenvalue ξ eigenvectors of symmetric real mathias
- Min. energy control: motivation

Today:

- Minimum-Energy Control
- Recap of spectral theorem for symmetric
- Singular Value Decomposition (SVD)

$$
A=U \sum V^{\top}
$$

See Note 14

CONTROL SYSTEMS (Recap)

- Stability (states blow up?)
- Controllability (can I get to where I want)
- Efficiency: (how efficiently can $\begin{gathered}I \text { get from } A \rightarrow B \text {) }\end{gathered}$

$$
\begin{aligned}
& \quad \vec{x}[k+1]=A \vec{x}[k]+\overrightarrow{b u}[k] \\
& \vec{x}[k]=A^{k} \vec{x}[0]+A^{k-1} \vec{b} u[0]+ \\
& \text { consider } k=100 \quad \cdots+\vec{b} u[k-1]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}[0]=0, \\
& \vec{x}[100]=A^{99} \vec{b} u[0]+\ldots+\underbrace{\vec{d}}+\underbrace{\vec{x}[100]}_{\vec{b} u[99]}=\left[A^{999} \vec{b}\left|A^{98} \vec{b}\right| \ldots|A \vec{b}| \vec{b}\right]
\end{aligned} \underbrace{\left[\begin{array}{c}
u[0] \\
\vdots \\
u[999
\end{array}\right]}_{\vec{u}}=
$$

$$
\frac{\vec{x}[100]}{\vec{d}}=C \vec{u}
$$

$\min \|\vec{u}\|^{2} \quad$ "Minimum, sit. $\vec{x}[100]=\mathrm{Cu}$ Energy contrail

Solve $\min \|\vec{u}\| \|^{2}$ subject to $C \vec{u}=\vec{d}$
Solution to is $\overrightarrow{u^{*}}$, called the minimum rom solution,
The \vec{u}^{*} that solves \circledast is written as:

$$
\overrightarrow{u^{*}}=\underset{\vec{u}}{\operatorname{argmin}}\|\vec{u}\|^{2} \quad \text { sit. } C \vec{u}=\vec{d}
$$

Ex.

$$
\begin{aligned}
& \frac{L-1}{x[k+1]=A_{x} x[k]}+\underset{1}{B u n[k]} \\
& \left.\begin{array}{rl}
x[2] & =x[1]+n[1] \\
& =x[0]+v[0]+n[1]
\end{array}\right]
\end{aligned} \underbrace{\left[\begin{array}{cc}
A B & B \\
1 & 1
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]}_{\vec{u}}=\frac{2}{d}
$$

If $x[0]=0$ and $x[2]=2$, how should we assert our control actions, $u[0] \xi u[1]$ s.t. the exerted energy $|u[0]|^{2}+|u[1]|^{2}$ is minimum?

$$
\overrightarrow{u^{*}}=\underset{\vec{u}}{\operatorname{argmin}}\|u\|^{2} \text { st. } u_{0}+u_{1}=2
$$

Given $u_{0}+u_{1}=2$, what is the solv. $\left(u_{0}, u_{1}\right)$ that mum. $\left|u_{0}\right|^{2}+\left(u_{1}\right)^{2}$?
One equation, two unknowns:
Q) How many solution for $\left(n_{0}, n_{1}\right)$?
A) Infinitely many.'
leg. $\quad\left(v_{0}, v_{1}\right)=(2,0),(1.5,0.5), \ldots(0,2)$

BASKS: Fundamental thervem of Lineor Agchra:
Reminder (4 fundamental spaces)

$\operatorname{dim}=m-r$

$$
\begin{aligned}
& \cdot\left\{\vec{x}=A \vec{w}\left(\forall \vec{w} \in \mathbb{R}^{n}\right)\right\} \in \operatorname{Col}(A) \\
& \cdot\{\vec{\omega}: A \vec{w}=0\} \in N_{u} l l(A) \\
& \cdot\left\{\vec{x}=A^{\top} \vec{w}\left(\forall \vec{w} \in \mathbb{R}^{m}\right)\right\} \in \operatorname{Row}-\operatorname{spaca}(A) \\
& \cdot\left\{\vec{\omega}: A^{\top} \vec{w}=0\right\} \in \operatorname{Null}\left(A^{\top}\right)
\end{aligned}
$$

Gilhert strarg.

Linear Algebra Fact:
Nullspace (C) II Row-space (C)
Why?
Null-space (c): all $\vec{w}^{\text {s }}$ s.t. $C \vec{u}=0$

$$
C \vec{w}=\left[\begin{array}{c}
-\overrightarrow{c_{1}^{\top}}- \\
\overrightarrow{c_{2}^{T}}- \\
\vdots \\
\overrightarrow{c_{m}^{\top}}-
\end{array}\right] \vec{w}=\left[\begin{array}{c}
\left\langle\overrightarrow{c_{1}}, \vec{w}\right\rangle \\
\left\langle\overrightarrow{c_{2}}, w\right\rangle \\
\left\langle\overrightarrow{c_{m}}, \vec{w}\right\rangle
\end{array}\right]=0
$$

\Rightarrow If $\vec{w} \in N(C)$, then $\vec{\omega}$ 1 each row of C $\Rightarrow \underbrace{\sqrt[\omega]{\omega}}_{N(c)}$ In $\underbrace{\text { any weirhted conbo \& } 8}_{\text {Row-space (} c \text {) }}$

$$
\begin{aligned}
& \vec{u}^{*}=\underset{\vec{u}}{\operatorname{argmin}}\|u\|^{2} \\
& \underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]}_{\vec{u}}=u_{d}
\end{aligned}
$$

min-norm soln. is the $\overrightarrow{u^{*}}$ that is "smallest" in length; ..e. "closest" to the origin.

$\overrightarrow{u^{*}}$ has no component in the
Nall-space (c).
Why? See BLue soln. \vec{U} that harps larger then least than $\overrightarrow{U T}$
$\overrightarrow{u^{*}}$, the min. norm sol. should be such that it has no projection on the Nill-space (C).

$$
\overrightarrow{u^{*}}=\underset{\rightarrow}{\operatorname{argmin}}\|u\|^{2} \text { sit. } u_{0}+u_{1}=2
$$

\vec{U}^{*} (the minimum-noim solve.) (red vector $\overrightarrow{u^{*}}$) has no component in the null-space of C (green lime). Any non-zero component in the null-space of (brown vector) is "wasted" energy for \vec{u}.

General min-noum soln:
$\overrightarrow{u^{*}}=\underset{\operatorname{argmin}}{u}\|\vec{u}\|^{2}$ s.t. $C \vec{u}=\vec{d}$ -
We saw that we wont $P_{\text {roj }}^{\text {Nadelc }} \overline{u^{*}}=0$

From Linean Algebra, we know that Row-spad (C) is arthogoral to Nell(C).

$$
\Rightarrow \overrightarrow{u^{*}} \in \text { Rowrpace (c). }
$$

$$
\begin{aligned}
\overrightarrow{u^{*}}=C^{\top} \vec{w} \text { for some } \vec{w}\left(\begin{array}{l}
\because \text { Row-space }(C) \\
\\
=\text { Col-space }(C T)
\end{array}\right)
\end{aligned}
$$

We also want $C \overrightarrow{u^{*}}=\vec{d}$

$$
\begin{align*}
& \Rightarrow \quad C C^{\top} \vec{\omega}=\vec{d} \Rightarrow \vec{\omega}=\left(C C^{\top}\right)^{-1} \vec{d} \\
& \Rightarrow \vec{u}=C^{\top}\left(C C^{\top}\right)^{-1} \vec{d} \\
& \text { min-norm sold. }
\end{align*}
$$

For our ex. $C=\left[\begin{array}{ll}1 & 1\end{array}\right] ; d=2$

$$
\Rightarrow \overrightarrow{u^{*}}=\underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{C^{\top}}\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array} C^{T}\right)^{-1} \cdot d \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.
$$

Contrast with Least Squares setting:

Contrast the 2 solus. $\vec{u}_{P N}=\vec{u}^{*}$ and $\vec{u}_{C S}$
Stay tuned for the SVD
we uriel show that $\overrightarrow{u^{*}}=C^{+} \vec{d}$ handles $n \times$ the settimp sinubtameorly!

$$
\begin{aligned}
& C \vec{u}=\vec{d} \\
& \vec{u}=C^{-1} \vec{d}
\end{aligned}
$$

REC/ Let's nov recall our study of symmetric matrix S :
(1) Symmetric matrix S can always be diagonalized.
(2) The diagonalizing hasisfmatrix V is made up of the eigenvectors of S that are orthonormal.
(3) All the eigenvalues of S are real.

$$
\begin{aligned}
& \Rightarrow S=V \Omega V^{\top} \\
& \text { orthonormal } \\
& \text { basis } \\
& S V=V \Omega
\end{aligned}
$$

$\left.\begin{array}{l}S \vec{V}_{r+1}=0 \\ S: V V_{r+2}=0\end{array}\right\} \Rightarrow \vec{V}_{T+1} \vec{V}_{v+2,1} \cdot \vec{V}_{n} \quad$ form an orthonormal basis

$$
\left.\dot{s} \overrightarrow{v_{n}}=0\right\}
$$ for $\underbrace{\text { Null-space (S) }}_{\mathcal{N}(S)}$

Warmup for the SVD:
(1) $V^{-1} A V=\Lambda$ for (Equare matrix $) A$:

$$
A=V \Omega V^{-1} \quad V=\left[\begin{array}{l}
\text { per } \\
\rho_{0}, 0_{i}
\end{array}\right]
$$

A: square matric)
(A: Squane matrix)
(2) $U^{\top} A U=T^{\lambda} \quad U=\left[\overrightarrow{u_{1}}, \overrightarrow{z_{2}} \ldots \overrightarrow{u_{n}}\right]$

$$
A=U T U^{\top}
$$

(3) $S:$ square symmetco matrix

$$
Q^{\top} S Q=\Lambda
$$

$$
\left(S=S^{\top}\right)
$$

Q) What is a good decomposition for a general (non-square) matrix A?

- We love an orthonormal basis and we love diagonalization but don't want to rely on special structures like symmetric matrices or even square matrices!

Let us see how to generalize the concept of EIGENVALUE and EIGENVECTOR for square matres to a similar concept for rectangular matrices, while insisting that we have orthonormal bases.

Key insight: We need Two orthonormal bases, one for the Column Space (A) one for the Row-Spaca(A).

- $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} ; \quad\left(\lambda_{i}, \overrightarrow{v_{i}}\right)$ are an e-val/e-vector pair for A

How about $A \vec{v}_{i}=\sigma_{i} \overrightarrow{u_{i}} \quad m n_{\Delta \rightarrow}^{\sqrt{n}}$
We now have 2 orthonormal bases:

- $\left\{\vec{u}_{i}\right\}$ for the col. space $(A) \in \mathbb{R}^{m}$ and
- $\left\{\vec{v}_{i}\right\}$ for the row space $(A) \in \mathbb{R}^{n}$

$$
\stackrel{m}{\Delta n} \cdot \begin{aligned}
& \text { Assume } m<n \\
& \cdot \operatorname{Rank}(A)=m
\end{aligned}
$$

In matrix form:

$$
\begin{aligned}
& \underbrace{A}_{A_{m \times n}} \underbrace{\left[\vec{v}_{1} \ldots \vec{v}_{m} \cdots \vec{v}_{j}\right.}_{V_{n \times n}}=\underbrace{\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \ldots & \vec{u}_{m}
\end{array}\right]}_{U_{m \times m}} \underbrace{\left[\begin{array}{lll}
\sigma_{1} & & \vdots \\
\sigma_{2} & & 0
\end{array}\right]}_{\sum_{m \times n}} \\
& A V=U \sum
\end{aligned}
$$

$$
\begin{aligned}
& \text { DECOMPOSITION } \\
& \text { (SiD) }
\end{aligned}
$$

Singular Value Decomposition (SVD)

Ex. 1

Two orthonormal bases,

$$
U=\left[\overrightarrow{u_{1}} \overrightarrow{\vec{u}_{2}}\right] \text { for } \operatorname{col}^{1}(A) \in \mathbb{R}^{2}
$$

and $V=\left[\vec{V}, \overrightarrow{V_{2}}\right]$ for $\operatorname{Row}(A) \in \mathbb{R}^{2}$

Ex. 2

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 5 \\
2 & 4 & 8 & 10
\end{array}\right]_{2 \times 4}
$$

$$
\left.A=\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{cccc}
\sqrt{230} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{\sqrt{46}} & \sqrt{\frac{2}{23}} & 2 \sqrt{2} & \frac{5}{\sqrt{26}} \\
\frac{-5}{\sqrt{26}} & 0 & 0 & \frac{1}{\sqrt{26}} \\
2 \times 2 & \sum_{2 \times 4} & \\
\frac{-2}{\sqrt{273}} & 0 & \sqrt{\frac{13}{21}} & \frac{-10}{\sqrt{273}} \\
\frac{-1}{\sqrt{443}} & \sqrt{\frac{21}{23}} & \frac{-4}{\sqrt{483}} & \frac{-5}{\sqrt{483}}
\end{array}\right]
$$

How do we get this decomposition?
Key insight: Convert $A_{m \times n}$ into a square matrix. How?

consider $A^{\top} A$
If we use SXD, $\quad A=V \Sigma V_{1}^{\top}$
then $A^{\top} A=\left(U \Sigma V^{\top}\right)^{\top} U \Sigma V^{\top}$

$$
\begin{aligned}
& =V \sum^{\top} \underbrace{U^{\top}} U \Sigma V^{\top} \\
& =V \sum_{\sum^{2}}^{\sum_{\Sigma^{2}}^{T}} V^{\top}=V \sum^{\top} \sum V^{\top}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
A A^{\top} & =U \Sigma \underbrace{V^{\top} V \Sigma^{\top}}_{I} U^{\top} \\
& =U \Sigma \Sigma^{\top} U^{\top}
\end{aligned}
$$

Suggests that the key to understanding the SKD of $A=V \Sigma V^{\top}$ is to study the square matrix $A^{\top} A!!$

Consider $C^{\top} C \quad \begin{aligned} & \text { Sorry, we will use } C \text { and } \\ & A\end{aligned}$
Fact: $C^{\top} C$ is symmetric
Proof: $\left(C^{\top} C\right)^{\top}=C^{\top} C$
special propaty: eigenvalues of $S=C^{\top} C$ are always real and non-negative.

