EECS $16 \underline{B}:$ Module 3/Lecture 2
Announcements:

- 0.25 EC point for each lecture you attend for rest of the term.
lnks.eecs/6boorg/lecture-ec

Last time:

- Minimum-Energy Control
- Recap of spectral theorem for symmetric
- Singular Value Decomposition $(S \cup D)$

$$
A=U \sum V^{\top}
$$

See Note 14

Today:

$$
-S V D: \quad A=U \sum V^{\top}
$$

- "Full" SVD construction justification ξ algontum
- Examples
- "Compact"SVD ξ "Outer-prodect" SVD

REO Let's nov recall our study of symmetric matrix S :
(1) Symmetric matrix S can always be diagonalized.
(2) The diagonalizing hasisfmatrix V is made up of the eigenvectors of S that are orthonormal.
(3) All the eigenvalues of S are real.

$$
\begin{aligned}
& \Rightarrow S=V \Lambda V^{\top} \\
& \text { orthonormal } \\
& \text { mas } 15 \\
& S V=V \Lambda
\end{aligned}
$$

$$
\left.s \overrightarrow{v_{n}}=0\right\}
$$ for $\underbrace{\operatorname{Null} \text {-space (S) }}_{\mathcal{N}(S)}$

$$
m \longdiv { n } \stackrel { n } { A _ { m \times n } }
$$

Q) What is a "good' decomposition for a general (non-square) matrix A?

- We love an orthonorinal basis
- We love diagindization

(0)
- But we cannot rely on special structures like symmetry or even square matrices

Let us see how to generalize the concept of EIGENVALLE and EIGENVECTOR for Square matures to a similar concept for rectangular matrices, while insisting that we have orthonormal bases.

Key insight: We need Two orthonormal bases, one for the Column Space (A) $\}$ one for the Row-Spaca(A)

For square matrices

- $A \overrightarrow{v_{i}}=7 \vec{v}_{i}$;
$\left(\lambda_{i}, \overrightarrow{v_{i}}\right)$ are an e-val/e-vector pair for A
(e-vecton need not be II)

How about $A \vec{v}_{i}=\sigma_{i} \overrightarrow{u_{i}} \quad m\left[\frac{n}{\Delta n \rightarrow}\right.$
We now have 2 orthonormal bases:

- $\left\{\vec{u}_{i}\right\}$ for the col. space $(A) \in \mathbb{R}^{m}$ and
- $\left\{\vec{v}_{i}\right\}$ for the row space $(A) \in \mathbb{R}^{n}$

$$
\text { Assume } m<n
$$

$$
\operatorname{Rank}(A)=m
$$

In matrix form:

$$
\begin{aligned}
& \underbrace{A}_{A_{m \times n}}[\underbrace{\overrightarrow{v_{1}} \ldots \overrightarrow{v_{m}} \ldots \vec{v}_{3}}_{V_{n \times n}}==\underbrace{\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \ldots & \vec{u}_{m}
\end{array}\right]}_{U_{m \times m}} \underbrace{\left[\begin{array}{lll}
\sigma_{1} & \vdots \\
\sigma_{2} & \vdots & 0 \\
0 & \sigma_{m}
\end{array}\right]}_{\sum_{m \times n}} \\
& A V=U \sum \\
& \operatorname{rank}(A) \\
& \text { singular } \\
& \text { DECOMPOSITION } \\
& A=U \Sigma V^{\top} \\
& =\min (m, m) \\
& \text { (SiD) }
\end{aligned}
$$

Singular Value Decomposition (SVD)

$$
A V=U \Sigma
$$

Ex. (recap)

$$
\vec{A}=\left[\begin{array}{cc}
4 & 4 \\
3 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 / 5 \\
3 / 5
\end{array}\right]: \overrightarrow{u_{2}}=\left[\begin{array}{cc}
3 / 5 \\
-4 / 5
\end{array}\right] \quad \underbrace{\left[\begin{array}{cc}
4 & 3 \\
3 & -4
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{cc}
\sqrt{50} & \\
& 0
\end{array}\right]}_{\sum} \underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]}_{V^{\top}}
$$

Two orthonormal bases,

$$
U=\left[\overrightarrow{u_{1}} \overrightarrow{u_{2}}\right] \text { for } \operatorname{Col}(A) \in \mathbb{R}^{2}
$$

and $V=\left[\overrightarrow{y_{1}} \overrightarrow{v_{2}}\right]$ for $\operatorname{Row}(A) \in \mathbb{R}^{2}$
NoTE: $\quad A=U \sum V^{\top}$ is different from $A=Q 1 Q^{-1}$ (engenderomposition) even for square matrix A!

Consider $\quad A^{\top} A$
If we use $S X D_{,} \quad A=\bigcup_{m \times n} \sum_{m \times m \times n} V_{m \times n}^{\top}$
then $A^{\top} A=\left(U \Sigma V^{\top}\right)^{\top} U \Sigma V^{\top}$

$$
\begin{aligned}
& =V \Sigma^{\top} \underbrace{U^{\top}} U, \Sigma V^{\top}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
A A^{\top} & =U \sum \underbrace{V^{\top} V \Sigma^{\top}}_{I} U^{\top} \\
& =U \sum \sum_{V}^{U^{\top}}
\end{aligned}
$$

Suggests that the key to understanding the S VD of $A=V V^{\top}$ is to study the square matrix $A^{\top} A!!$

Consider $C^{\top} C$ Sorry, we will use C and
Fact: $C^{\top} C$ is symmetric
Proof: $\left(C^{\top} C\right)^{\top}=C^{\top} C$
Special property: eigenvalues of $S=C^{\top} C$ are always real and non-negative.
Prov:: $S \vec{v}=\lambda \vec{v}$ (Let (λ, \vec{v}) are an. e-value/e-rectors pair)
$C^{\top} C \vec{v}=\lambda \vec{v} \quad \begin{gathered}\text { we know that all } \\ e \text {-values } \\ S=C T\end{gathered}$ e-values if $S=C T C$ ane real by the spectral theorem)

$$
\begin{array}{ll}
\begin{array}{l}
\text { Left multiply } \\
\text { by } \overrightarrow{v T} \Rightarrow
\end{array} & \overrightarrow{v T} C^{\top} C \vec{v}=\overrightarrow{v^{T}} \lambda \vec{v} \\
& (C \vec{v})^{\top} C \vec{v}=\lambda \vec{v} \vec{v} \\
& \|C \vec{v}\|^{2}=\lambda\|\vec{v}\|^{2} \\
& \lambda=\frac{\|C \vec{v}\|^{2}}{\|\vec{v}\|^{2}} \geqslant 0
\end{array}
$$

$C^{\top} C$ is a symmetinc matrix hanng non-negative e-values. Order the evalues of $C^{\top} C$ as:

$$
\begin{aligned}
& \underbrace{\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{s} \geqslant \ldots \geqslant \lambda_{r}>\underbrace{\lambda_{r+1}=\ldots=\lambda_{n}=0}_{\text {zero e-values }}}_{\text {positive eigenvalues }} \\
& V=[\underbrace{\overrightarrow{v_{1}} \overrightarrow{v_{2}} \ldots}_{\text {e-vecton } f} \vec{V}_{n}, \underbrace{\overrightarrow{v_{n+1}} \cdots \overrightarrow{V_{n}}}_{\text {e-vedor }}] \\
& c^{T} c^{\text {e-rectorn }} \text { cor } \\
& \lambda_{i}>0 \\
& \text { boctc con. } \\
& \text { to } \lambda_{i}=0
\end{aligned}
$$

Fact: C and $C^{\top} C$ have the same null space.
Pf: ($16 A) \quad N(A)=\{\vec{x}:(\vec{x}=0\}$
If $C \vec{x}=0$, then $C^{\top} C x=0$ (Pf: ohvisur)
If $C^{\top} C \vec{x}=0$, then $C \vec{x}=0$
Pros of $C^{\top} C \vec{x}=0$
Lift-multhply: $\quad x^{\top} c^{\top} c \vec{x}=0$
by $\frac{1}{x t}$:

$$
\|C \vec{x}\|^{2}=0 \Rightarrow \vec{x}=0
$$

$\vec{v}_{m} \mid \underbrace{C \overrightarrow{v_{n+1}}, \cdots C \overrightarrow{v_{n}}}_{0}]$
Null space of $C^{\top} C$
$=$ Null space of C

Fact: $\left\{C \overrightarrow{v_{1}}, C \overrightarrow{v_{2}}, \ldots C \overrightarrow{v_{m}}\right\}$ form an orthogonal (but not $O N$) basis set for \mathbb{R}^{m}.

Why is this reassuring? Then, we would hare:

$$
C_{m \times n}[V_{n \times n}^{\left[V_{\text {col }} \mid V_{\text {mull }}\right]}=\underbrace{[U]}_{m \times m}] \underbrace{[\because \cdot \mid O]}_{m \times n}
$$

and we mould be done!

$$
\begin{aligned}
& C V=\left[\begin{array}{lllll}
C \overrightarrow{V_{1}} & C \overrightarrow{r m}_{m} & C V_{v_{m+1}} & C \vec{v}_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { on orlogonal basis } \\
& \text { for } \mathbb{R}^{m} \\
& \text { why } 2\left\{C \overrightarrow{v_{1}},\left(\overrightarrow{v_{2}}, \ldots, C \vec{v}_{m}\right\}=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{n}}, \ldots \overrightarrow{v_{v}}\right\}\right. \\
& \left\langle C \overrightarrow{v_{i}}, C \overrightarrow{v_{j}}\right\rangle=\left(C \overrightarrow{v_{i}}\right)^{\top} C \overrightarrow{v_{j}} \\
& ={\overrightarrow{v_{i}}}^{\top} \underbrace{C_{i}^{\top} C \overrightarrow{s_{j}}}_{\lambda_{j} \overrightarrow{v_{j}}} \\
& =\lambda_{j} \underset{\substack{\left\langle\vec{v}_{i} \\
\vec{v}_{i}\right.}}{\vec{j}\rangle}={ }_{\text {if } i \neq j}
\end{aligned}
$$

If we wart orthonormdity, we need to normalize $C \overrightarrow{v_{i}}$ to unit-loufth.

$$
\begin{aligned}
& \begin{array}{l}
\left\langle C \overrightarrow{v_{i}}, \mid \overrightarrow{v_{i}}\right\rangle=a_{i} \mid \overrightarrow{v_{i}}, \overrightarrow{v_{i}} \\
\left\|C \overrightarrow{v_{i}}\right\|^{2}=a_{i}
\end{array} \\
& \|c \overrightarrow{v i}\|=\sqrt{\lambda_{i}} \quad \text { for } \lambda_{i} \neq \gamma
\end{aligned}
$$

$\overrightarrow{\vec{v}_{m}} \mid \underbrace{C \overrightarrow{v_{n+1}} \cdots \cdots \overrightarrow{v_{n}}}_{0}]$
Null space of $C^{\top} C$
$=$ Null space of C

Fact: $\left\{C \overrightarrow{v_{1}}, C \overrightarrow{v_{2}}, \ldots C \overrightarrow{v_{m}}\right\}$ form an orthogonal basis for \mathbb{R}^{m}
Why? $\left\{\left(\overrightarrow{v_{1}}, C \overrightarrow{v_{2}}, \ldots C \overrightarrow{v_{m}}\right\}=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots \overrightarrow{u_{m}}\right\}\right.$ $\left\langle C \overrightarrow{v_{i}},\left\langle\overrightarrow{v_{j}}\right\rangle=\left(C \overrightarrow{v_{i}}\right)^{\top} C \overrightarrow{v_{j}}\right.$

$$
=\vec{V}_{i}^{\top} \underbrace{\overrightarrow{v_{j}}}_{\lambda_{j} C^{\top} C \overrightarrow{v_{j}}}=\lambda_{j} \underbrace{\text { we }}_{\substack{\vec{v}_{i}, \vec{v}_{j} \\ \text { ON- set. }}}
$$

If we want an ON-set, we need to normalize $C \overrightarrow{v_{z}}$ to unit length:

$$
\begin{aligned}
& \left\langle C \overrightarrow{v_{i}},\left\langle\overrightarrow{v_{i}}\right\rangle=\lambda_{i}\left\langle\overrightarrow{v_{i}}, \overrightarrow{v_{i}}\right\rangle\right. \\
& \left\|C \overrightarrow{v_{i}}\right\|_{\text {singnlarithe }}^{2}=\|\left(\overrightarrow{v i} \|=\sqrt{\lambda_{i}}\right.
\end{aligned}
$$

Fact $\left\{\overrightarrow{u_{i}}=\frac{C \overrightarrow{V_{i}}}{\sqrt{\lambda_{i}}}\right\}_{i=1}^{m}$ form for \mathbb{R}^{m} nary corresponding to $\overrightarrow{v_{i}}$ for which $\lambda_{i}>0$. $\left(\overrightarrow{V_{r+1}}, \cdots \overrightarrow{n_{n}}\right.$ corr. to $\left.\lambda_{i}=0\right)$

$$
=\left[\begin{array}{ccc}
\sqrt{\lambda}, \vec{u}_{1} & \cdots \sqrt{\lambda_{m}} \vec{u}_{m} & 0
\end{array}\right]
$$

$$
\begin{aligned}
& =U_{m \times m} \sum_{m \times n} \\
\Rightarrow C V & =U \Sigma V^{\top}
\end{aligned}
$$

Sumnaty:

$$
C V=U \Sigma
$$

or $C=U \sum V^{\top}$
$S V D$ procedure for $C=U \Sigma V^{\top}$
(1) Compute $S=C^{\top} C$
compute e-vectors of S as V (orthonond)
\rightarrow Use this to populate the V matrix for the SVN.
$\rightarrow \overrightarrow{V_{1}}, \overrightarrow{v_{2}} \ldots \overrightarrow{\gamma_{m}}$ correspond to positive e-vals

$$
\begin{aligned}
& \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{m}>\lambda_{m+1}=\lambda_{m+2}=\cdots=\lambda_{m}=0 \\
& \lambda_{1} \geqslant \lambda_{n}=0
\end{aligned}
$$

(2) Form $\overrightarrow{u_{i}}=\frac{C \overrightarrow{v_{i}}}{\sqrt{\lambda_{i}}}$ for $\lambda_{i} \neq 0$

$$
U=\left[\begin{array}{ccc}
b_{1} & \frac{1}{u_{2}} \cdot & \frac{1}{u_{m}} \\
1 & 1 & 1
\end{array}\right]
$$

(3)

$$
\begin{aligned}
& C=U \sum V^{\top} \quad(S V D)
\end{aligned}
$$

Q) What if C is not full rank?
eeg., if there are only r positive e-values of $C^{\top} C$? (r<m,r<n)

Ex.

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
4 & 4 \\
3 & 3
\end{array}\right] \\
\text { (1) } A^{\top} A & =\left[\begin{array}{ll}
4 & 3 \\
4 & 3
\end{array}\right]\left[\begin{array}{ll}
4 & 4 \\
3 & 3
\end{array}\right]=\left[\begin{array}{ll}
25 & 25 \\
25 & 25
\end{array}\right]
\end{aligned}
$$

Eigenvalue of $A^{\top} A$ are roots of $\operatorname{det}\left[A^{\top} A-\lambda I\right]=0$

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow\left|\begin{array}{cc}
25-\lambda & 25 \\
25 & 25-\lambda
\end{array}\right|=0 & \Rightarrow(25-\lambda)^{2}-25^{2}=0 \\
& \Rightarrow(50-\lambda)(0-\lambda)=0
\end{aligned} \\
& \lambda=0,50 \\
& \lambda_{1}=50 ; \quad \overrightarrow{v_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda_{2}=0 ; \quad \overrightarrow{r_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

(2) $\vec{u}_{i}=\frac{A \vec{v}_{i}}{\sqrt{\lambda_{i}}}$ for $\lambda_{i} \neq 0$

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\left[\begin{array}{ll}
4 & 4 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\sqrt{2}
\end{array}\right]}{\sqrt{50}}=\frac{1}{10}\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 / 5 \\
3 / 5
\end{array}\right] \\
& \overrightarrow{u_{2}}=? \quad\left(\lambda_{2}=0\right)
\end{aligned}
$$

Ans: Use Gram-Schnidt to "complete" ON basis!

$$
\begin{aligned}
\vec{u}_{2} & =\left[\begin{array}{cc}
3 / 5 \\
-4 / 5
\end{array}\right] \\
& \Rightarrow \quad U=\left[\begin{array}{ll}
4 / 5 & 3 / 5 \\
3 / 5 & -4 / 5
\end{array}\right]
\end{aligned}
$$

(3) $\sum=\left[\begin{array}{cc}\sqrt{50} & 0 \\ 0 & 0\end{array}\right]$

SVD for $A=\left[\begin{array}{ll}4 & 4 \\ 3 & 3\end{array}\right]$ is:

$$
\underbrace{\left[\begin{array}{ll}
4 & 4 \\
3 & 3
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
4 / 5 & 3 / 5 \\
3 / 5 & -4 / 5
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
\sqrt{30} & 0 \\
0 & 0
\end{array}\right]}_{\sum} \underbrace{\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2})
\end{array}}_{V^{T}}
$$

Two orthonormal bases,

$$
U=\left[\begin{array}{ll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}}
\end{array}\right] \text { for } \operatorname{col}(A) \in R^{2}
$$

and $V=\left[\begin{array}{ll}\overrightarrow{y_{1}} & \overrightarrow{v_{2}}\end{array}\right]$ for $\operatorname{Row}(A) \in \mathbb{R}^{2}$
"Compact form" SVD.

$$
\begin{aligned}
& \text { Ex: : } \quad A=\left[\begin{array}{cccc}
1 & 2 & 4 & 5 \\
2 & 4 & 8 & 10
\end{array}\right]_{2 \times 4} \\
& \operatorname{Rank}(A)=? \\
& A=\underbrace{\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]}_{U_{2 \times 2}} \underbrace{\left[\begin{array}{cccc}
\sqrt{230} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}_{\sum_{2 \times 4}}\left[\begin{array}{llll}
\frac{1}{\sqrt{46}} & \sqrt{\frac{2}{23}} & 2 \sqrt{\frac{2}{23}} & \frac{5}{46} \\
\frac{-5}{\sqrt{26}} & 0 & 0 & \frac{1}{\sqrt{26}} \\
\frac{-2}{\sqrt{273}} & 0 & \sqrt{\frac{13}{21}} & \frac{-10}{\sqrt{273}} \\
\frac{-1}{\sqrt{483}} & \sqrt{\frac{21}{23}} & \frac{-4}{\sqrt{483}} & \frac{-5}{\sqrt{483}}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{l}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]}_{U_{r}(2 \times 1)} \underbrace{[\sqrt{230}]}_{\sum_{r}(1 \times 1)}\left[\begin{array}{ccc}
\frac{1}{\sqrt{46}} \sqrt{\frac{2}{23}} & \sqrt[2]{\frac{2}{23}} \frac{5}{\sqrt{46}}
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& A V_{r}=U_{r} \sum_{r} \\
& \text { "Reduced" } A=U S V^{\top} \quad r=\operatorname{rank}(A)
\end{aligned}
$$

Let's "expound" out V_{r}, U_{r}, Σ_{r} to "full" SVD:

Outer-Product Form

$$
C=U \sum V^{\top}
$$

$$
\begin{aligned}
& C \in \mathbb{R}^{m \times n} \\
& \operatorname{Rank}(c)=r
\end{aligned}
$$

$$
=\left[\begin{array}{lllll}
\sigma_{1} \overrightarrow{u_{1}} & \sigma_{2} \overrightarrow{u_{2}} \cdots \sigma_{2} \overrightarrow{u_{r}} & \overrightarrow{0} & \cdots & \overrightarrow{0}
\end{array}\right]
$$

r : rank of matrix
: \# of positive singular values
Onten-product form of SVD is tho most efficient ξ compact for representation.

SUMMARY
Finding arsVD for $A \in \mathbb{R}^{m \times n}$ (with rank =r) from evalues/ evectors of:
$A^{\top} A \in \mathbb{R}^{n \times n}$

Evalues of $A^{T} A$ are real and nonnegative. r of then are strictly positive; the remaining nor are zoo.
Step 1: Find orthogonal matrix V diagonalizing
$A^{\top} A$:

$$
\begin{aligned}
& A^{\top} A: \\
& \left.V^{\top} A^{\top} A V=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda r & \\
& & \\
& & \\
& & 0
\end{array}\right]\right\}^{n-r} \\
& \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda r>0
\end{aligned}
$$

Step 2: For each $i=1, \ldots r$
pick th column \vec{V}_{i} of V (which
is evector for $A^{\top} A$ for revalue
$\left.\lambda_{i}\right)$. Let
$\sigma_{i}=\sqrt{\lambda i}, \vec{u}_{i}=\frac{1}{\sigma_{i}} A \vec{v}_{i}$.

$$
A A^{\top} \in \mathbb{R}^{m \times m}
$$

$\therefore \quad \therefore$ real, nonnegative evalues, r of which are strictly partite, remaining mar are zero.
Step 1: Find orthogonal matrix $U \in \mathbb{R}^{m \times M}$ diagonalengs

$$
\begin{aligned}
& A A^{\top}: \\
& \left.U^{\top} A A^{\top} U=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \cdot \lambda r & & \\
& & 0 & \\
& & & 0
\end{array}\right]\right]_{m-r} .
\end{aligned}
$$

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \geqslant \lambda r>0
$$

Step 2! For each i=1...r pick its column \vec{U}_{i} of U (which is evector of $A A^{\top}$ for evalue λ_{i}).
Let

$$
\sigma_{i}=\sqrt{\lambda_{i}}, \overrightarrow{v_{i}}=\frac{1}{\sigma_{i}} \lambda^{\top} \vec{u}_{i} .
$$

Which procedure to use? Choose $A^{\top} A$ or $A A^{\top}$ based on which one lcoles simpler for finding evalverlevectors. If $m<n, A A^{\top}(m \times m)$ is smaller then $A^{\top} A(n \times n)$ and may be preforable.

Example

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right] \quad A^{\tau}=\left[\begin{array}{cc}
4 & -3 \\
4 & 3
\end{array}\right] \\
& A^{\top} A=\left[\begin{array}{cc}
25 & 7 \\
7 & 25
\end{array}\right] \quad \cdots A^{\top}=\left[\begin{array}{cc}
32 & 0 \\
0 & 18
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
& \therefore \quad A=\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right] \quad A^{\top}=\left[\begin{array}{cc}
4 & -3 \\
4 & 3
\end{array}\right] \\
& A^{\top} A=\left[\begin{array}{cc}
25 & 7 \\
7 & 25
\end{array}\right] . \quad A A^{\top}=\left[\begin{array}{cc}
32 & 0 \\
0 & 18
\end{array}\right]
\end{aligned}
$$

Easier $b \mathrm{cl}$ diagonal: choose $U=1: \vec{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \vec{u}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \lambda_{1}=32, \lambda_{2}=18 \Rightarrow \sigma_{2}=\sqrt{\lambda_{2}}=3 \sqrt{2} \\
& \forall \\
& \sigma_{1}=\sqrt{\lambda_{1}}=4 \sqrt{2} \\
& \vec{V}_{1}=\frac{1}{\sigma_{1}} A^{\top} \vec{U}_{1}=\frac{1}{4 \sqrt{2}}\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Ex.
$A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \quad A A^{\top}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad U=I$ works for step 1

$$
\begin{array}{ll}
\lambda_{1}=\lambda_{2}=1 & \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\sigma_{1}=\vec{\sigma}_{2}=1 & \overrightarrow{v_{1}}=A^{\top} \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{v}_{2}=A^{\top} \vec{u}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
\end{array}
$$

Since $A A^{\top}=I$, any other ortherarmal \vec{u}_{1}, \vec{u}_{2} will work.

$$
\vec{u}_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

$\vec{u}_{1}=\prod_{0}^{0} 1, \vec{u}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ above are a special case: $\theta=0$ $\vec{v}_{1}=A^{\top} \vec{u}_{1}=\left[\begin{array}{c}\cos \theta \\ -\sin \theta\end{array}\right] \quad \vec{v}_{2}=A^{\top} \vec{u}_{2}=\left[\begin{array}{c}-\sin \theta \\ -\cos \theta\end{array}\right]$. conclusion:
Repeated evalues of $A^{\top} A$ or $A A^{T} \quad\left(\lambda_{1}=\lambda_{2}=1 \mathrm{~m}\right.$ this example) are another source of nonuniqueness in $S V D$.

