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Announcements
0.25 EC point for each lecture you attend
for rest of the term

links eerslbb.org lecture ee

Last time

Minimum Energy Control

Recap of spectral theorem for symmetricmatrices
Singular Value Decomposition SVD

A V EV
Ser Note 14

To DAY

SYD A VENT
Full said construction justification algorithm

Examples

Compact s VD outer product SUD



ELI's nor recall our study of symmetric matrix S
Symmetric matrix S can always be
diagonalized

The diagonalizing has matrix V is made up
of the eigenvectors of S that are

orthonormal

All the eigenvalues of S are real
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a what is a good decomposition for a

general non square matrix A
We love an orthonormal basis

We love diagonalizatin

But we cannotrely on special structures

like symmetry or even square
matrices

Let us see how togeneralize the conceptof EIGENVALUE
and EIGENVECTOR for square matrices to
a smilationept for rectangular matrices
while insisting that we have orthonormalbases

Key insight we need two orthonormal bases

one for the ColumnSpace A one for the RowSpada



For square matrices
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Gi are an

eval e vector pairfor ACe vector need notbe 1

How about A get MIA
one

We now have 2 orthonormal bases

Ii for the col space A ERM and
Ei for the row space A ER
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Singular Value Decomposition SV D
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Two orthonormal bases
U ME for Col A E IR

and V it it for Row A E IT

Note A VENT is different from
A Q.IQ Cergenderomposition

even for square matrix AWHY



Consider AtA

If we use SYD A VE V

then ATA Luque ng y
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suggests that the key to understanding
the S XD of A V E IT is to
study the square matrix ATA



Sorry we will use C and
Consider CTC A interchangeably

Fact CTC is symmetric

Proof TC CTC a

special property eigenvalues of S Ctc are

always real and non negative

Proof ST AT Let G Pare an

e value e vector pair
for s

CTC D AT We know that all
e values of S CTC
are real by the
spectral theorem

Leftmultiply
by T
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CTC is called
a Positive Semi Definite or PSD matrix



CTC is a symmetric matrix having
non negative e values Order the
e values of CTC as
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Fact C and CTC have the same null space

Pt CA NCA E CEO

If Geo then CT Ceo Pt
obvious

If Cato then CEO

Proof of CT Ceo

Leftmultiply Nctc O
by at KCI IF 0 Get a
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Fact CH CR Ctm form an

orthogonal but not ON basis set for IR

Why is this reassuring
Then we wouldhave

Ended LYLEp
and we would be done
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an orthogonal basis
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why Cut Cut Cut 47,47 45

CUT CUT AT Crj

Ensign

Aj tiff fit j
If we want ortho normality we need to
normalise CVT to unit length
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Fact CH CR Com form an

orthogonal basis forRm
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SYD procedure for C UE VT

Compute S CTC
compute e vector of S as IN foothonornd
Use this to populate the V matrix for the
SVD
I v7 I correspond to positive e vats
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Form I Ct for Ai O
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d What if C is not full rank
e g if there are only r positive
e values of Ctc ram ram



Note We will use A

A
14 g

and C interchangeably

Ata

1 31 53 1
Eigenvalues of ATA are roots of detLATA 713 0

35,7 2551 0 25 77 25 0
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Two orthonormal baser
U Cut A for Col A E IR

and V it is for Row A E IT

Compact form SVD
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Outer ProductForm C airman
Rank r r
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Outer product form of SVD is the most

efficient 4 compact for representation



LECTURE 21 : more SVD

Finding a SVD for A c- IRM
" (with rank -_r) from e.values/

erectors of :
←-

ATA C-Rn
✗^

AATERM✗M

claims 1-3 (last lecture) : → some claims can be

Evolvesof ATA are real adapted : real, nonnegative
and nonnegative . r of evolves, r of which are
them are strictly positive; strictly positive, renaming
the remaining n-r are zero. m-rare zero .

Steps : Find orthogonal step1 : Find orthogonal
matrix V diagonalizing matrix U C-Rm×m diagonalizing
ATA : AAT :

VTATAV=[
"
'

tho
nr

UTAATU =
"
"
a. m-r

1217127 - - -7Rr>0 Ri3227 - IN> 0

step2 : For each E-b. -r step2 : For each i=1 -n-r

pick ith column Ñi of ✓ (which pick ith column Ñi of UCwhich
is evectofo ATA foevalue is erector d-AAT for evolveRi) .
ri) . Let Let
5i=VRT , Ñi=1iAÑ . Ji -- VRT

, Ñ=1iÑÑi .
Which procedure to use ? Choose ATA or AAT based
on which one looks simpler for finding evolves/electors.
Ifmen , AAT Cmxm) is smaller than ATA Gin) and
may be preferable .

Example2 (from Lecture20) : A-- [-43+3] A-[44-3]
Lecture20 : ATA = [45-725] . Today : AAT-_[% fg]
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