EECS 16 B : Module 3/Lecture 3
Announcements:

- 0.25 EC point for each lecture you attend for rest of the term.
- links. eecs/6boorg/lecture-ec

Last time:
-SVD: $\quad A=U \sum V^{\top}$

- "Full" sUD construction justification ξ algonthm
. "Compact"SVD $A=U_{r} \sum_{r} V_{r}^{\top}$

Today:

- Recap of SVD algorithm
- Outer - product SVD : examples
- Geometry of SVD
- Application of SVD:
- Psendo-inverse
- PCA (Principal Componat Analysis)
(time-pernitting)
$S V D$ procedure for $A=U \Sigma V^{T}$
(1) Compute $S=A^{\top} A$
compute e-vectors of S as V (orthonond)
\rightarrow Use this to populate the V matrix for the SVN.
$\rightarrow \overrightarrow{V_{1}}, \overrightarrow{v_{2}} \ldots \vec{v}$ correspond to positive e-vals

$$
\binom{\text { rank }}{8 C} \lambda_{1}>\lambda_{2}>\cdots \lambda_{2}>\lambda_{r+1}=\lambda_{2+2}=\cdots=\lambda_{n}=0
$$

(2) Form $\overrightarrow{u_{i}}=\frac{A \overrightarrow{v_{i}}}{\sqrt{\lambda_{i}}}$ for $\lambda_{i} \neq 0$

$$
\sigma_{i}=\sqrt{\lambda_{i}} \quad V=\left[\begin{array}{ccc}
\vec{v}_{1} & \frac{1}{\lambda_{2}} \cdot & \frac{1}{\lambda_{i}} \\
1 & 1 & 1
\end{array}\right]
$$

(3)

$$
\begin{aligned}
& A=U \sum V^{\top} \quad(S V D)
\end{aligned}
$$

SUMMARY OF SUD
Finding SVD for $A \in \mathbb{R}^{m \times n}$ (with ronk=r) from evalues/ evectors of:
$A^{\top} A \in \mathbb{R}^{n \times n}$
Evalues of $A^{\top} A$ are real and nonnegative. 1 of then are strictly positive; the remaining nor ore zoo, Step 1: Find orthogonal matrix V diagonalizing

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda>0
$$

Step 2: For each $i=1, \ldots r$ pick the column \vec{V}_{i} of V (which is evector for $A^{T} A$ for evalue
$\left.\lambda_{i}\right)$. Let

$$
\sigma_{i}=\sqrt{\lambda i}, \quad \vec{u}_{i}=\frac{1}{\sigma_{i}} A \vec{v}_{i} .
$$

$A^{\top} A$:
$A A^{\top} \in \mathbb{R}^{m \times m}$
E-values of ($A A^{\top}$) are: real, nonnegatue evalues, r of which ore strictly positive, remaining mar ore zeno.
Step 1: Find orthogonal matrix $U \in \mathbb{R}^{n \times M}$ diagenalang

$$
\begin{aligned}
& A A^{\top}: \\
& \left.U^{\top} A A^{\top} U=\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \ddots \lambda_{r} & & \\
& & 0 & \\
& & \ddots
\end{array}\right]\right]_{m-r}
\end{aligned}
$$

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{r}>0
$$

Step 2: For each $i=1 \ldots \Gamma$ pick it column \vec{u}_{i} of U (which is evecto of $A A^{\top}$ for revalue λi).
Let

$$
\sigma_{i} \operatorname{\sigma et}_{i}=\sqrt{\lambda_{i}}, \quad \vec{v}_{i}=\frac{1}{\sigma_{i}} \lambda^{\top} \vec{u}_{i} \text {. }
$$

Which procedure to use? Choose $A^{\top} A$ or $A A^{\top}$ based on which one lodes simpler for finding evalveslevectors. If $m<n, A A^{\top}(m \times m)$ is smaller then $A^{\top} A(n \times n)$ and may be preferable.

Q) Is the SVD of a matrix unique?
A) No!
Ex.
$A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \quad A A^{\top}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad U=I$ works for step 1

$$
\begin{array}{ll}
\lambda_{1}=\lambda_{2}=1 & \overrightarrow{u_{1}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\sigma_{1}=\psi_{2}^{*}=1 & \overrightarrow{v_{1}}=A^{\top} \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{v}_{2}=A^{\top} \vec{u}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
\end{array}
$$

Since $A A^{\top}=I$, any other orthonormal \vec{u}_{1}, \vec{u}_{2} will work.

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right] \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { above are a special case } \theta=0
\end{aligned}
$$

$\vec{v}_{1}=A^{\top} \vec{u}_{1}=\left[\begin{array}{c}\cos \theta \\ -\sin \theta\end{array}\right] \quad \vec{v}_{2}=A^{\top} \vec{u}_{2}=\left[\begin{array}{c}-\sin \theta \\ -\cos \theta\end{array}\right]$. Conclusion:
Repeated evolves of $A^{T} A$ or $A A^{T} \quad\left(\lambda_{1}=\lambda_{2}=1 \mathrm{in}\right.$ this example) are another source of nonuniqueress in SVD.

$$
\begin{aligned}
& \text { Ex.: } \quad A=\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 8 & 10
\end{array}\right]_{2 \times 4}
\end{aligned}
$$

$$
\begin{aligned}
& A V_{r}=u_{r} \Sigma_{r}
\end{aligned}
$$

RENEW OF MATRIX MULTIPLICATION
Two ways to interpret matrix multiplication:
ex.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] ; \quad B=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

First method:

$$
\begin{aligned}
A \cdot B & =\left[\begin{array}{cc}
\langle\text { Row 1, col 1 }\rangle & \langle\text { Row 1, col 2 }\rangle \\
\langle\text { Row 2, col 1 }\rangle & \langle\text { Row 2, col 2 }\rangle
\end{array}\right] \\
& =\left[\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
\end{aligned}
$$

- "Inner Products' used to do matrix multiplication
- In our ex., 4 scalars corr. to 4 inner-produdes of Rows of A with Columns of B.

Alternate method:

- Take Outer products of Columns of A with Rows of B.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]_{C 1(A) \times R 1(B)} ; \quad B=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] \\
& A B=\left[\begin{array}{l}
a \\
c
\end{array}\right]\left[\begin{array}{ll}
e & f
\end{array}\right]+\left[\begin{array}{l}
b \\
d
\end{array}\right]\left[\begin{array}{ll}
g & h
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{ll}
a e & a f \\
c e & c f
\end{array}\right]}_{\operatorname{Rank-1}}+\underbrace{\left[\begin{array}{ll}
b g & b k \\
d g & d h
\end{array}\right]}_{\operatorname{Rank}-1} \\
& =\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right] \text { as before! } \\
& =(\operatorname{Col} .1 \text { of } A)(\operatorname{Row} 1 \text { of } B)+(\operatorname{Col} .2 \text { of } A)(\text { Row } 2 \% B)
\end{aligned}
$$

- Can express AB as the sum of Rank-1 components
- Each Rank-1 computation is a matrix!

More generally,

$$
\sum_{i=1}^{r} \vec{u}_{i} \vec{V}_{i}^{\top}=U_{r} V_{r}^{\top}
$$

$$
\left[\begin{array}{ccc}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \cdots \\
c_{1} & c_{2} & c_{r}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{v_{1}} \tau \\
\vdots \\
\vec{v}_{r_{2}}^{\top}
\end{array}\right]_{R_{r}}^{R_{2}}
$$

Outer-Product SVD:

$$
\underset{n \times n)}{C}=\bigcup_{\lceil 1} \sum_{1 \mid 1 \ldots 1]} X^{\top}
$$

$$
\begin{aligned}
& C \in \mathbb{R}^{m \times n} \\
& \operatorname{Rank}(c)=r
\end{aligned}
$$

Onter-product form of SVD is tho most efficient $\{$ compact for representation.

$$
C=\underbrace{\left[\begin{array}{ccc}
1 & 1 & - \\
\vec{u}_{1} & \overrightarrow{u_{2}} & \cdots \vec{u}_{\nu} \\
1 & 1 & 1
\end{array}\right]}_{u_{r}} \underbrace{\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0 \\
0 & \sigma_{\lambda}
\end{array}\right]}_{\sum_{r}} \underbrace{\left[\begin{array}{l}
-\overrightarrow{v_{1}^{\top}} \\
-\overrightarrow{v_{2}^{\top}} \\
-\overrightarrow{v_{r}^{\top}}-
\end{array}\right]}_{V_{2}^{\top}}
$$

$$
C=\sum_{i=1}^{2} \sigma_{i} \vec{u}_{i} \overrightarrow{v_{i}^{\top}}
$$

(no unnecessary representalan) outer product SVD

$$
\begin{aligned}
& C=\left[\begin{array}{lllll}
\sigma_{1} \overrightarrow{u_{1}} & \sigma_{2} \overrightarrow{u_{2}} \cdots \sigma_{2} \overrightarrow{u_{2}} \overrightarrow{0} \cdots & \overrightarrow{0}]
\end{array}\right] \\
& =\sum_{i=1}^{n} \sigma_{i} \underset{u_{i}}{(m \times 1)} \overrightarrow{v_{i}^{T}}
\end{aligned}
$$

$$
\begin{aligned}
& (r)=\text { rank of matrix }=\text { \# of positive singular }
\end{aligned}
$$

Geometric interpretation of the SVD:
Note:

1) Multiplying a vector \vec{x} by an orthogonal matrix Q does not change its length:

$$
\|\vec{Q} \vec{x}\|=\|\vec{x}\|
$$

(Prof: $\|Q \vec{x}\|^{2}=\langle Q \vec{x}, Q \vec{x}\rangle=\vec{x}^{\top} \underbrace{Q_{I}^{\top} Q, \vec{x}=\|\vec{x} \mid\|_{0}^{2}}_{I}$)
2) Multiplying a vector by $\Sigma_{r}=\left[\begin{array}{lll}0_{1} & & \\ & \text { or }\end{array}\right]$ stretches the fist entry by σ_{1}, second entry by σ_{2}, and so on.

Combining the observations above we con interpret multiplication of a vector \vec{x} by $A=U \Sigma V^{\top}$ as the composition of three operations:
i) $V^{\top} \vec{x}$, which reorients \vec{x} without changing its length;
ii) $\Sigma\left(V^{\top} \vec{x}\right)$, which stretcher the vector $V^{\top} \vec{x}$ along each axis with corresponding singular value;
iii) $U\left(\Sigma V^{\top} x\right)$, which again reorients the resulting vector.

"Applications" of the SVD:

- psendo-inverse: Least-Sguares $\left\{M_{\text {in-norm soho: }}\right.$
- Principal Component Andysis:

$$
A_{m \times n}=\bigcup_{n \times \times \times n} \sum_{m \times n} V_{n \times n}^{\top} \quad\left(f_{n} \| s V D\right)
$$

Suppose $m=n=r$ (squame $\{$ Full-Rank) $\Rightarrow A$ is invertible:

$$
A=U\left[\begin{array}{lll}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & - \\
& & \sigma_{n}
\end{array}\right] V^{\top}
$$

Q) What is A^{-1} in terms of U_{1}, \sum, V ?
A) $\quad A^{-1}=\left(U \Sigma V^{\top}\right)^{-1}=V \Sigma^{-1} U^{\top}$

So, SVD makes inversion "easy."
If an inverse does not exist, then a "pseudoinvers" can be defined!
Defn: Given $A \in \mathbb{R}^{m \times n}$ with rank r, and $S V D$
the (Moore-Penvose) psendoinverse of A is:
or equivalently,

$$
\begin{aligned}
& A_{(n \times m)}^{+}=V_{(n \times r)} \sum_{(r \times r)}^{-1} U_{(r \times m)}^{\top} \\
& \text { (Compact form) } \\
& =\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \cdots \overrightarrow{v_{r}}
\end{array}\right]\left[\begin{array}{llll}
\frac{1}{\sigma_{1}} & & & \\
& & & \\
& & \\
\sigma_{2} & & \\
& & \ddots & \\
& & \frac{1}{\sigma_{r}}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{u_{1}} \\
\\
\\
\\
\\
\vec{u}_{2} \\
\hline
\end{array}\right] \\
& =\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \vec{v}_{i} \overrightarrow{u_{i}^{\top}} \quad \text { (outer-product) }
\end{aligned}
$$

Ex, Given $A=\left[\begin{array}{ll}1 & 2\end{array}\right]$,
whet is A^{+}(psendo-inverse) $\quad A=\left[\begin{array}{ll}1 & 2\end{array}\right]$
Soln:

$$
\begin{aligned}
& A_{102}=U_{k 1} \sum_{k \times 2} V_{2 \times 2}^{\top} \\
& =\vec{\sigma}_{1} \overrightarrow{u_{1}} \overrightarrow{v_{i}}=\sqrt{5} \cdot 1 \cdot \frac{1}{\sqrt{5}}\left[\begin{array}{ll}
1 & 2]
\end{array}\right. \\
& A_{2 \times 1}^{+}=\frac{f}{\sigma_{1}} \overrightarrow{y_{j}} \overrightarrow{u_{3}}=\frac{1}{\sqrt{5}}\left(\frac{1}{5}\left[\begin{array}{l}
1 \\
l_{2}^{\prime}
\end{array}\right]\right) \cdot 1 \\
& A^{+}=\left[\begin{array}{l}
1 \\
k_{5} \\
2
\end{array}\right]
\end{aligned}
$$

Remark: If $Q_{m \times k}=\left[\overrightarrow{q_{1}} \ldots \overrightarrow{q_{k}}\right]$ has orthonormal column, then $Q^{\top} Q=\left[\begin{array}{l}\overrightarrow{q_{1}^{\top}} \\ \vdots \\ \dot{q}_{x}^{\top}\end{array}\right]\left[\begin{array}{lll}\overrightarrow{q_{1}} & \cdots & \vec{q}_{k}\end{array}\right]$
whether or not Q is square, but $Q Q^{\top}=I$ only when Q is square.
$\begin{array}{lll}\text { Ex:: } & Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right] & Q^{\top} Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \\ Q Q^{\top}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \neq I\end{array}$
Q) What is the interpretation of $Q Q^{\top}$ when Q is not square?

$$
\begin{aligned}
& Q Q^{\top} \vec{x}=\left[\overrightarrow{q_{1}} \cdots \overrightarrow{q_{k}}\right]\left[\begin{array}{l}
\vec{q}_{1}^{+} \\
\overrightarrow{q_{t}}
\end{array}\right] \vec{x}=\left[\begin{array}{l}
\overrightarrow{q_{n}}
\end{array} \cdot \overrightarrow{q_{k}}\right]\left[\begin{array}{l}
\overrightarrow{q_{1}}+\vec{x} \\
\overrightarrow{q_{k}} \overrightarrow{k_{k}} \vec{x}
\end{array}\right] \\
& =\left(\overrightarrow{q_{1}}, \vec{x}\right) \vec{q}_{1}+\ldots+\left(\vec{q}_{\underline{w}} \vec{x}\right) \overrightarrow{q_{k}}
\end{aligned}
$$

$=$ Projection $\vec{b}_{\vec{x}} \overrightarrow{0}$ orthnormality of che q, q_{2}...
QQ' \vec{x} projects \vec{x} onto Col (D)

$$
\begin{aligned}
& A A^{+}=U_{r} \sum_{r} \underbrace{V_{r}^{\top} V_{r} \Sigma_{r}^{-1} U_{r}^{\top}=U_{r} U_{r}^{\top}}_{I_{r}} \\
& A^{+} A=V_{r} \sum_{r}^{-1} \underbrace{U_{r}^{\top}}_{r} U_{I_{r}}^{U_{r}} \sum_{r} V_{r}^{\top}=V_{r} V_{r}^{\top}
\end{aligned}
$$

From , $A A^{+}$is a projection onto $\operatorname{Col}\left(U_{r}\right)=\operatorname{Col}(A)$
From , $A A^{+} \quad . \quad \operatorname{Col}\left(V_{2}\right)=\operatorname{Col}(A)$

Pseudoinverse $\}$ Least Squares:
Least Squares $w / S V D$:
Want to minimize $\|A \vec{x}-\vec{y}\|$ when $x>n \Rightarrow \|_{\vec{n}}^{n} A \mid$

- If $\left(A^{\top} A\right)$ is invertible, then $\left.\vec{x}_{L S}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{y}+\right)$
Q. What if $\left(A^{\top} A\right)$ is not invertible?
A)

$$
\overrightarrow{x_{L S}}=A^{+} \vec{y}
$$

In fact (※) is always valid, whet hen or not ($\left.A^{\top} A\right)^{-1}$ easts)

- Recall the nimimizen $\vec{x}_{L S}$ is such that:
$A \overrightarrow{x_{s}}$ is a projection of \vec{y} onto (0). (A)

$$
\begin{aligned}
& \quad=A A^{+}-\text {from above }^{r} \\
& A x_{L S}=A A^{+} y \Rightarrow \vec{x}_{L S}=A^{+} \vec{y} \\
& \vec{x}_{L S}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{y}(\dagger)
\end{aligned}
$$

\rightarrow Let's verify (t) when $A^{\top} A$ has full colum e conk $(\underset{\sim}{c})$

$$
\begin{aligned}
& A_{m \times n}=U_{m \times n} \sum_{n \times n} V_{n \times n}^{\top} \\
& A=U_{r} \sum_{r} V_{r}^{\top} \Rightarrow A=U_{r} \Sigma_{r} V^{\top} \rightarrow\binom{V_{r}=V}{\text { sind } r=n}
\end{aligned}
$$

$$
\begin{aligned}
& =V \sum_{\mu}^{2} V^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(A^{\top} A\right)^{-1}=V \Sigma_{r}^{-2} V^{\top} \\
& \Rightarrow\left(A^{\top} A\right)^{-1} A^{\top}=\left(V \Sigma_{r}^{-2} V^{\top}\right)\left(V \Sigma_{r} U_{r}^{\top}\right)=V \Sigma_{r}^{-1} U_{r}^{\top} \\
& \Rightarrow \overrightarrow{x_{L S}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}=A^{+} \vec{b}=A^{+}
\end{aligned}
$$

One has a similar story for pseudoinverse and minimum-norm (or surimum-energy) setting:

$$
m<n
$$

$$
\overrightarrow{x_{\operatorname{ma}}}=A^{\top}\left(A A^{\top}\right) \vec{y}
$$

Exercise: If $r=m$ (full row sank), then verey that $A^{+}=A^{\top}\left(A A^{\top}\right)^{-1}$

Summary: If $A \vec{x}=\vec{y}$, where we have $m<n$ or $m>a \quad$ (or $m=n$) $\vec{x}=A^{+} \vec{y}$ always works! (POWER OF SUD!)

