EECS 16 B : Module 3/Lecture 3 Announcements: · <u>D:25 EC</u> point for each lecture you attend for rest of the term. · lmks. eecs/6b.org/lecture-ec

Last time:

 $-SVD: A = U \geq V'$ - "Full" SVD construction justification & algorithm · "Compact"SVD $A = U_{n} Z_{n} V_{n}$

Today: Recap of SVD algorithm
Outer-product SVD : examples
Greemetry & SVD
Applications of SVD : · Pseudo-inverse · PCA (Principal Component Analysis) (time - permitting)

$$SVD procedure for A = USVT$$
() Compute $S = A^{T}A$
Compute e-vector ηS so V (sothornond)
 \rightarrow Use this to populate the V matrix for the
 SVD .
 $\rightarrow \overline{V_{1}^{2}}, \overline{V_{2}^{2}}... \overline{V}$ correspond to positive e-vals
 $(sank) = \overline{A_{12}^{2}}, \overline{A_{22}^{2}}... \overline{A_{22}^{2}} = A_{242} = ... = \overline{A_{n}} = 0$
(8) Form $\overline{U_{i}^{2}} = \frac{A \overline{V_{i}^{2}}}{\sqrt{A_{i}}}$ for $A_{i} \neq 0$
 $\overline{U_{i}} = \overline{A_{2i}}$ for $A_{i} \neq 0$
 $\overline{U_{i}} = \overline{A_{2i}}$ $\overline{U_{i}} = \frac{\overline{U_{i}^{2}}}{\sqrt{A_{i}}}$ $\overline{U_{i}} = \frac{\overline{U_{i}^{2}}}{\sqrt{A_{i}}}$ where
 $\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \int_{0}^{\overline{U_{i}}} \int_{0}^{\overline$

 $A = U \geq V^{T} (SVD)$

SUMMARY OF SVD

Finding SVD for AERMXn (with rank=r) from evalues/ evector of:

ATAER

Evalues of ATA are real and nonnegative. r of them are strictly positive; the remaining n-r are zoro, Step1: Find orthogonal matrix V diagonalizing $A^{\mathsf{T}}A$: $V^{T}A^{T}AV = \begin{bmatrix} \lambda_{i} \\ \lambda_{r} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} n-r \\ 0 \end{bmatrix}$ 212,223 ... 22>0 Step 2: For each i=1,..r

pick ith column V; of V (which

is evector for ATA for evalue

mA

 $\overline{\sigma_i} = \overline{\mathcal{N}_i}, \quad \overline{\mathcal{U}_i} = \frac{1}{\sigma_i} A \overline{\mathcal{V}_i}.$

Zi). Let

AATERMXM E-values of (AAT) are: real, nornegature ovalues, r of which are strictly positive, renalling m-r are zero. Step1: Find orthogonal matrix UERMXM diagonalizing AA^T: $U^{T}AA^{T}U = \begin{bmatrix} 2 \\ & 2 \\ & 2 \\ & & \\ &$ 21222 . 22>0 Step 2! For each i=1...r pick ith column ili of Ulunich is events of AAT for evalue 2:) Let_ $\sigma_i = (\lambda_i), \quad \vec{V}_i = \perp \Lambda^{-} \vec{u}_i.$

Which procedure to use ? Choose ATA or AAT based on which one leaks simpler for finding engluerlevectors, If m<n, AAT (mxm) is smaller than AA (nxn) and may be preforask. AATIMA ATA n

R) Is the SVD of a matrix unique?
A) No!

EX.

 $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $A A^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ U = I works for step L $\mathcal{Z}_{1} = \mathcal{Z}_{2} = 1$ $\mathcal{U}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathcal{U}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathcal{T}_{1} = \mathbf{52} = 1$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{52} = \mathbf{1}$ $\mathcal{T}_{2} = \mathbf{1}$ $\mathcal{T}_{1} = \mathbf{1}$ $\frac{1}{90^{\circ}}$ $\frac{1}{0}$ $\frac{1}{0}$ ū, -[], ūz=[1] above are a special case:θ=0 $\vec{V}_1 = A^T \vec{U}_1 = \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix} \quad \vec{V}_2 = A^T \vec{U}_2 = \begin{bmatrix} -\sin \theta \\ -\cos \theta \end{bmatrix} \quad Conclusion:$ Repeated evalues of ATA or AAT (21=22=1 m this example) are another source of nonuniqueness in SVD.

REVIEW OF MATRIX MULTIPLICATION
Two ways to interpret matrix numbiplication:
ex.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
First method:

$$A \cdot B = \begin{bmatrix} < Row 1, (ol \ 1) \\ < Row 2, (ol \ 2) \\ < Row 2, (ol \ 2) \end{bmatrix}$$

$$= \begin{bmatrix} a & e + bg \\ c & e + dg \end{bmatrix}; A = \begin{bmatrix} a & e + bg \\ c & e + dg \end{bmatrix}$$

$$\therefore Inner Products' used to do matrix multiplication$$

$$\cdot In our ex., A scalars corr. to A inner-products of Riws of A with Columns of B.$$

· Can express AB as the sum of Rank-1 components · Each Rank-1 computation is a matrix!

$$C = \begin{bmatrix} u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ \vdots & u_{1} & v_{1} & v_{1} & u_{1} & u_{1} \\ \vdots & \vdots & u_{1} & v_{1} & u_{1} & u_{1} & u_{1} \\ \hline \\ e^{2} = 2 & u_{1} & u_{1} & v_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\ e^{2} = 2 & u_{1} \\ e^{2} = 2 & u_{1} & u_{1} & u_{2} & u_{2} & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\ e^{2} & u_{1} & u_{2} & u_{2} & u_{2} & u_{2} & u_{1} & u_{1} & u_{2} & u_{1} \\ e^{2} & u_{1} & u_{2} & u_{2} & u_{2} & u_{2} & u_{1} & u_{1} & u_{2} & u_{2} & u_{1} & u_{1} \\ e^{2} & u_{1} & u_{2} & u_{2} & u_{2} & u_{2} & u_{1} & u_{1} & u_{1} & u_{2} & u_{2} & u_{1} & u_{1} & u_{1} & u_{1} & u_{2} & u_{1} & u_$$

Geometric interpretation of the SVD: Note : 1) Multiplying a vector X by an orthogonal matrix Q does not change its length: 110x11=11x11 $\left|\left|Q_{\vec{x}}\right|\right|^{2} = \langle Q_{\vec{x}}, Q_{\vec{x}}\rangle = \vec{x} Q_{\vec{y}} Q_{\vec{x}} = |\vec{x}|^{2}$ Prof: 2) Multiplying a vector by Zr= [", or stretches the first entry by SI, second criting by Sz, and so on. Combining the observations above we can interpret multiplication of a vector \$ by A= UZVT as the Composition of three operations : i) VIX, which reorients X without changing its length; ii) Z(VX), which stretches the vector VX along each axis with corresponding singular value; iii) U(ZVX), which again reorients the resulting vector. (ii) (iii) (i) AV VE V2 **6**2 6, Illustration of | $ZV^{T}\vec{v}_{1} = \begin{bmatrix} \vec{\sigma}_{1} \\ \vec{\sigma}_{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \vec{\sigma}_{1} \\ 0 \end{bmatrix}$ $\mathbf{V}^{\mathsf{T}} \vec{\mathbf{V}}_{1} = \begin{bmatrix} \vec{\mathbf{V}}_{1}^{\mathsf{T}} \\ \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{1} = \begin{bmatrix} \vec{\mathbf{V}}_{1}^{\mathsf{T}} \vec{\mathbf{V}}_{1} \\ \vec{\mathbf{V}}_{2}^{\mathsf{T}} \vec{\mathbf{V}}_{1} \end{bmatrix} \begin{bmatrix} \vec{\mathbf{I}} \\ \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{1} = \begin{bmatrix} \vec{\mathbf{I}} \\ \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} = \begin{bmatrix} \vec{\mathbf{I}} \\ \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2} \end{bmatrix} \vec{\mathbf{V}}_{2} \vec{\mathbf{V}}_{2}$ UZVIVI multiplication AZ=UEVIZ when X is Vi, L = AVi

the (Moore-Penvose) pseudoinverse & A is:

$$full
A_{nxm}^{+} = \bigvee_{nxn} \begin{bmatrix} \Xi_{n}^{-1} & O_{nx}(n-n) \\ O_{nxx} & O_{nx}(n-n) \\ T & O_{nxx} & O_{nx}(n-n) \\ T & O_{nxm} & O_{nxm} \\ T & O_{nxm} & O$$

Find
$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}_{2}$$

what is A^{+} (pseudo-inverse): $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A = \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}_{2}$
 $A =$

Remark: If Q= [7,..., Tr] has osthonormal columns, then $Q^T Q = \begin{bmatrix} \overline{q}, T \\ \overline{q}, \overline{z} \end{bmatrix} \begin{bmatrix} \overline{q}, \cdots & \overline{p} \overline{z} \end{bmatrix}$ $\begin{pmatrix} \mathbf{x}_{\mathsf{M}} \\ \mathbf{x}_{\mathsf{K}} \\ \mathbf{x}_{\mathsf{M}} \end{pmatrix} = \begin{bmatrix} \mathbf{y}_{\mathsf{T}} \\ \mathbf{y}_{\mathsf{$ whether or not Q is square, but QQ= I only when Q is square. $E_{X:} \quad Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad Q^{T}Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad Q^{T}Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq I$ 3) What is the interpretation of QQT when G is not equare? $Q Q^{\mathsf{T}} \overline{z}^{\mathsf{T}} = \begin{bmatrix} \overline{q}_{1} & \overline{q}_{2} \\ \overline{q}_{1} & \overline{q}_{2} \end{bmatrix} \begin{bmatrix} \overline{q}_{1}^{\mathsf{T}} \\ \overline{q}_{2} \\ \overline{q}_{2} \end{bmatrix} \overline{z}^{\mathsf{T}} = \begin{bmatrix} \overline{q}_{1}^{\mathsf{T}} & \overline{q}_{2} \\ \overline{q}_{2} \\ \overline{q}_{2} \\ \overline{q}_{2} \\ \overline{z} \end{bmatrix}$ $= (\overline{q}, \overline{x})\overline{q}, + \dots + (\overline{q}, \overline{x})\overline{q}.$ $(\vec{q}, \vec{r}, \vec{x}) \vec{q}_{3} + (\vec{q}, \vec{z}) \vec{q}_{2} = Poojection \ \vec{r} \vec{z} \quad \text{with} \\ column space Of R by \\ orthonormality \ \vec{r}, \vec{q}_{2}^{2} \cdots$ QQTZ projects z' onto Col. (Q)

• $AA^+ = U_n \mathcal{Z}_n V_n^T V_n \mathcal{Z}_n^{-\prime} U_n^T = U_n U_n^T$ • $A^+A = V_n \mathcal{Z}_n U_n^T U_n \mathcal{Z}_n V_n^T = V_n Y_n^T$ From AA^+ is a projection onto $Col(U_r) = Col(A)$ From AA^+ " $Col(V_r) = Col(A)$

Pseudoinverse & Least Squares: Least Squares w/SVD: Want to minimize $\|A\overline{z} - \overline{g}\|$ when m > n =· If (ATA) is invertible, then $\overline{x_{2s}} = (\overline{A} \overline{A})^T \overline{A}^T \overline{y} +)$

Recall the minimizen
$$\overline{z}_{LS}$$
 is such that:
 $A\overline{z}_{LS}$ is a projection $d\overline{y}$ anto $G.[A]$
 $=AA^{\dagger}\overline{y}$ from \bullet above
 $A\overline{z}_{LS} = AA\overline{y} \implies \overline{z}_{LS} = \overline{A}^{\dagger}\overline{y}$
 $\overline{z}_{LS} = \overline{A}^$

 $\Rightarrow (A^{T}A)^{-1} = \sqrt{Z_{n}^{-2}} \sqrt{T}$ $\Rightarrow (A^{T}A)^{-1}A^{T} = (\sqrt{Z_{n}^{-2}} \sqrt{T})(\sqrt{Z_{n}} U_{n}^{T}) = \sqrt{Z_{n}^{-1}} U_{n}^{T}$ $\Rightarrow \widetilde{Z_{LS}} = (A^{T}A)^{-1} A^{T} \overline{b}^{2} = A^{+} \overline{b}^{2}$

One has a similar story for pseudomnerse and morinum-norm (or minimum-energy) setting: m < n n n m = 1 mA = gExercise: If n=m (full row conk), then verify that $\tilde{A}^{+} = A^{T} (AA^{T})^{-1}$

Summary: If AZ = y, where we have $m < n \quad or \quad m > n \quad (or \quad m = n)$ TC= At y always works) (POWER OF SVD))