Announcements:

- 0.25 EC point for each lecture you attend for rest of the term. links.eecs/6b.org/lecture-ec
- Lab Design Contest: See Ed post (ECopportumities))

Last time:

$$
\begin{aligned}
& \text { "foll" } A=U \sum V^{\top}
\end{aligned}
$$

- Psendoinwerse: $A \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}
& { }^{-}{ }_{(m \times n)}^{A}=V_{r} \sum_{(n \times r)} V_{r}^{\top} \Rightarrow A_{(n \times m)}^{+}=V_{r} \sum_{\left.C_{r} \times r\right)}^{-1} U_{r}^{\top} \\
& \text { - } A=\sum_{i=1}^{n_{i}} \sigma_{i} \overrightarrow{u_{i}} \overrightarrow{v_{i}^{\top}} \Rightarrow A^{+}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} \overrightarrow{v_{i}} \cdot \overrightarrow{u_{i}^{T}} \\
& r \leq \min (m, n) \\
& \text { - } A x=y \Rightarrow x=A^{+} y \text {, hale for }\left\{\begin{array}{l}
m<n \\
m=n \\
m=n
\end{array}\right. \\
& \text { and any rakes }
\end{aligned}
$$

Last lecture: $A \vec{x}=\vec{y}, A \in \mathbb{R}^{m \times n}$
$A=V_{r} \sum_{r} V_{r}^{\top}$
$A^{+}=V_{r} \Sigma_{2}^{-1} U_{2}^{\top}$
$\vec{x}=A^{+} \vec{y}$, where A^{+}was defined using SVD of A, i :

- unique solution of $A \vec{x}=\vec{y}$ when A is square and invertible ($M=n=r$) because $A^{+}=A^{-1}$ in that case
- LS solution when A is tall $(m>n)$. If full column rank also $(n=r)$, then

$$
A^{t}=\left(A^{\top} A\right)^{-1} A^{\top}
$$

which recovers LS solution studied before.

- Min. norm solution who A is wide $(n>m)$ and infinitely many solutions exist. If full row rank $(M=r)$,

$$
A^{t}=A^{\top}\left(A A^{\top}\right)^{-1} \text {. }
$$

Thus,

$$
\vec{x}_{M N}=A^{\top}\left(A A^{\top}\right)^{-1} \vec{y}
$$

\square

$$
\begin{aligned}
& A=U_{r} \Sigma_{n} \nu_{r}^{\top} \Rightarrow A=u_{r} \Sigma_{n} V^{\top} \rightarrow\binom{V_{\Sigma}=V}{\text { anna } M=n} \\
& A^{\top}=V \Sigma_{r} U_{r}^{\top} \Rightarrow A^{\top} A=V \varepsilon_{r} U_{2}^{\top} U_{r} \Sigma_{2} V^{\top} \\
& =V \sum_{2}^{2} V^{2} I^{r} \\
& \Rightarrow\left(A^{\top} A\right)^{-1}=V \Sigma_{R}^{-2} V^{\top} \\
& \Rightarrow\left(A^{\top} A\right)^{-1} A^{\top}=\left(V \varepsilon_{2}^{-2} V^{\top}\right)\left(V \Sigma_{n} u_{n}^{\top}\right)=V \Sigma_{2}^{-1} U_{2}^{\top} \\
& =A^{+} \\
& \Rightarrow \overrightarrow{x_{L S}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}=A^{+\top} \vec{b}
\end{aligned}
$$

REMINDER!
If column of Q are orthonormal,

- $Q^{\top} Q=I$
- $Q Q^{\top}$ is a rajectos onto $\operatorname{Col}(Q)$

TodAY:

- PCA (Principal Componat Analysis)

Why do we care about the SVD?
Suppose we hare:

If the underlying structure of the data matrix A is low-dimensonal, then the SVD can help you "discover" this stricture automatically.
\rightarrow also called unsupervised learmne!
This is called
PRINCIPAL COMPONENT ANALYSTS (PGA).
Dimensionality Reduction!
\rightarrow Fewer dimensions on data \equiv less to compute
$\rightarrow \quad ク I \quad$ less to store
\rightarrow Redundancy removed "systematically"
\rightarrow Easier to visualize using 2D/3D plots
\rightarrow Better interpretability of data
\rightarrow Helps automatically of discover" the most significant features $\{$ skip the rest.

SVD/P(A has applications in many domaine
Healthcare: - predicting patient's health $\{$ susceptability to diseases based on health risk factors.

Biology : Predicting which gene mutations are likely to cause cancer

Retail: - predicting which user url buy which product based on historical data

- data reduction techniave
- date-driven generalzation of the "Founer tromsform" (FFT)
SVD tailored to specific problem
- used unversally by big-tech rompanis?
- Google : PageRank
- Face Book: Face Recoginition
- Netflix: Recommenda systems
- Amazon $>$ (Netflix pire)
- "\$\$\$
- simple $\{$ interpretable
-scalable

Law-ronk Approximation
Given a high rank matrix $A \in \mathbb{R}^{m \times n}$ with

$$
r \approx \min \{m, n\},
$$

find an approximation with rank $l \ll \min \{m, n\}$.

Suppose $m=n=r=10,000$

$$
l=10
$$

$$
A \approx \sum_{i=1}^{10} \sigma_{i} \overrightarrow{u_{i}} \vec{v}_{i}^{\top}
$$

- A has 10^{8} entries
- \vec{u}_{i}, \vec{v}_{i} of dimension 10,000 each, so 20,000 total per outer-product SVD; 10 terms \Rightarrow 200,000 verse $100,000,000$

$$
500 \times \text { savings! }
$$

Figure 5: The author's friend's cat Snyder.

It can be represented as three matrices $A_{R}, A_{G}, A_{B} \in \mathbb{R}^{4032 \times 3024}$ corresponding to R, G, and B of the image. We perform a rank- ℓ approximation $A_{R}=U_{R ; \ell} \Sigma_{R ; \ell} V_{R ; \ell}^{\top} A_{G}=U_{G ; \ell} \Sigma_{G ; \ell} V_{G ; \ell}^{\top}, A_{G}=U_{G ; \ell} \Sigma_{G ; \ell} V_{G ; \ell}^{\top}$ and then compose an image out of them, for different values of ℓ. The results are shown below.

By rank 100 approximation, the image is almost perfect. Now, the original image had $3 \times 4032 \times 3024=$ 36578304 entries; at rank 100, we have $3 \times 100 \times(4032+3024+1)=2117100$ entries, so we need to store around 5% of the original image. Not bad!

See Appendix D for some code showing how these images were created.

6.2 PCA

Sadly, no cats for this example.
Suppose we, as course staff, have m students in our class, and n assignments. Let $A \in \mathbb{R}^{m \times n}$ be a matrix, such that the $i^{\text {th }}$ student's grade in the $j^{\text {th }}$ assignment is $A_{i j}$.

- If we consider the assignments to be the data points, then A is a data matrix with column data.

singular value cumulative sum

$$
A_{e}=\sum_{i=1}^{l} \sigma_{i} \overrightarrow{u_{i}} \overrightarrow{v_{i}^{\prime}}
$$

- Eckart-Young Theorem (Note 15) states that the SVD truncation above is more then a heuristic: (AC) gives the least possible deviation from A that is possible with a ronk-l matrix. More precisely,
A_{l} above solves: $\quad \min _{B \in \mathbb{R}^{n \times n}}\|A-B\|_{F} \rightarrow$ Frobenive such that $\operatorname{rank}(B)=l$.

$$
\|x\|_{=\|}^{=\left\|\left(P_{P_{1 \times m} \cdot x_{m}}\right)\right\|_{F}=\left(x_{11}^{2}+x_{12}^{2}+\cdots+x_{m n}^{2}\right)}
$$

- Suppose we wont the best rank-1 approximation to $A \in \mathbb{R}^{m \times n}$, then oven all rank-1 matrices $B \in \mathbb{R}^{m \times n}$, the winner is the rank-1 SYD decomposition $\left(\sigma, \overrightarrow{u_{1}}, \overrightarrow{v_{1}}\right)$, where σ_{1} is the first (larger t) singular value of A and \vec{u}_{1}, \vec{v}_{1} are the first singular vectors of A.
"Best" is in the sense of minimuten Frobenus norm of error. $\|A-B\|_{F}^{=}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i j}-B_{i j}\right|^{2}$
- Bent Rank-2 apporx. to A is $\sum_{i=1}^{2} \sigma_{i} \vec{u}_{i} \overrightarrow{v_{i}}$ ordered
- Bent Rankil approx. to A is $\sum_{i=1}^{l} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{2}$

Principal component Analysis or pCa
"Prineipal Components", 1.e lower-dimensional structure in simple 2D-data:

Data lies mostly on a 1-D spare even though the "ambient dimension' is $2-D$

Suppose we have $2-D$ points $\left(x_{i}, y_{i}\right)$ as follow: $\{(1,2),(2,4),(3,6),(4,8),(5,10)\}$

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 6 & 8 & 10
\end{array}\right]
$$

(This is the same example matrix we have, seen before in our study of the SVD!)

$$
\begin{aligned}
& \text { Ex: } \quad A=\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 8 & 10
\end{array}\right]_{2 \times 4}
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
\overrightarrow{u_{1}} & \sigma_{1} & \overrightarrow{v_{1}^{\top}} \\
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{230}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{46}} \sqrt{\frac{2}{23}} & \sqrt[2]{\frac{2}{23}} & \frac{5}{\sqrt{46}}
\end{array}\right]
$$

- $\overrightarrow{u_{1}}$ is a "basis" for the Col.space (A)
- $(x, y) \in \operatorname{Col}(A)$ if $y=2 x$

Generalizing PCA concept
Mare recommendation problem (Netflix $\left.\begin{array}{c}\text { app.) }\end{array}\right)$

Q-matrix
Qijj: Rating of
user if for video i.

100 videos $/ 1000$ users: unsent who
(movies) rate (score) the monies.

- Goal: learn the "low-dimenarinal" structure underlying this "big" chunk of data
(In practice, there are millions of users ξ thousands of movies)

Goal: Understand the different"typer" of movies
\rightarrow use this to make recommendations to user.
Say every movie is represented by 4 attributes:

$$
\begin{aligned}
& \text { SCORE }
\end{aligned}
$$

User j: "sensitivity" to components; i.e. how much user j "likes" or "dislikes" the movie attributes:

$$
\begin{aligned}
j & :\left[s_{a j} s_{b j} s_{c j} s d_{j}\right] \\
q_{i j} & =s_{a j} \cdot a_{i}+\left(s_{b j} b_{i}+s_{c j} \cdot c_{i}+s_{d j} \cdot d_{i}\right.
\end{aligned}
$$

egg. $q_{i j}=80(0.2)+0(0.1)+77(0)+20(0.7)=30$ $\vec{a}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{100}\end{array}\right] \quad \begin{gathered}\text { action scores of all videos } \\ \in R^{100} \\ \\ \\ \\ \text { Similarly, for } \vec{b}, \vec{Z}, \vec{d} .\end{gathered}$

$$
\overrightarrow{S_{a}}=\left[\begin{array}{c}
S_{a_{1}} \\
S_{a_{2}} \\
\vdots \\
S_{a_{1000}}
\end{array}\right]
$$

"action"
sensitivity vector for users $\in \mathbb{R}^{1000}$ Similarly, for $\overrightarrow{S_{b}}, \overrightarrow{S_{c}}, \overrightarrow{S_{d}}$

Consider $\quad \vec{a} \cdot \vec{s}_{a}^{\top}$
$(100 \times 1)\left(\begin{array}{l}1 \times 1000) \\ \text { "outer product" }\end{array}\right.$

$$
\begin{aligned}
& =\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{100}
\end{array}\right]\left[\begin{array}{llll}
s a_{1} & s a_{2} & \cdots & s a_{1000}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{1} s a_{1} & a_{1} s a_{2} & \cdots \cdots & a_{1} s a_{1000} \\
a_{2} s a_{1} & & \vdots \\
\vdots & & & \\
a_{100} s a_{1} & \cdots & \cdots & a_{100} s a_{1000}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& Q=\vec{a} \cdot \overrightarrow{s_{a}^{T}}+\vec{b} \cdot \overrightarrow{s_{b}^{T}}+\vec{c} \cdot \vec{s}_{c}^{\top}+\vec{d} \cdot \overrightarrow{s_{d}^{T}} \\
& Q=\vec{Q} V^{\top}=\sum_{i=1}^{r} \sigma_{i} \overrightarrow{u_{i}}{\overrightarrow{v_{i}}}^{\top}
\end{aligned}
$$

$r:$ rank of Q

The k principal components of matrix Q.

- along the columns: $\vec{u}_{1}, \vec{u}_{2} \cdots, \vec{u}_{k}$
- along the rows: $\vec{v}_{1}, \vec{v}_{2}, \ldots \overrightarrow{r_{k}}$

- Data nsorganzed by column:
- ie., each data point is a 100-dim. vector containing User j's ratings for the 100 movies $\left\{q_{1 i}, q_{2}, \ldots q_{100, j}\right\}$

Goal: Find the first principal component; that is, that vector (direction) that is "most informative" about the data.

