
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2023
Note 3: Inductors and RLC Circuits

1 Inductors

1.1 Introduction to Inductors

Here, we introduce a new passive component, the inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

Definition 1 (Inductor)

An inductor is denoted as in Figure 1.

IL(t)

L

+

−

VL(t)

Figure 1: Example Inductor Circuit

The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
(1)

where L is the inductance of the inductor. The SI unit of inductance is the Henry (H).
The following are important facts about inductors:

1. The current through an inductor cannot change instantaneously.

2. Immediately after a current is passed through the inductor, the inductor acts as an open circuit,
but as t → ∞, the inductor acts like a short.

Notice that the voltage-current relationship written in eq. (1) is similar to that of a capacitor, but with
voltage and current swapped. The short term and long term behavior of inductors and capacitors are also
opposites of each other.

Theorem 2 (Series Equivalence)

Consider the two inductors in series configuration in Figure 2, and suppose we wish to find the series
equivalent as in Figure 3.
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Itest(t)

L1

+

−

V1(t)

L2

+

−

V2(t)

Itest

Figure 2: Series Inductor Circuit

Itest(t)

Leq

+

−

Veq(t)

Itest

Figure 3: Equivalent Series Inductor Circuit

The equivalent series inductance is Leq = L1 + L2.

Proof. We use the test current source, Itest(t), depicted in Figure 2 and Figure 3 to find the equivalent voltage
across both inductors, i.e., Veq(t). Using KVL, we have

V1(t) + V2(t) = Veq(t) (2)

L1
dIL(t)

dt
+ L2

dIL(t)
dt

= Veq(t) (3)

(L1 + L2)︸ ︷︷ ︸
Leq

dIL(t)
dt

= Veq(t) (4)

as desired.

Theorem 3 (Parallel Equivalence)

Consider the two inductors in parallel configuration in Figure 4, and suppose we wish to find the
parallel equivalent as in Figure 5.
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Ieq(t)

I1(t)

L1

+

−

V1(t)

I2(t)

L2

+

−

V2(t)−
+Vtest

Figure 4: Parallel Inductor Circuit

Ieq(t)

Leq

+

−

Vtest(t)−
+Vtest

Figure 5: Equivalent Parallel Inductor Circuit

The equivalent inductance is given by Leq =
(

1
L1

+ 1
L2

)−1
.

Proof. We can apply the test voltage Vtest as depicted in Figure 4 and Figure 5 to find the equivalent current
through both inductors, i.e., Ieq(t). By NVA, we have that

V1(t) = V2(t) = Vtest(t) (5)

L1
dI1

dt
= L2

dI2

dt
= Leq

dIeq

dt
(6)

and from KCL we have

Ieq(t) = I1(t) + I2(t) (7)

dIeq

dt
=

dI1

dt
+

dI2

dt
(8)

dIeq

dt
=

Leq

L1

dIeq

dt
+

Leq

L2

dIeq

dt
(9)

1
Leq

=
1
L1

+
1
L2

(10)

Leq =

(
1
L1

+
1
L2

)−1
(11)
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as desired.

Theorem 4 (Stored Energy)

The stored energy in an inductor can be written as

E =
1
2

Li2L (12)

where i is the current through the inductor.

Proof. The formula for power can be manipulated as follows:

PL = vLiL (13)

PL =

(
L

diL
dt

)
iL (14)

PL dt = LiL diL (15)

Integrating both sides to find stored energy, we have∫
PL dt =

∫
LiL diL (16)

E =
1
2

Li2L (17)

Definition 5 ((OPTIONAL) Mutual Inductance)

The mutual inductance between two inductors L1 and L2 is given by

M =
N2Φ21

i1
=

N1Φ12

i2
(18)

where N1 and N2 are the number of windings in the coils for inductors L1 and L2 respectively, and i1
and i2 are the current through the respective inductors. Φ12 is the flux passing through coil 1 from the
magnetic field induced by coil 2, and Φ21 is the flux passing through coil 2 from the magnetic field
induced by coil 1.

Theorem 6 (Induced Voltage from Mutual Inductance)

Consider the circuit below, with two inductors L1 and L2, with mutual inductance M.

i1
+

−

v1 L1

i2 +

−

v2L2

M

The dots in the circuit indicate the orientation of the inductors. For the given orientation, the following
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equations hold:

v1 = L1
di1
dt

+ M
di2
dt

(19)

v2 = M
di1
dt

+ L2
di2
dt

(20)

If the orientation of L2 is flipped, as shown in the circuit below

i1
+

−

v1 L1

i2 +

−

v2L2

M

then the following equations hold:

v1 = L1
di1
dt

− M
di2
dt

(21)

v2 = −M
di1
dt

+ L2
di2
dt

(22)

Proof. The proof is out of scope of this course, since it requires some knowledge of Faraday’s law. Here, we
will only prove the first part of the theorem since the second part follows by a symmetry argument, with a
negated value of EMF to account for the flipped orientation. First, we can find the induced EMF in L2 due
to mutual inductance only. We can apply Faraday’s law,

E2,mutual = −N2
dΦ21

dt
(23)

= −N2
d
dt

(
Mi1
N2

)
(24)

= −M
di1
dt

(25)

where in eq. (24) we apply Definition 5. Now, notice that there is also current flowing through the second
inductor, so we have an induced EMF from that. We can compute that, using Definition 1, as follows

E2,current = L2
di2
dt

(26)

Combining these two EMFs using superposition and taking care to note the orientation of L2, we obtain

v2 = −E2,mutual + E2,current = M
di1
dt

+ L2
di2
dt

(27)

We can apply the exact same argument symmetrically to L1 to obtain

v1 = L1
di1
dt

+ M
di2
dt

(28)
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1.2 OPTIONAL: Physics behind Inductors

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and this
leads to an electric field (E⃗), anytime current flows down a conductor, it creates a magnetic field (B⃗), and this
magnetic field can store energy. Inductors’ behavior can be described using Faraday’s Law of Induction.

The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other
geometries to create useful inductances. A solenoid is a good example, where we wind a wire around a
conductor like a copper rod:

A
IS L

N turns

ℓ L = N2µA
ℓ [H]

Figure 6: The Inductance of a Solenoid: a wire coiled around something.

Note that the inductance (L) depends on the geometry and a material property called magnetic perme-
ability (µ) of the solenoid core material. In the case of the solenoid in fig. 6, the inductance depends on
the number of turns (N), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful
in many applications such as wireless communications, chargers, DC-DC converters, key card locks, trans-
formers in the power grid, etc. But in many high speed applications, their presence might be undesirable
as they create delays in the time response of the circuit (analogous to capacitors).

2 Second Order Differential Equations

Definition 7 (Second Order, Linear Differential Equation)

A second order, linear differential equation can be put into the form

d2x(t)
dt2 + 2

ζ

τ

dx(t)
dt

+
1
τ2 x(t) = f (t) (29)

for some constants ζ, τ ∈ R (often referred to as the damping coefficient and time constant respectively)
and some function of time f (t) (this is sometimes called a forcing function). The solution to this differ-
ential equation can be separated into complementary and particular solutions of the form

x(t) = xp(t) + xc(t) (30)

where xc(t) represents the complementary solution and xp(t) represents the particular solution.

We typically solve separately for the particular and complementary solutions. The complementary so-
lution is the solution to

d2xc(t)
dt2 + 2

ζ

τ

dxc(t)
dt

+
1
τ2 xc(t) = 0 (31)
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Theorem 8 (Complementary Solution to Second Order Differential Equations)

Define s1 := − ζ
τ + 1

τ

√
ζ2 − 1 and s2 := − ζ

τ − 1
τ

√
ζ2 − 1. The complementary solution will take on

one of the following forms, depending on the value of ζ.

1. Overdamped case: (ζ > 1)
xc(t) = K1es1t + K2es2t (32)

2. Critically damped case: (ζ = 1)
xc(t) = K1es1t + K2tes1t (33)

Note that s1 = s2 in this case.

3. Underdamped case: (ζ < 1)
Note that s1 and s2 will be complex, so we can rewrite them as s1 = − ζ

τ + jωn and s2 = − ζ
τ − jωn

where ωn := 1
τ

√
1 − ζ2 is defined as the natural frequency. The solution is of the form

xc(t) = K1e−
ζ
τ t cos(ωnt) + K2e−

ζ
τ t sin(ωnt) (34)

In all of the cases above, K1 and K2 are arbitrary constants that are determined by initial conditions.
Note that you will need two initial conditions to completely solve a second order differential equation.

Concept Check: This note will not prove the solutions from first principles as that is out of scope, but
as an exercise, you are encouraged to verify that the solutions satisfy eq. (31).

In general, finding the particular solution is not easy, but we can consider the specific case for a DC
forcing function. In other words, we can consider the case where f (t) = C for some constant C ∈ R. To
solve for the particular solution in this case, we can replace circuit components by their DC steady-state
equivalents (so a capacitor becomes an open circuit and an inductor becomes a wire) and then solve for
xp(t) using circuit analysis.

2.1 Example: LC Tank

Consider the following circuit.

L

IL

C

+

−

Vout(t)

IC

Figure 7: An LC Tank.

We can model Vout(t) using differential equations. Suppose that Vout(0) = 0 and IL(0) = 1 A. From
KVL, we have

VC(t) = VL(t) (35)

Vout(t) = L
dIL(t)

dt
(36)
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Further, we have from KCL that IL(t) = −IC(t). Plugging this in above, we get

−L
d
dt

(IC(t)) = Vout(t) (37)

For a capacitor, we have IC(t) = C dVC(t)
dt = C dVout(t)

dt . Plugging this in above, we get

−L
d
dt

(
C

dVout(t)
dt

)
= Vout(t) (38)

−LC
d
dt

(
dVout(t)

dt

)
= Vout(t) (39)

−LC
d2Vout(t)

dt2 = Vout(t) (40)

−d2Vout(t)
dt2 =

1
LC

Vout(t) (41)

d2Vout(t)
dt2 +

1
LC

Vout(t) = 0 (42)

Pattern matching to eq. (29), we have τ2 = LC =⇒ τ = ±
√

LC, ζ
τ = 0 =⇒ ζ = 0, and f (t) = 0. Since τ is

defined as a time constant, we will only consider positive values of τ, so τ =
√

LC. Hence, we are dealing
with the underdamped case. Since f (t) = 0, we only need to solve for xc(t) (i.e., x(t) = xc(t)). Following

Theorem 8, we have ωn =
√

1
LC . This means that

Vout(t) = K1 cos

(√
1

LC
t

)
+ K2 sin

(√
1

LC
t

)
(43)

Now, we can apply the initial conditions to solve for K1 and K2. We are told that Vout(0) = 0. Plugging in
t = 0 to eq. (43), we have

Vout(0) = K1 cos

(
0 ·
√

1
LC

)
+ K2 sin

(
0 ·
√

1
LC

)
= K1 (44)

so we have K1 = Vout(0) = 0. Now, we can rewrite eq. (43) as

Vout(t) = K2 sin

(√
1

LC
t

)
(45)

We can incorporate the fact that IL(0) = 1 A. We know that IL(t) = −IC(t) = −C dVout(t)
dt . Plugging in

eq. (45), we have

IL(t) = −C
d
dt

(
K2 sin

(√
1

LC
t

))
= −K2

C√
LC

cos

(√
1

LC
t

)
= −K2

√
C
L

cos

(√
1

LC
t

)
(46)

So, plugging in t = 0 above, we get

IL(0) = −K2

√
C
L

cos

(
0 ·
√

1
LC

)
= −K2

√
C
L

(47)

Using the fact that IL(0) = 1, we can solve for K2 to obtain K2 = −
√

L
C . Thus, plugging in for K2 into

eq. (45), we have

Vout(t) = −
√

L
C

sin

(√
1

LC
t

)
(48)
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