EECS 16B Designing Information Systems and Devices I UC Berkeley Spring 2023

Note 6: Bode Plots

Overview

In this note, we introduce the concept of Bode Plots, which are piecewise-linear approximations to trans-
fer function plots. These will not only prove useful in plotting a filter’s frequency response by hand (as
opposed to with a computer or plotting software), but will also help us better understand the behavior of
cascaded filters. This note will likely feel like review from the Transfer Function Plotting Note, and much
of the later content is optional. Bode Plots are quite useful for performing filter design by hand quickly for
various applications.

This note will present 2 key ideas, which build on what you've learned about Transfer Functions.

¢ Linear Approximations: Linear approximations applied to a transfer function plot define a Bode Plot,
and this is where the key benefit comes in with respect to design.

® y—axis scaling: For the magnitude plot, we will define a transformation of the axes from the "standard
log scale" (powers of 10) into the decibel scale. This change is to make some of the graphical aspects
of Bode Plot compositions easier.

1 Bode Plots

First, we will handle the modification in the scale of the magnitude plot’s axis from a logarithmic scale
(10’1,100, 10%,102,...) to an adjusted linear, decibel scale (—20,0,20,40,...). That is, instead of plotting
|H(jw)| vs. w where the y-axis is on a logarithmic scale, we plot 201log;,(|H(jw)|) vs. w instead, and now
the y-axis is on a linear scale. This linear scale is referred to as the decibel scale because of the multiplication
by 20.!
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IThe constant 20 is used as an artifact of convention.
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1.1 Low-Pass Filter

As a reminder, our low-pass filter has the following form:

. 1
Hyp(jw) = T+ jw/w. @

1.1.1 Low-Pass Filter: Magnitude Bode Plot

In addition to plotting the magnitude of the frequency response (that is, the exact transfer function mag-
nitude), we would like to develop a piecewise-linear approximation as well. A lot of the mathematical
groundwork has been laid in Note 5, where we discuss the different regions of the plot (v < w¢, w = w,
w > w) and convey the connection between the logarithm properties and slopes of the lines. Here, we
will supplement this with a graphical approach.

There are 2 distinct regions of the magnitude plot to examine from the perspective of piecewise-linear
segments. At frequencies much below the cutoff w < w,, the magnitude plot is effectively a horizontal
line. So, we can draw that with a dashed segment. For frequencies much larger than cutoff w > w., we
have a line with a decreasing slope (of -1). We similarly draw this asymptote, dashed. At this point, we
have a plot as shown in fig. 1. Note the use of 2 equivalent y—axes; on the left is the log scale that we've
used in prior notes, and on the right is the decibel scale introduced in this note.
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Figure 1: Low-pass filter magnitude plot, with 2 asymptotes drawn (dashed).

Now, once we plot these both, there is a point of conflict in the middle, right around w. In this region,
we will join the two models at a point, and pick the corresponding model for a given region (horizontal for
w < we, sloped for w > wc.) This means our final Bode Plot for the magnitude of a low-pass filter is as
shown in fig. 2.

Why do we pick this approach? Well, let’s first outline the problem in a bit more detail. Around w,,
the sloped line claims that the magnitude at frequencies lower than w, should keep increasing, whereas the
horizontal line in that region claims the magnitude is straight. Similarly, the horizontal line claims that the
magnitude at frequencies higher than w, should stay constant, whereas the sloped line in that region claims
the magnitude is decreasing. How do we resolve this difference?
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Figure 2: Low-pass filter magnitude plot.

What we do here is default to unilaterally picking the model that is better for a given region. That’s why
we abruptly transition from one regime to the other; at w. — € for some small ¢, the straight line is better, so
we pick that curve. At w, + €, we're now closer to the sloped model, so we start to slope down. This is to
maintain simplicity while staying true (within bounded error) to the actual plot, which we know the shape
of.

Can we be more precise about this bound on the error? It is a factor of %, and this occurs right at the
cutoff frequency. In other words, using the Bode Plot approximation will be inaccurate by at most 30%, and
this level of inaccuracy arises at frequencies w that are "close" to the cutoff frequency w. It is a common rule
of thumb to say that Bode Plot is correct for frequencies at least a factor of 10 away from cutoff; for anything
within 0.1w, to 10w, it’s safest to evaluate the transfer function exactly when possible.) The farther away
we are from w, the better the approximation will be, as seen in the plot.

1.1.2 Low-Pass Filter: Phase Bode Plot

Now, let’s perform the same approximation process for the phase plot of a low-pass filter’s transfer function
(to arrive at the Bode Plot for the phase of a low-pass filter). In this case, there are 3 regions to examine.
At frequencies much below the cutoff w < w, the phase plot is effectively a horizontal line with value 0°.
So, we can draw that with a dashed segment. For frequencies much larger than cutoff w > w., we have a
horizontal line with value —90°. Finally, there is the middle transition region during which we curve from
0° at low frequencies down to —90° at high frequencies. For this region too, we will use a line.

However, there’s a point of subtlety here; how do we choose the slope of this line? The piecewise-linear
approximation in this linear region should probably go through —45° at w = wy, since this is exactly correct
based on the true transfer function plot. But, where will this line intersect the other two horizontal lines?
Should it be at 5w, and %¢? 15w, and $£? It isn’t immediately clear what’s best. For design simplicity, we
will choose to model the region between 10w, and g5 with this line. This is consistent with our reasoning
and prior approach; even back in the Filters note when we began analyzing transfer functions, our tables
of values used 0.1w, and 10w, so the concept is hopefully faimilar.

Why a factor of 10 exactly in the first place? There are several valid reasons, but the most important
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one is design simplicity. The log scale for the frequency axis is naturally divided into increments of 10. This

means that even if our cutoff frequency for some filter isn’t at a clean multiple of 10 (for example, suppose

we = 6 x 10° %), we can easily sketch? the phase plot to be horizontal until 6 x 10° %, sloping down to

connect 0° and —90° between 6 x 10° % and 6 x 107 %, and then again horizontal after 6 x 107 %. We
cannot do this easily with alternatives (like factors of 7 or 12.)
At this point, we have a plot as shown in fig. 3, with the 3 asymptotes drawn. The y—axis is already

3

linear in degrees®, so we don’t have a decibel scale or anything.
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Figure 3: Low-pass filter phase plot, with 3 asymptotes drawn (dashed).

Once we join the asymptotes in their corresponding regimes, as discussed above, we arrive at fig. 4 for

the Bode Plot of a low-pass filter’s phase.
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Figure 4: Low-pass filter phase plot.

ZKeep in mind, these are for hand-drawings when we do design!
3Such plots could easily be formulated in terms of radians too.
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1.2 High-Pass Filter

We can similarly analyze our generalized high-pass filter model:

jw/wc

Hyp (jw) = T+jw/we

2

All of the same reasoning as for the low-pass filter holds here but in "reverse,” so for succintness, we will
directly draw the Bode Plots for the high pass filter’s magnitude (fig. 5) and phase (fig. 6) assuming w, =
10°.

60 T T T T T T T T T T T T T R I -
- - - Linear Approximation
40| i |
= — |Hyp (jw)|
s 20| ]
3 9
=
T —20F 8
T
= —40| |
&0
2 60 ]
o
[q\]
_807 m
_100 L] L] Ll L] L] Ll L] Ll
10! 102 103 10 10° 10° 107 108 107
w
Figure 5: High-pass filter magnitude plot.
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Figure 6: High-pass filter phase plot.
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2 Plotting Linear Approximations of General Transfer Functions

2.1 Composing Transfer Functions
For two transfer functions H; (jw) and Hy(jw), if H(jw) = H; (jw) - Ha (jw),
log |H(jw)| = log |Hi(jw) - Ha(jw)| = log |[Hi (jw)| + log |Ha(jw)| ®)

£H(jw) = £(Hy(jw) - Hy(jw)) = £Hi (jw) + £Hy (jw) ©)

As a consequence, when plotting |H(jw)| on a decibel scale plot, we can simply plot |H; (jw)| and |Hp (jw)|
and add them (unlike with a log-log plot where we have to pointwise-multiply transfer functions of each
stage to arrive at an accurate overall transfer function). This holds too for the transfer functions” Bode plots.

3 Rational Transfer Functions

When we write the transfer function of an arbitrary circuit involving linear circuit elements, it can always

be rearranged to take the following form, called a "rational transfer function:"
H(jw) =K —— (5)

where the numerator N(x) is a polynomial and so is the denominator D(x).

It is possible to show that this rational transfer function form emerges directly from vector differential
equations. That is, the rational transfer function form, as we have shown in lecture 10, can be derived from
first principles by observing the forced response of a vector differential equation.

We like to factor the numerator and denominator so that they become easier to work with and plot:
N(jw)

NG 0 (1) (i) (1)
H9) =K Do) =K oy (1 +iw“;11) (“"w“?z) ()

The above is a consequence of the Fundamental Theorem of Algebra which asserts that all polynomials

(6)

with complex coefficients can be factored into monomials — i.e. all complex polynomials of degree d have
exactly d roots, if one counts repetitions. This is a theorem that you have probably seen asserted, but is
usually only properly proved in upper-division mathematics courses — for example, complex analysis:
Math 185.

The above factorization is interesting because it says that no matter what, we can think of a transfer
function as though it were a composition of elementary filters connected by unity-gain buffers. Mathemat-
ically, because polynomials might in principle have no constant terms, we need to deal with two more new
objects that don’t correspond to the simple low-pass and high-pass filters that we have seen so far.

To summarize the components, each transfer function is the product of constant gain K, one or more
"origin poles" ((jw) in the denominator) or "origin zeros" ((jw) in the numerator) — these are the two new
things — and one or more “poles” ((1 + ]ﬁ) in the denominator) or “zeros” ( (1 —+ L%) in the numerator).

"

Here, we define the constants w, as "zeros" and w) as "poles."" The zeros are the roots of N (jw) while

poles are the roots of D(jw). *

4Technically if s = jw, then the roots of N(s) and D(s) are —w; and —w,. However, when plotting Bode plots, we refer to w. and
wy as the zero and pole frequencies.
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Using our rules for composing Bode plots, we know how to decompose our so-called general rational
transfer function in terms of its magnitude and phase:

o™+ U] U
|H(jw)| = |K| - ——— | — | — 7)
ljew| ™ '\1+wa1 -~\1+pr,,1
149 14+ 9
= K] - feo| Yo~ = ®)
s
P pm
1 w " w
£H(jw) = £(K) + £ (jw)N=0 + Z <1+j>—4(jw)Np0—ZL< 1+j— )
i=1 Wi i— Wi
p (i & w il w
= £(K) + (Nzo — Nyo) (])+i21atan2<w2i,1>—iz%atan2 w—pi,1 . (10)

Now, we have simplified as much as we can, generally. We could now convert j into either e/Z or 45°,
depending on whether we're using radians or degrees for phase.

3.1 Poles, Zeros, and Constants
3.1.1 Simple Pole, Simple Zero

The notion of a pole and zero frequency is a generalization of the term cutoff frequency.’Let’s first look
back at a plot of our RC low-pass filter, which has the following form (except we’ve substituted the more

general w), for w):
1

Hp(jw) = m

(11

In what follows, pay special attention to the Linear Approximations! When drawing Bode plots, we claim that the
plot drops off with a slope of 1 after a pole wy,. Suppose our transfer function has a simple pole at w, = 10°.
Then magnitude plot has a familiar shape as in fig. 7 (resembling a low-pass filter’s transfer function!).
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Figure 7: Simple Pole, Magnitude Plot.

We can look at the phase plot in fig. 8 as well:

SHow is it more general? As an example, in all our previous plots and transfer functions, our magnitude has always dropped before
or after the cutoff frequency relative to the passband; for a zero, it will rise.
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Figure 8: Simple Pole, Phase Plot.

Now let’s take a look at a simple zero.
Hz(jw) = 1+jw/w: (12)

We see that this Magnitude Bode plot in fig. 9 rises with a slope of 1 after the zero at w,. Suppose w, = 10°

also.
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Figure 9: Simple Zero, Magnitude Plot.

The phase plot is in fig. 10.
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Figure 10: Simple Zero, Phase Plot.
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3.1.2 Pole/Zero at the Origin

To plot a pole at the origin (as in fig. 11), recall that H(jw) = Jiw has magnitude w and phase —90°.° If our
transfer function has a pole at the origin, it will start off with a slope of —1. The phase of a pole at the origin
is —90° at all frequencies.
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Figure 11: Origin Pole, Magnitude Plot.

We plot a zero at the origin in fig. 12, recall that H(jw) = jw has magnitude w and phase 90°. If our
transfer function has a zero at the origin, it will start off with a slope of 1. The phase of a zero at the origin
is 90° at all frequencies.
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Figure 12: Origin Zero, Magnitude Plot.

3.1.3 Constant Terms

Lastly, we show the plot of a constant K = 100 in fig. 13. As expected, the plot remains constant. This
implies that multiplication by K will shift up the entire bode plot up by K. Note that positive constants have
a constant phase of 0° at all frequencies, while negative constants have a constant phase of 180° = —180°
at all frequencies.

®For this subsection and the next, our linear approximations are actually exactly correct.
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Figure 13: Constant Gain Term, Magnitude Plot.
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