
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2023
Note 13: Upper Triangulation, Schur Decomposition

1 Overview and Motivation

In the previous notes – Note 7, Note 8, Note 9, and Note 10, along with others previously – we have relied
a lot on the structure of diagonalizable matrices, namely the ability to separate a vector problem into inde-
pendent scalar problems. Unfortunately, this does not cover all cases; not all matrices are diagonalizable. In
this note, we will find an equivalent characterization for matrices which are not diagonalizable, develop a
decomposition which preserves many key properties of diagonalization and which works for all matrices,
and discuss some critical implications of this decomposition.

Key Idea 1 (Upper Triangularization)

Any square matrix can be transformed via an orthonormal change of basis to an upper triangular
matrix. This decomposition allows us to write vector problems in terms of scalar problems that we
can solve or have already solved, similar to diagonalization.

2 Non-Diagonalizable Matrices

To discuss matrices which are not diagonalizable, we will first introduce the idea of eigenvalue multiplicity.

Definition 2 (Multiplicities of an Eigenvalue)

Let A ∈ Rn×n be a square matrix with characteristic polynomial pA(λ) and distinct eigenvalues
λ1, . . . , λd.

• The algebraic multiplicity ma
A of λi is the multiplicity of λi as a root of the characteristic polynomial

pA(λ). In other words, factoring the characteristic polynomial into linear factors:

pA(λ) =
d

∏
i=1

(λ − λi)
mi (1)

we have ma
A(λi) = mi.

• The geometric multiplicity mg
A(λi) of λi is the number of linearly independent eigenvectors of A

with eigenvalue λi. In other words, mg
A(λi) = dim(Null(A − λi I)).

And, we also have the following theorem which summarizes everything we need to know about multi-
plicities for now.

Theorem 3 (Results on Multiplicities)

Let A ∈ Rn×n with distinct eigenvalues λ1, . . . , λd.

(i) We have ∑d
i=1 ma

A(λi) = n.

(ii) We have ma
A(λi) ≥ mg

A(λi) for every i.
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(iii) The following are equivalent:

(a) A is diagonalizable;

(b) for all eigenvalues λ of A, we have ma
A(λ) = mg

A(λ);

(c) ∑d
i=1 mg

A(λi) = n.

Not all matrices have equal algebraic and geometric multiplicity for all eigenvalues; such matrices are
called defective. An example of a defective matrix is

A =

[
0 1
0 0

]
(2)

which has one eigenvalue λ1 = 0. This eigenvalue has algebraic multiplicity ma
A(0) = 2 since the char-

acteristic polynomial is pA(λ) = λ2 = (λ − 0)2. The eigenvalue also has corresponding one-dimensional

eigenspace Null(A − λ1 I) = Span

([
1
0

])
, so mg

A(0) = 1.

Defective matrices are exactly those matrices which cannot be diagonalized.

3 Upper Triangular Matrices

We now examine properties of upper triangular matrices which make upper triangularization a useful
substitute to diagonalization.

Definition 4 (Upper Triangular Matrix)

A square matrix T ∈ Cn×n is upper triangular if tij = 0 for i > j. That is, it has the form

T :=


t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 . (3)

Upper triangular matrices have a lot of useful properties, but the most important one is that we can read
off the eigenvalues from the diagonal of the matrix.

Theorem 5 (Eigenvalues of Upper Triangular Matrices)

If T ∈ Cn×n is an upper triangular matrix, i.e.,

T :=


t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 . (4)

then t11, t22, . . . , tnn are eigenvalues of T.
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Proof. We have

T − tii In =


t11 − tii t12 · · · t1n

0 t22 − tii · · · t2n
...

...
. . .

...
0 0 · · · tnn − tii

 . (5)

Since tii − tii = 0, the ith column pivot is 0. Thus T − tii In must have a null space, and so tii is an eigenvalue
of T.

In fact, it can be shown that a slightly stronger statement holds (though since we do not know, and will
not worry about, taking determinants of large matrices, the proof is out of scope; the most direct proof is by
the Laplace expansion method to compute the determinant, which, again, is out of scope).

Theorem 6 (Characteristic Polynomials of Upper Triangular Matrices)

If T ∈ Cn×n is an upper triangular matrix, i.e.,

T :=


t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 . (6)

then the characteristic polynomial of T is

pT(λ) =
n

∏
i=1

(λ − tii). (7)

This says that the only eigenvalues of T are the tii (not guaranteed by the earlier theorem, in the case of
duplicates), and the number of times each eigenvalue is on the diagonal is equal to its algebraic multiplicity.

Suppose we have some upper triangular matrix T, and some vector y⃗, and we want to solve Tx⃗ = y⃗.
(Since a lot of the problems we deal with in this course are analogous to this problem, this isn’t as contrived
as it might seem). Written out, we have

t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn




x1

x2
...

xn

 =


y1

y2
...

yn

 . (8)

More explicitly, 
y1

y2
...

yn

 =


t11x1 + t12x2 + · · ·+ t1nxn

t22x2 + · · ·+ t2nxn
...

tnnxn

 . (9)

More formally, the kth row is

yk =
n

∑
j=k

tkjxj. (10)
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If none of the tii are zero, then we can solve the bottom row first to get xn = yn
tnn

. Then we can plug that into
the penultimate row, getting

xn−1 =
yn−1 − tn−1,nxn

tn−1,n−1
=

yn−1 − yn
tn−1,n

tnn

tn−1,n−1
. (11)

And plug this into the third-to-last row, and so on. A general formula is

xk =
1

tkk

(
yk −

n

∑
j=k+1

tkjxj

)
(12)

which we can recursively apply until we solve for all the xi. This method of solving is called back-substitution.

Key Idea 7 (Solving an Upper Triangular System)

In an upper triangular system, we can reduce a matrix equation into a bunch of scalar equations,
which we can then solve in a specific order to get a solution for all the scalar equations, and thus the
original matrix equation.

4 Schur Decomposition

Now we will learn how to get any matrix into upper triangular form via a change of basis; this matrix
decomposition is called the Schur decomposition.

Theorem 8 (Existence of Schur Decomposition)

Let A ∈ Cn×n be a square matrix. Then there is a change-of-basis matrix U ∈ Cn×n and an upper-
triangular matrix T ∈ Cn×n such that A = UTU−1. Moreover, the eigenvalues of A are on the diagonal
of T according to their multiplicities.

Unfortunately, we are not able to prove this result in full generality until we learn about complex inner
products in Note 2j. Once there, we will be able to prove Theorem 8 (and in fact show that we can always
find a U which is orthonormal with respect to the complex inner product) using a very similar method as
will be used to prove the following theorem, which is is tractable from our point of view.

Theorem 9 (Existence of Real Schur Decomposition)

Let A ∈ Rn×n be a square matrix with real eigenvalues. Then there is an orthonormal change-of-basis
matrix U ∈ Rn×n and an upper-triangular matrix T ∈ Rn×n such that A = UTU⊤. Moreover, the
eigenvalues of A are on the diagonal of T according to their multiplicities.

The proof of Theorem 9 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

The method of proof is constructive, so it also doubles as a proof of correctness for the following algo-

rithm.

© UCB EECS 16B, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://www.eecs16b.org/notes/sp23/note2j.pdf


EECS 16B Note 13: Upper Triangulation, Schur Decomposition 2023-03-21 10:57:58-07:00

Algorithm 10 Real Schur Decomposition

Input: A square matrix A ∈ Rn×n with real eigenvalues.

Output: An orthonormal matrix U ∈ Rn×n and an upper-triangular matrix T ∈ Rn×n such that A =

UTU⊤.

1: function REALSCHURDECOMPOSITION(A)

2: if A is 1 × 1 then

3: return
[
1
]

, A

4: end if

5: (⃗q1, λ1) := FINDEIGENVECTOREIGENVALUE(A)

6: Q := EXTENDBASIS({⃗q1}, Rn) ▷ Extend {⃗q1} to a basis of Rn using Gram-Schmidt; see Note 11

7: Unpack Q :=
[⃗
q1 Q̃

]
8: Compute and unpack Q⊤AQ =

 λ1 ⃗̃a
⊤
12

0⃗n−1 Ã22


9: (P, T̃) := REALSCHURDECOMPOSITION(Ã22)

10: U :=
[⃗
q1 Q̃P

]
11: T :=

 λ1 ⃗̃a
⊤
12P

0⃗n−1 T̃


12: return (U, T)

13: end function

Concept Check: Once you read Note 2j, prove Theorem 8 and come up with a complex analogue to
Algorithm 10.

We have now just developed a method for, and validated our use of, upper triangularization, which we
used in Note 10 for example.

5 Spectral Theorem

Now that we have shown the existence of the Schur decomposition, we can now use it to prove one of the
most important and fundamental theorems in linear algebra. This is the spectral theorem (for real symmet-
ric matrices). Spectral theorems (for different classes of symmetric linear maps) are useful in mathematics
and engineering, as they reveal useful decompositions of symmetric linear maps.

Theorem 11 (Spectral Theorem for Real Symmetric Matrices)

Let A ∈ Rn×n be real and symmetric. Then:

(i) The eigenvalues of A are real.

(ii) A is diagonalizable.

(iii) There is an orthonormal basis of Rn consisting of eigenvectors of A.

In short, A may be orthonormally diagonalized: A = VΛV⊤ where V ∈ Rn×n is an orthonormal matrix
of eigenvectors of A, and Λ ∈ Rn×n is a real diagonal matrix of eigenvalues.
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The proof of Theorem 11 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix B. We fully expect you to read the proof and understand it. It is completely in-scope for the course.

Concept Check: Once you read Note 2j, come up with a complex analogue to Theorem 11 (i.e., a spectral
theorem for complex "Hermitian" matrices).

In fact, this gives symmetric matrices a huge amount of useful structure. Namely, orthonormal diago-
nalization is a key ingredient in proofs and algorithms involving symmetric matrices.

6 Example

We run the upper triangularization algorithm on the matrix

A :=

[
0 1
−2 −3

]
. (13)

The eigenvalues of A and corresponding eigenvectors are

q⃗1 =

− 1√
5

2√
5

 λ1 = −2 q⃗2 :=

− 1√
2

1√
2

 λ2 = −1. (14)

Applying the algorithm with q⃗1 initially, we extend q⃗1 to a basis Q of R2, by letting

Q =
[⃗
q1 Q̃

]
where Q̃ =

 2√
5

1√
5

 . (15)

Thus

Q =

− 1√
5

2√
5

2√
5

1√
5

 . (16)

Computing Q⊤AQ, we get

Q⊤AQ =

− 1√
5

2√
5

2√
5

1√
5

⊤ [ 0 1
−2 −3

] − 1√
5

2√
5

2√
5

1√
5

 =

[
−2 −3
0 −1

]
. (17)

We see that λ1 = −2, which is indeed the eigenvalue corresponding to λ1. Also unpacking, ã⊤12 = −3. And
Ã22 = −1, so its Schur decomposition is computed recursively to get P = 1 and T̃ = −1. Then

U :=
[⃗
q1 Q̃P

]
=
[⃗
q1 Q̃

]
= Q =

− 1√
5

2√
5

2√
5

1√
5

 (18)

which is orthonormal, and

T :=

[
λ1 ã⊤12P
0 T̃

]
=

[
−2 −3
0 −1

]
. (19)

Note that T is upper triangular with the eigenvalues of A on the diagonal. And, A = UTU⊤.
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7 (OPTIONAL) Numerical Implications

Sometimes when we are solving problems or designing algorithms (say for stability or controllability), we
want to do coordinate changes to bases in which we get easily solvable systems.

Previously, we used eigenvector bases for this. Now, we are allowed to use upper-triangularization
bases. It turns out that a lot of the time, using the upper-triangularization basis is better, in the sense that
our computation is more numerically stable. Let’s try to briefly unpack why that is.

For notation’s sake, let’s say that we’re working with a matrix A ∈ Rn×n.
Right off the bat, we re-emphasize that sometimes A is not diagonalizable. In this case, upper-triangularization

is the only method we have developed so far that actually works for A, and so it is the best method to use
by default.

Now let’s suppose that A is diagonalizable. Let A = VΛV−1 be the representation of A in the eigen-
vector basis V – the diagonalization of A – and let A = UTU⊤ be the representation of A in the upper
triangular basis – the Schur decomposition of A.

One key difference we can see in these formulas is that in the diagonalization representation, we need
to compute V and V−1, while in the upper triangularization representation, we only need to compute U
and U⊤ (which is easy to compute given U). This is the difference we are looking for.

We will now try to justify why computing V−1 is numerically unstable. We do this by considering a
range of scenarios (say configurations of A).

One extreme is when A is symmetric. Then the eigenvectors of A are orthonormal. If they are normal-
ized, then V is a matrix with orthonormal columns and rows, so that V−1 = V⊤. In this case, we have
shown earlier in the note that the Schur decomposition is exactly equal to the diagonalization, so there is
no advantage to be gained by either side in terms of numeric stability.

The other extreme is when A is not diagonalizable. Then multiple eigenvectors of A are not distinct – in
particular, they align perfectly. In this case V is singular, and thus non-invertible, since two of the columns
of V are identical. Since we can only use the Schur decomposition, this is the better method.

We can make our point by considering matrices A that are "close to non-diagonalizable" – that is, A
with eigenvector matrix V which is "nearly singular". That is, two eigenvectors of A are almost completely
aligned. We saw such matrices in the critically damped case for RLC circuits, for example.

In this case, inverting the V matrix and separating the aligned eigenvectors is difficult, and indeed
numerically unstable. One can make the argument precise using the notion of condition number, which is
out of scope for the class. But, heuristically, here is what happens.

When we find a matrix inverse, conceptually it’s similar to finding a solution x⃗ to Vx⃗ = y⃗. Since there
are almost-aligned eigenvectors in V, there is at least one direction in Rn for which all of the columns of V
have really small components in that direction (because there are n directions and effectively n − 1 vectors
to use). If y⃗ points into that problematic direction, then the coordinates of x⃗ (i.e., the coefficients of the linear
combination of the columns of V) will, more often than not, have to be very large to push the vectors in V to
reach y⃗, while cancelling out in all other directions to perfectly equal y⃗ – even for benign, generic y⃗ such as
unit vectors! Moreover, very similar values of y⃗ (such as a "true" value of y⃗ compared to a computer representation
of y⃗), lead to very different values for x⃗! Since x⃗ has crazy behavior and x⃗ = V−1y⃗, it is reasonable to think of
V−1 as being numerically unstable.

On the other hand, the Schur decomposition is like a boon, in the sense that when we compute it, we
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never have to take matrix inverses. All we have to do is take matrix transposes, use Gram-Schmidt1, and
we’re in business – we get a fully orthonormal basis that turns our system into one that’s easily solvable.
This process is more numerically stable, since our change-of-basis is orthonormal and we never have to
take an inverse anywhere.

This is the crux of why the Schur decomposition is more numerically stable than diagonalization. This
type of analysis can be explored more in e.g., EE 127, and Math 128.

8 Final Comments

In this note, we first discussed why some matrices are not diagonalizable. Then, we discussed upper-
triangular matrices, and in particular properties of upper-triangular matrices that make upper-triangularization
a good alternative to diagonalization for solving problems, more specifically the property of this basis to
split vector equations into scalar equations that can be solved one at a time. Then, we discussed the Schur
decomposition, as a way to upper-triangularize arbitrary matrices. Finally, we stated and proved the spec-
tral theorem for real symmetric matrices, using the extra structure that the Schur decomposition gave us.

This validates the upper-triangularization decompositions we used earlier, for example in Note 9.

1Gram-Schmidt is also not great as a numerical linear algebra tool, because it suffers from a phenomenon called catastrophic can-
cellation. The gist of it is that we end up subtracting a lot of vectors, end up with vectors that should be – but are not quite, on our
computer, due to computer arithmetic limitations – zero, and then we normalize it and get a unit vector in an essentially random
direction. Using this vector in our computation can lead to crazy results. There are other methods to do orthonormalization, such as
one of many algorithms for the QR decomposition, although they are more technically complex. All of this footnote is out of scope for the
course.
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A Proof of Theorem 9

To show this theorem, we will need the following two lemmas.
The ability to do this decomposition relies on the following fundamental claim.

Lemma 12 (Existence of an Eigenvalue/Eigenvector Pair)

Let A ∈ Cn×n be a square matrix. Then A has an eigenvalue and corresponding eigenvector.

Proof. Since pA(λ), i.e., the characteristic polynomial of A, has an eigenvalue, the Fundamental Theorem
of Algebra asserts that it has at least one distinct root, which is our eigenvalue λ0. Then det(A − λ0 In) =

pA(λ0) = 0, so A − λ0 In has a null space. Thus there is at least one eigenvector v⃗0 such that (⃗v0, λ0) is an
eigenvector/eigenvalue pair for A.

In order to ensure the eigenvalues of all matrices we deal with are real, we require the following lemma,
which follows from the same calculation as Theorem 6.

Lemma 13 (Characteristic Polynomial of Block Upper Triangular Matrices)

If T ∈ C(m+n)×(m+n) is a block upper triangular matrix, i.e.,

T :=

[
T11 T12

0n×m T22

]
. (20)

where T11 ∈ Cm×m, T12 ∈ Cm×n, T22 ∈ Cn×n, then the characteristic polynomial of T is

pT(λ) = pT11(λ)pT22(λ). (21)

Proof of Theorem 9. We use a recursive approach.
The recursive base case is n = 1. If A ∈ R1×1 then A is a scalar, so the orthonormal change-of-basis

matrix U can just be U = 1, and T = A. Thus A = UTU−1 is a Schur decomposition of A.
Now consider the general recursive case. Suppose A ∈ Rn×n is a matrix with n (not necessarily distinct)

real eigenvalues λ1, . . . , λn. Pick a normalized eigenvector q⃗ of A which corresponds to λ1; this exists by
Lemma 12. Use Gram-Schmidt to extend q⃗ to an orthonormal basis Q =

[⃗
q Q̃

]
of Rn. Then

Q⊤AQ =

[
q⃗⊤

Q̃⊤

]
A
[⃗
q Q̃

]
(22)

=

[
q⃗⊤Aq⃗ q⃗⊤AQ̃
Q̃⊤Aq⃗ Q̃⊤AQ̃

]
(23)

=

[
λ1q⃗⊤ q⃗ q⃗⊤AQ̃
λ1Q̃⊤ q⃗ Q̃⊤AQ̃

]
. (24)

Now since Q is orthonormal, we have

In = Q⊤Q =

[
q⃗⊤

Q̃⊤

] [⃗
q Q̃

]
=

[
q⃗⊤ q⃗ q⃗⊤Q̃
Q̃⊤ q⃗ Q̃⊤Q̃

]
. (25)

But we also know

In =

[
1 0⃗⊤n−1

0⃗n−1 In−1

]
(26)
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so Q̃⊤ q⃗ = 0⃗n−1, and also q⃗⊤ q⃗ = 1. Thus

Q⊤AQ =

[
λ1q⃗⊤ q⃗ q⃗⊤AQ̃
λ1Q̃⊤ q⃗ Q̃⊤AQ̃

]
(27)

=

[
λ1 q⃗⊤AQ̃

0⃗n−1 Q̃⊤AQ̃

]
. (28)

To clean up a little, we introduce the notation

⃗̃a
⊤
12 := q⃗⊤AQ̃ and Ã22 := Q̃⊤AQ̃. (29)

Thus we have

Q⊤AQ =

[
λ1 q⃗⊤AQ̃

0⃗n−1 Q̃⊤AQ̃

]
(30)

=

[
λ1 ⃗̃a

⊤
12

0⃗n−1 Ã22

]
. (31)

This is where we set up for the recursive call, where we will try to recursively upper triangularize Ã22. We
first need to show that Ã22 is a smaller subproblem of A, which fulfills all assumptions of the theorem, i.e.,
is a real square matrix with real eigenvalues.

Since Q̃ ∈ Rn×(n−1), we have Ã22 ∈ R(n−1)×(n−1). Thus Ã22 is smaller than our original matrix A and
also a square matrix.

We can write the characteristic polynomial of A as

pA(λ) =
n

∏
i=1

(λ − λi). (32)

Since Q⊤AQ is a change of basis from A, we know from the invariance of polynomials under change of
basis (proved in Note 10) that

pA(λ) = pQ⊤AQ(λ). (33)

Since Q⊤AQ is block upper triangular, by Lemma 13, we have

pA(λ) = pQ⊤AQ(λ) = (λ − λ1)pÃ22
(λ). (34)

Hence

pÃ22
(λ) =

pA(λ)

λ − λ1
=

n

∏
i=2

(λ − λi). (35)

Thus Ã22 has all real eigenvalues, in particular λ2, . . . , λn.
Therefore we can recursively take the Schur decomposition of Ã22. Write

Ã22 := PT̃P⊤ (36)

where P ∈ R(n−1)×(n−1) is orthonormal and T̃ ∈ R(n−1)×(n−1) is upper triangular. Then

Q⊤AQ =

[
λ1 ⃗̃a

⊤
12

0⃗n−1 Ã22

]
(37)
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=

[
λ1 ⃗̃a

⊤
12

0⃗n−1 PT̃P⊤

]
(38)

=

[
1 0⃗⊤n−1

0⃗n−1 P

] [
λ1 ⃗̃a

⊤
12P

0⃗n−1 T̃

] [
1 0⃗⊤n−1

0⃗n−1 P⊤

]
. (39)

where the motivation to reach the last line is that we want to find a matrix factorization that isolates T̃ in
the bottom right corner, making the middle matrix upper-triangular. Again cleaning up notation, let

R :=

[
1 0⃗⊤n−1

0⃗n−1 P

]
. (40)

Then, using the orthonormality of P, we have

R⊤R =

[
1 0⃗⊤n−1

0⃗n−1 P

]⊤ [
1 0⃗⊤n−1

0⃗n−1 P

]
(41)

=

[
1 0⃗⊤n−1

0⃗n−1 P⊤

] [
1 0⃗⊤n−1

0⃗n−1 P

]
(42)

=

[
1 0⃗⊤n−1

0⃗n−1 P⊤P

]
(43)

=

[
1 0⃗⊤n−1

0⃗n−1 In−1

]
(44)

= In. (45)

Thus R is orthonormal. Thus we have

Q⊤AQ =

[
1 0⃗⊤n−1

0⃗n−1 P

] [
λ1 ⃗̃a12P

0⃗n−1 T̃

] [
1 0⃗⊤n−1

0⃗n−1 P⊤

]
(46)

= R

[
λ1 ⃗̃a

⊤
12P

0⃗n−1 T̃

]
R⊤ (47)

=⇒ A = QR︸︷︷︸
:=U

[
λ1 ⃗̃a

⊤
12P

0⃗n−1 T̃

]
︸ ︷︷ ︸

:=T

R⊤Q⊤︸ ︷︷ ︸
=U⊤

. (48)

Here Q is orthonormal so

U⊤U = (QR)⊤(QR) = R⊤Q⊤QR = R⊤ InR = R⊤R = In. (49)

Thus U ∈ Rn×n is orthonormal. And T ∈ Rn×n is upper triangular. Also, A = UTU⊤ by our calculation.
Thus we have shown the first claim.

By Theorem 6 and the invariance of polynomials under change of basis (proved in Note 10), we have
that

pA(λ) = pUTU⊤(λ) (50)

= pT(λ) (51)

=
n

∏
i=1

(λ − tii) (52)
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and this shows that the eigenvalues of A are on the diagonal of T according to their algebraic multiplicities,
showing the second claim.

In order to build an efficient algorithm, we would now like to build expressions for U and T, so that we
can compute them without wasting effort computing intermediate results like R.

U = QR (53)

=
[⃗
q Q̃

] [ 1 0⃗⊤n−1

0⃗n−1 P

]
(54)

=
[⃗
q Q̃P

]
(55)

T =

[
λ1 ⃗̃a

⊤
12P

0⃗n−1 T̃

]
. (56)

We can now implement the algorithm, at the end of Section 4.

B Proof of Theorem 11

Proof of Theorem 11.

(i) Take an arbitrary eigenvector λ of A with corresponding eigenvector v⃗. Then

Av⃗ = λv⃗. (57)

Taking the conjugate of both sides and using the fact that A is real so that A = A, we get

Av⃗ = Av⃗ = Av⃗ = λv⃗ = λv⃗. (58)

Taking advantage of the fact that A is symmetric so that A = A⊤, we take the transpose of both sides
to get

Av⃗ = λv⃗ (59)

v⃗
⊤

A⊤ = λv⃗
⊤

(60)

v⃗
⊤

A = λv⃗
⊤

. (61)

Then we multiply by v⃗ on both sides to get

v⃗
⊤

Av⃗ = λv⃗
⊤

v⃗ (62)

λv⃗
⊤

v⃗ = λv⃗
⊤

v⃗ (63)

0 = (λ − λ)⃗v
⊤

v⃗ (64)

using the fact that (⃗v, λ) is an eigenvector-eigenvalue pair of of A. Now

v⃗
⊤

v⃗ =
n

∑
i=1

vi · vi =
n

∑
i=1

|vi|2. (65)

so v⃗
⊤

v⃗ is nonzero if and only if v⃗ is nonzero. Since v⃗ is an eigenvector and thus nonzero, we know that
v⃗
⊤

v⃗ is nonzero, and thus that λ − λ = 0. Thus λ = λ so λ is real. Since λ is an arbitrary eigenvalue,
all eigenvalues of A are real.
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(ii) Since A is a square matrix with real eigenvalues, (U, T) := REALSCHURDECOMPOSITION(A) outputs
an orthonormal matrix U and upper triangular matrix T such that A = UTU⊤. Since A = A⊤, we
have

A = A⊤ (66)

UTU⊤ = (UTU⊤)⊤ (67)

UTU⊤ = UT⊤U⊤ (68)

T = T⊤ (69)

which means that T = T⊤. Since T is upper triangular, T⊤ is upper triangular, so T is diagonal. Since
U is orthonormal, A = UTU⊤ = UTU−1 is a diagonalization of A.

(iii) Since A = UTU⊤, right-multiplying by U, we get AU = UT. Looking at the columns u⃗1, . . . , u⃗n of U
and the diagonal entries t11, . . . , tnn of T, we have

AU = UT (70)

A
[
u⃗1 · · · u⃗n

]
=
[
u⃗1 · · · u⃗n

] 
t11

. . .

tnn

 (71)

[
Au⃗1 · · · Au⃗n

]
=
[
t11u⃗1 · · · tnnu⃗n

]
. (72)

Thus Au⃗i = tiiu⃗i for all i, confirming that u⃗i is an eigenvector of A with eigenvalue tii. Since U is an
orthonormal matrix of eigenvectors, it follows that the vectors in U form an orthonormal basis of Rn

consisting of eigenvectors of A.
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