EECS 16B Designing Information Systems and Devices I UC Berkeley Spring 2023
Note 16: Linearization

1 Overview

Thus far, we have covered only linear control models, say a difference equation of the form

X[i + 1] = AX[i] + Bii]i] (1)
x[0] = %o 2
or a differential equation of the form
d " "
S5 = A%(1) + Bil(1) )
X(0) = Xp. 4)

However, many systems in the real world can only be faithfully represented by nonlinear models. A very
nonexhaustive list of such models follows.

1. Up until now, we have considered transistors to be binary — turning off or on at some voltage differ-
ential. But in reality, transistors work continuously, and the relevant governing equations are highly
nonlinear. For example, the Wikipedia article on BJTs has some of them.

2. Robotics and control in general has highly nonlinear dynamics. The reason for this is because the
system has a variety of geometric relationships that must hold, and so there are many trigonometric
functions involved, which are all non-linear but have good linear approximations. An example of this

analysis may be found when applying control to stabilize an inverted pendulum on a cart.

3. Machine learning and optimization also have highly nonlinear systems. In particular, the continuous-
time concept of gradient flow and the discrete-time concept of gradient descent result in highly nonlinear
state trajectories.

More generally, a nonlinear model takes the generic form of a difference equation or a differential equa-
tion, which we formally define here for reference later.

Model 1 (Discrete-Time Time-Invariant Difference Equation Model)
The model is of the form

#[i +1] = f([i], illi]) ®)
Xo (6)

for ¥: N — R” the state vector as a function of timestep, i/: IN — R the control inputs as a function
of timestep, and f : R" x R™ — R" a function.


https://en.wikipedia.org/wiki/Bipolar_junction_transistor
https://en.wikiversity.org/wiki/LQR_Control_for_an_Inverted_Pendulum_on_a_Cart

EECS 16B Note 16: Linearization 2023-04-04 14:13:09-07:00

Model 2 (Continuous-Time Time-Invariant Differential Equation Model)

The model is of the form

S0 = Flx(e), 1(1) 7)
X(0) = % ®)

for ¥: R — IR” the state vector as a function of timestep, ii: R — R" the control inputs as a
function of timestep, and f: R” x R™ — R" a function.

We will learn how to approximate these models locally by linear models, in a process called linearization
of the function ]?

Key Idea 3 (Local Linearization)
Linearization of a function is the technique of approximating it by a linear function "locally" (i.e., in a

small region around some point).

In Section 2, we will learn what a local linearization of a function is, and how to compute it. In Section 3
we will show how to linearize models and use linearized models for control. We conclude with some

real-world models that we linearize in Section 4.

2 Linearization

NOTE: This section will have some definitions (for derivatives) which look abstract initially, but have rela-
tively simple formulas. This is done because the abstract definition is used to give a geometric viewpoint,
which makes the process of finding the "correct" approximation relatively simple. Then, to actually com-
pute the correct approximation, we look at its vector/matrix representation in the standard basis, giving us
a concrete formula that is the one we are going to use 99% of the time.

So, don't freak out if the details look technical. Just try to understand the overall picture, and then you
can read the formulas, which are most of what you will need.

2.1 Linear Approximations

The key to linearization is the first derivative concept. Recall the familiar limit definition of the derivative for
a function f: R — R, i.e., f is differentiable at x* with derivative f’(x*) if and only if the following limit
exists and equality holds:

F(x*) = lim fx) — f(x) )

Rearranging, we say that f is differentiable at x* with derivative f'(x*), if and only if the following limit
exists and equality holds:

0= tim 1O 1) (e =) .
The bracketed quantity
flat) = f) + f1 () - (x = x) an

is exactly the linearization, i.e., linear approximation of f around x*. The derivative eq. (10) says that for x

~

very close to x*, the linear approximation f(x; x*) is almost exactly f(x).

© UCB EECS ]. 6B, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2



EECS 16B Note 16: Linearization 2023-04-04 14:13:09-07:00

— f(®)

~

— f(xx7)

This definition of the first derivative —i.e., an intercept f(x*) plus a linear function of x — x* representing
the tangent plane — is actually the correct one for generalization to vector functions. In fact, we give the

definition in full generality now, and it will not look much different.

Definition 4 (First Derivative, Jacobian)
Let f: R? — IR7 be a function. We say that f is differentiable at ¥* € R? with derivative | f(¥*) € R1*?
if and only if the following limit exists and equality holds:

(12)

We call | f(¥*) the Jacobian or derivative of f at X*.

More formally, we define the Jacobian | ]? : RP — R9*P as the matrix-valued function which takes in
points X* € IRP and outputs derivative matrices | j? (X*) € RT*P.

We say that f is differentiable if it is differentiable at every point ¥* € IRP.

The bracketed quantity

f&7) = F(3) + JF(F) - (¥ - 7) (13)
is exactly the best linear approximation of f around ¥*. The derivative eq. (12) says that for ¥ very close to
x*, the linear approximation F(&;2*) is almost exactly f(%).

This motivates the following definition of the best linear approximation, i.e., the linearization.

Definition 5 (Linearization)
Suppose f : R? — IR7 is differentiable. Then the linearization of f around ¥* € RR? is the function

f(;;%): R? = R given by
(&3 = f(@) +If(®@) - (@ - 7). (14)

2.2 Computing the Derivative

In Definition 4, we defined our first derivative for multivariable functions, analogously to the single-
variable derivative definition in Equation (10). But, just like in the single-variable case, if all we could
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use to compute the derivative is that specific definition, we would get stuck. Now, we introduce a much
more mechanical and easier way to compute the derivative.
The main building block is the partial derivative, which is defined almost analogously to a single-variable

derivative.
Definition 6 (Partial Derivative)
Let f: RP — IR be differentiable. The partial derivative of f with respect to x; is the function %: RP - R
defined by
of . fx o xit b xp) = f(x1,.,xp)
= (¥) =1 . 15
oy, ) = Hm 7 (15)
This definition provides a way to compute the partial derivative.
Key Idea 7 (Computing Partial Derivatives)
To compute a partial derivative %:
* Write out f explicitly in terms of x1, ..., xp.
* Pretend all variables x; are actually constants, except the variable x;.
¢ Take the single-variable derivative of f in x;.
The result will be the function %.
We can now give an explicit formula for the Jacobian.
Theorem 8 (Jacobian in terms of Partial Derivatives)
Let ]? : R? — IR be differentiable at X. Then the Jacobian at X, | ]? (X), is uniquely given by
of1 (2 of1 (=
@ @
F@=1 & (16)
ofy /= ofg /=
w@ o @

Here "uniquely" means that there is no other matrix, written in the standard basis, which represents
the Jacobian. Just like a differentiable function f: R — R has exactly one derivative at a given point, a
differentiable function f: R? — RY has exactly one derivative at a given point. And so we can get an
unambiguously best linearization using the Jacobian.

A formal proof of Theorem 8 is out of scope of the course. However, the main idea can be obtained
by only considering polynomial functions f: R? — R. For instance, consider the polynomial f(x1,x2) :=
(axy + bxz)z. By the chain rule (which follows from the chain rule for single-variable derivatives), we have

d d
—f(xl,xz) = 2a(axq + bxy) —f(xl,xz) = 2b(axq + bxp). (17)
dxq dxp

Fix a point ¥* € R? and a "perturbed" vector ¥ which is close to ¥*. Then

f(X) = (axy + axy)? (18)
= (axt +a(x; — x7) + bx3 + b(x2 — x3))? (19)
= a®x}? 4 2abx{x} + b*x5? (20)
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+ 2a(ax] + bxy)(x1 — x7) + 2b(axy + bxy ) (x2 — x3) (21)
+a?(xp — x7)2 4 2ab(x; — x7) (x2 — x3) + b*(x2 — x3)? (22)
0 0
= fleb )+ (w2 + L () (2 - ) @)
ax1 axz
+a?(xy — x7)2 4 2ab(x; — x7) (x2 — x3) + b?(x2 — x3)%. (24)

Now since ¥ — ¥* is small, the quantities x; — x} are small. Thus the quantities (x; — x})? and (x; — x¥) (xj—

*

X ) are even smaller, so the whole last line is negligible and it is reasonable to consider the linear approxi-
mation of of
fE) ~ fEGE) = flag, ) + 5 -00,23) - (= x7) + - (27, 23) - (v = 23)- (25)

Now this quantity can be expressed using the Jacobian, whose formula was explicitly given in Theorem 8.

fE®) = (i, 3) + [ (e x3) 2L (3, 2)] [2 - ﬂ = FE) +If(xhx3) - (R -7 (26)
2

which is exactly the linearization formula given in Definition 5.

2.3 (OPTIONAL) Higher-Order Partial Derivatives and Quadratic Approximation

So far we have learned how to linearize functions around points. This is good, and useful for many cases.
However, sometimes there is some kind of "essential nonlinearity" of our function that we would like to pre-
serve in our approximation. This scenario is most common'! with scalar-valued functions , so we consider
only functions f: R? — R. In this cases, we can turn to quadratic approximation.?

Just as first derivatives were the key tool for linearization, second derivatives will be the key tool for
quadratic approximation. In fact, we can get the best quadratic approximation straight from the definition
of the second derivative.

Definition 9 (Second Derivative, Hessian)
Let f: R? — R be differentiable at ¥* € R?P with derivative [f. We say that f is twice differentiable at
X* € RP with second derivative Hf (X¥*) € RP*? if and only if the following limit exists and equality
holds:
@ -[FEn e - -2+ L EfE) - @ -2, 229
0= lim

o 1% — 21°

(27)

We call Hf (¥*) the Hessian or second derivative of f at X*.

More formally, we define the Hessian Hf: R? — RP*? as the matrix-valued function which takes in
points ¥* € R” and outputs second derivative matrices Hf (¥*) € RP*F.

We say that f is twice differentiable if it is twice differentiable at every point ¥* € R”.

This definition is slightly atypical and perhaps not what we expected. But it all clears up when we
note that functions of the type a + (b, ¥ — ¥* ) + (C(¥ — ¥*), ¥ — ¥*) are exactly the quadratic functions
R? — R. And so the definition of the second derivative just fits the best quadratic approximation to f at

xX*.

In optimization, signal processing, and machine learning, to name a few.
2Quadratic approximation is also possible for functions f: R? — R, but this requires the introduction of tensors as a concept,
which is too far out of scope of this class.
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There are a couple of quirks here. First, it is probably not clear that the third term inner product, i.e., the
term (Hf(x*) - (¥ — X*), ¥ — ¥*) is actually a quadratic function. But if we do the matrix-vector multiplica-
tion and take the inner product, we have

(HfF(x") - (¥ =X7), X = %7)

I
=
=

(Hf (x7))i(¥ = X7)i(X = %), (28)

I
—
~.
I
—

I
™=
=

Il
—
~.
Il
—

2 (HF(37))ij(xi = x7) (%) — xf) (29)

which is a quadratic polynomial in each variable xy, ..., x,. Also, the term % in front of this inner product
in Equation (27) doesn’t need to be there (we could just scale the derivative by 2). It is there because it
means that the Hessian has a nicer representation in terms of the second-order partial derivatives. Third,
we divide by || ¥ — #*||* because if we only divided by ||X¥ — ¥*|| (as in the case for the first derivative), then
any matrix at all would be a suitable second derivative at any point. More precisely, let M € RP*? be any
matrix; then we have

M(%— %) #— ¢ 2 o
ME—2), 2=0) _ [y I8 w0 (30)
1% — x| [¥ = 2*]|" =~
unit norm small,ﬁOp

as ¥ — X*, and so the quadratic function itself would go to 0 and be irrelevant. But

¥ _ ¥k Y _ ¥k Y _ ¥k ¥ _ ¥k
(M(% — %), % x>:<M|x ; X—% > 1)

1% — 2*||? X — %" ||IX — %]
| S—

unitnorm  unit norm
which doesn’t necessarily go to 0 as ¥ — X¥*. So the quadratic function is relevant and defines a derivative.

This gives us the best quadratic approximation.

Definition 10 (Best Quadratic Approximation)
Suppose f: R? — R is twice differentiable. Then the best quadratic approximation of f around ¥* € R”?
is the function fquad( X*): R? — R given by

fauad (% %) :=f(55*)+lf(5f*)-(f—f*)Jr%(Hf(f*)-(f—f*), X—X). (32)

Again, we construct an explicit formula for the Hessian out of partial derivatives. For that, we require a

notion of second partial derivatives.

Definition 11 (Second Partial Derivatives)
Let f: R? — R be twice differentiable. The second partial derivative of f with respect to x; and x; is the

function %aij : R” — R defined by

Of of
ox;0x; ox; (E)x (33)
Note that we can take the second partial derivative with respect to x; twice. The notation for this is g J;

Fortunately, most of the time the order of partial derivatives does not matter, thanks to the followmg
result.
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Theorem 12 (Clairaut’'s Theorem)
Let f: R” — IR be twice differentiable, and all second partial derivatives of f be continuous. Then for
any i and j,
02 02
o 9 (34)
axiax]- anaxi
i.e., the order of taking partial derivatives is irrelevant.
Now we can give a formula for the Hessian.
Theorem 13 (Hessian in terms of Partial Derivatives)
Let f: R? — R be twice differentiable at X¥. Then the Hessian at X, Hf(X), is uniquely given by
f /= Pf o
a2 (x) - Ix19%n (%)
Hf(X) = : : : (35)
*f (= Pf (=
0X,,0x] x) e @(x)

Again, we cannot prove this theorem. However, we may look at it through the example earlier, i.e.,
f(x1,x2) = (axq + bxz)?. In this example, we have the second partial derivatives

gz(xl,xz) =24% gig(xl,xz) =212 aflzafxz(xl,xz) = ajgxl (x1,%2) = 2ab. (36)
Thus the Hessian is given by
Hf(x1,%2) = [;ZZ i‘;g] . (37)
Recall that for ¥, ¥* € IR?, we computed
F®) = &)+ IFE) - (2= ) + @0 — x})? +2ab( — x) (2 = 13) + BPlo — )% (39
We may relate this to the Hessian; we have
F®) = )+ IFE) - (= )+ @ — xf)? + 2ab(m — x) (2~ 3) + P~ )2 (39)
— FE) @) G 5 [0 ) [jz ﬁ;ﬂ [ﬁ; - j )
= F@) +IFE) - (2= 1) + 5 (2 - 2T (HFE)(E - 7°) @)
= F@) 4 ) (R 7) + 3 (HFE) - (8- 7), - ) )
= fquad (%3 X¥) (43)

which is the same formula as Definition 10. As another verification, f is itself a quadratic function, so the
best quadratic approximation to f at X* should be ]?quad(' ;X*) = fitself. And indeed it is.

Finally, here is a graphical comparison of the best quadratic approximation with the linear approxima-
tion from earlier.
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f(x)

o~

fxx%)

fquad (X; x*)

3 Linearizing Control Models

Recall that we originally wanted to linearize state update functions f: R" x R” — RR”, that either took

4 X(t) or a new state ¥[i + 1]. To do this

in a state and input pair (¥, ), and output either a derivative §;

linearization, we introduce some new notation for the Jacobian.

Notation 14
Let f: R" x R" — R" be differentiable. We define the Jacobian with respect to ¥, i.e., J¢f: R” x R —
R"*", and with respect to i, i.e., J;f: R" X R™ — R"*™, as being given by
rofi r= — of1 (= =
% (X, i) Wfi (X, i)
Jef (%,1) := : 5 (44)
o (= s (= =
F@a o @
rofi (2 = ofi (= =
() o ST
af (%,1) := : : (45)
U (= = o o
_%(x,u) al{m (X, i)
Under this notation, we have the following linearization of the state update function f .
Key Idea 15 (Linearization of State Update Function)
Let f: R" x IR™ be differentiable. The linearization of f around (¥*,#*) is given by
F& 3, 0%) o= F(&5,0%) + Jf (7, 0%) - (F = 2°) + Jaf (7, 0) - (i — 7). (46)
3.1 Linearization of Discrete-Time Time-Invariant Difference Equation Model
Recall that in the Discrete-Time Time-Invariant Difference Equation Model, the update rule is
X[i+1] = f(F[1), @]i)). (47)

One may linearize f, but in order to do this, we need to pick a point (¥*,1i*) to linearize around. We would
like the system dynamics to be well-behaved around (¥*, i*). This leads to the concept of equilibrium point.
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Definition 16 (Equilibrium Point in Discrete-Time Time-Invariant Difference Equation Model)
In the Discrete-Time Time-Invariant Difference Equation Model, the point (X*,ii*) is an equilibrium
point if and only if

-

Fe, i) = 7. (48)

In certain contexts this is also called an operating point.

Intuitively, (X¥*,4*) can be interpreted as a stationary point of the system dynamics, in the following
sense: if the state starts at X*, and input ii* is applied at every timestep, the state never leaves X*.
Linearizing the right-hand side around some equilibrium point (X*, ii*) which is close to (¥[i], if[i]), we

have
#li +1] = F(2[i], illi]) (49)
~ F(El, ali); ¥, @) (50)
= F(& %) + Jef (2, 0%) - (R[i] — &%) + Jaf (&, @) - (li] — @) (51)
= ¥+ Jef (¥, %) - (3[i] — ¥) + Jaf (2%, %) - (@lli] — i*). (52)
If we define the deviation from the equilibrium point
6x[i] == x[i) — & oidli) := illi] — i, (53)
then the linearized equation becomes
6x[i + 1] = Jof (X%, @) - 6%[i] + Jaf (X", i) - 6ili] (54)

is a linear system in 6X[i]. We can thus analyze its stability, controllability, and so on, using the tools we
already developed. We can even do feedback control! Keep in mind that in this system, driving 6x[i] to 0,
(for instance via feedback stabilization) is equivalent to driving X[i] to ¥*. So, one thing we can do is to have
X* be the state we want to drive the model to, and then use feedback control to get there.

When we're done, we can go back to the "real" state by setting X[i] = 6X[i] + X*.

We summarize our findings below.

Proposition 17 (Linearizing the Discrete-Time Time-Invariant Difference Equation Model)
Suppose (X*,ii*) is an equilibrium point of the Discrete-Time Time-Invariant Difference Equation
Model. Define

ox[i] := X[i] — X* Oiili] := wli] — ™. (55)

Then a linearization of Discrete-Time Time-Invariant Difference Equation Model results in the linear

model
O%[i +1] = Jef (%, @*) - 6%[i] + Jaf (&%, &) - Siii] (56)

Warning 18
The linearization is only valid when the state-input pair (X[i], i[i]) is contained in a small neighbor-

hood of the equilibrium point (¥*,ii*).
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3.2 Linearization of Continuous-Time Time-Invariant Differential Equation Model
The analysis of the continuous-time goes similarly to the discrete time, with a couple of crucial differences.
Recall that in the Continuous-Time Time-Invariant Differential Equation Model, the update rule is

() = FEb), @(t)). (57)

Again, we need to define equilibrium point.

Definition 19 (Equilibrium Point in Continuous-Time Time-Invariant Differential Equation Model)
In the Continuous-Time Time-Invariant Differential Equation Model, the point (¥*, i*) is an equilib-
rium point if and only if

-

f(&*, %) = 0,. (58)

In certain contexts this is also called an operating point.

Intuitively, (X¥*,*) can be interpreted as a stationary point of the system dynamics, in the following
sense: if the state starts at X*, and input ii* is applied at every time, the state never leaves X*.
Linearizing the right-hand side around some equilibrium point (¥*, i#*) which is close to (¥(t), #(t)), we

have
L sy = e, am) (59)
dt
~ F(R(),(); 2, i) (60)
— 7 F, @) - (3(8) — ¥°) + Jaf G, ) - ((8) — i) (61)

= Jef (¥, @) - (X(£) = X%) + Juf (X%, @) - (u(t) — ). (62)
If we define the deviation from the equilibrium point
OX(t) :=X(t) — x* Oul(t) == ii(t) —u*, (63)

then the linearized equation becomes

Sox(0) ~ Jof (@, 1) -0%(0) + Juf (2, 0) -0 (1) (64)

is a linear system in 0X(f). We can thus analyze its stability, controllability, and so on, using the tools we
already developed. We can even do feedback control! Keep in mind that in this system, driving 6X(t) to
0, (for instance via feedback stabilization) is equivalent to driving ¥(t) to ¥*. So, one thing we can do is to
have X* be the state we want to drive the model to, and then use feedback control to get there.

When we're done, we can go back to the "real" state by setting X(t) = dX(t) + x*.

We summarize our findings below.

Proposition 20 (Linearizing the Continuous-Time Time-Invariant Differential Equation Model)
Suppose (X*, ii*) is an equilibrium point of the Continuous-Time Time-Invariant Differential Equation
Model. Define

OX(t) == X(t) — X~ Oul(t) =i (t) —u™. (65)

Then a linearization of Continuous-Time Time-Invariant Differential Equation Model results in the
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linear model g
0% = Jef (&%,00%) - 62(t) + Jaf (¥, i) - 8il(t) (66)

for 6x(t) and dii(t) very small (i.e., X(t) ~ X¥* and ii(t) ~ i*).

Warning 21
The linearization is only valid when the state-input pair (¥(t), #(t)) is contained in a small neighbor-
hood of the equilibrium point (¥*,ii*).

4 Examples

Most examples "in the wild" are in continuous-time, since they are motivated by physics. We could dis-
cretize our continuous-time nonlinear models and get discrete-time nonlinear models, however.

4.1 Circuits Example

While we could discuss the nonlinear BJT model we alluded to, that model is quite complicated and thus
not suitable for an example. Instead we will discuss the case of a tunnel diode model. A tunnel diode is
characterized by an I-V relationship where, for a certain voltage range, the current decreases with increasing

voltage. (This is due to a quantum mechanical effect called tunneling).

,iD

_I_

Up

—VYip _iD:g(vD) | Up

Now consider the circuit below:
iLgf)
- or(t)
vR(t) + +
_|_ e ——
ve(t) —— op(t) \/,
Vin(t) —vyic(t) —yip(t)
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Using KVL and KCL, and the fact that ip(t) = g(vp(t)), we get the state model

d 1 1.
avc(t) = _68(%(0) + EIL(f) (67)
d. 1 R, 1
alL(f) = _ZUC(t) + zlL(t) - Zvin(t)- (68)
Thus f is given by
1 1;
2o o | —c8loc)+ i 6
f(’UC/jI;/ Oin ) [—ivc + %ZL . ivin‘| . ( )

=X =u

To find an equilibrium point, we set f (Uc,l 7,0%,) to 0 (since this is an instance of Continuous-Time
Time-Invariant Differential Equation Model) and solve for v, i7, and v} . Indeed, we have the system of

equations
1 1.
0 = —=g(ve() + i (1) (70)
0=~ goc(t) + Tir(t) = om(t). @)

Solving, we get that the equilibrium point (v, i}, v}, ) is any triple which satisfies the equations

i7 =g(ve) (72)
g+ vl

* _ “C in

jp = 20 i, (73)

To get further insight into equilibrium states of circuits, note that to solve for the equilibrium we set %ZJC (t)

and %iL( ) to 0. Since ic(t) = Cdvgt( ) and vr(t) = Ldlég ) we thus have that at equilibrium, ic(t) = 0 and

vr(t) = 0. Thus at equilibrium, the capacitor acts like an open circuit and the inductor like a short circuit.
Redrawing the circuit, this is the picture at equilibrium:

iLSt)
or(t) Jlr +
" ve() () N/
Vin i —vyip(t)

We can linearize this new, simplified system to analyze small perturbations to vc, iy, vijn from the equi-
3 3 * gk *
librium states UG, T, V-

4.2 Mechanics Example

Consider the following pendulum with mass m:
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From physics we know that the equation of motion of this pendulum is governed by the differential

equation
do(t) deé(t) .
T2 —kﬁT — mgsin(6(t)) (74)

where k is some air resistance coefficient. We define the state space variables

ml

() =00 () = o). 75)
This gives the nonlninear system

d

() =x() (76)

() = Esin(n (1) ~ Sa(t) 77)
where g is the gravitational acceleration. Thus f is given by

= x

flx1,x2) = [_% sin(xlz) B szl : (78)

-

There are two distinct equilibrium points, which we get from setting f(x7, x3) to 0 and solving:
(xgown yslowny — (0, 0) and (¥, 7)) = (7,0) (79)

corresponding to the pendulum hanging completely downwards and staying completely upwards, respec-
tively. The Jacobian of fis given by

= 0 1
X1,X2) = . 80
]f( 1 2) l—%COS(M) _r]il‘| (80)
By evaluating the Jacobian at the equilibria, we get that
- 0 1 2 0 1
e I @
l m l m

One can show that the eigenvalues of | f (xfown xdown) each have negative real part, so the linearized model
at (x§own, xdown) is stable. On the other hand, there is an eigenvalue of ] f(x,¥, x,7) with positive real part,
so the linearized model at (x;lp, xlzlp) is unstable. This corresponds with our physical intuition; if we shake
a pendulum which is somehow standing straight up, it will immediately fall over and hang downwards,
while if we shake a pendulum which is hanging downwards, it will move around a little but will eventually

return to hanging downwards.
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5 Final Comments

In this note, we learned how to linearize functions, and specifically how to linearize nonlinear control mod-
els. Linearization is what makes linear control useful, since most physical systems are nonlinear and thus the
linear control model would not apply everywhere. Thus, linearization unlocks some rudimentary nonlin-
ear control, allowing us to use linear control methods on nonlinear models. This neatly closes the loop on

the controls picture we have developed.
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