1 Complex Numbers Introduction

Definition 1 (Complex Numbers)

Consider an arbitrary complex number $a \in \mathbb{C}$. We can write this complex number as $a=x+\mathrm{j} y$ where $\mathrm{j}=\sqrt{-1}$ and $x, y \in \mathbb{R}$.

Definition 2 (Complex Number Operations)
Consider two complex numbers $a, b \in \mathbb{C}$. Let $a=x+\mathrm{j} y$ and $b=u+\mathrm{j} v$ where $x, y, u, v \in \mathbb{R}$. Addition is defined as follows:

$$
\begin{equation*}
a+b=(x+\mathrm{j} y)+(u+\mathrm{j} v)=(x+u)+\mathrm{j}(y+v) \tag{1}
\end{equation*}
$$

and multiplication is defined as follows:

$$
\begin{equation*}
a \cdot b=(x+\mathrm{j} y) \cdot(u+\mathrm{j} v)=x u-y v+\mathrm{j}(x v+u y) \tag{2}
\end{equation*}
$$

Note: this uses the "FOIL" technique for multiplication of real quantities.

Definition 3 (Complex Conjugate and Magnitudes)
Consider an arbitrary complex number $a \in \mathbb{C}$ where we can equivalently write $a=x+\mathrm{j} y$ for $x, y \in \mathbb{R}$.
The complex conjugate of a is

$$
\begin{equation*}
\bar{a}=x-\mathrm{j} y \tag{3}
\end{equation*}
$$

The magnitude of a is

$$
\begin{equation*}
|a|=\sqrt{a \bar{a}} \tag{4}
\end{equation*}
$$

2 Polar Form

We will investigate another method to write complex numbers.
Theorem 4 (Euler's Identity)
Consider an arbitrary complex number $a \in \mathbb{C}$ which we can write as $a=x+\mathrm{j} y$. We can equivalently write this as $a=|a| \mathrm{e}^{\mathrm{j} \theta}$ where $x=|a| \cos (\theta)$ and $y=|a| \sin (\theta)$ (equivalently, $\left.\theta=\operatorname{atan} 2(y, x)^{a}\right)$.

[^0]Proof. Let us write $a=|a| \mathrm{e}^{\mathrm{j} \theta}$. We can show that $x=|a| \cos (\theta)$ and $y=|a| \sin (\theta)$, using the Taylor expansion of $f(x)=\mathrm{e}^{x}$:

$$
\begin{equation*}
a=|a| \mathrm{e}^{\mathrm{j} \theta} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& =|a|\left(1+\mathrm{j} \theta+\frac{(\mathrm{j} \theta)^{2}}{2!}+\frac{(\mathrm{j} \theta)^{3}}{3!}+\cdots+\frac{(\mathrm{j} \theta)^{2 n}}{2 n!}+\frac{(\mathrm{j} \theta)^{2 n+1}}{(2 n+1)!}+\cdots\right) \tag{6}\\
& =|a|\left(1+\mathrm{j} \theta-\frac{\theta^{2}}{2!}-\mathrm{j} \frac{\theta^{3}}{3!}+\cdots+(-1)^{n} \frac{\theta^{2 n}}{2 n!}+\mathrm{j}(-1)^{n} \frac{\theta^{2 n+1}}{(2 n+1)!}+\cdots\right) \tag{7}\\
& =|a|\left[\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots+(-1)^{n} \frac{\theta^{2 n}}{2 n!}+\cdots\right)+\mathrm{j}\left(\theta-\frac{\theta^{3}}{3!}+\cdots+(-1)^{n} \frac{\theta^{2 n+1}}{(2 n+1)!}+\cdots\right)\right] \tag{8}\\
& =|a|(\cos (\theta)+\mathrm{j} \sin (\theta)) \tag{9}\\
& =\underbrace{|a| \cos (\theta)}_{x}+\mathrm{j} \underbrace{|a| \sin (\theta)}_{y} \tag{10}
\end{align*}
$$

To show that $\theta=\operatorname{atan} 2(y, x)$, consider that

$$
\begin{align*}
\frac{y}{x} & =\frac{|a| \sin (\theta)}{|a| \cos (\theta)} \tag{11}\\
& \Longrightarrow \theta=\arctan \frac{y}{x} \tag{12}
\end{align*}
$$

Instead of using regular arctan, we will use atan2, two argument arctan, which protects against sign errors (i.e., to differentiate the cases when x and y are both positive or both negative) and division by zero (i.e., when $x=0$). Hence, we write

$$
\begin{equation*}
\theta=\operatorname{atan} 2(y, x) \tag{13}
\end{equation*}
$$

The plot in Figure 1 visually describes the conversion from rectangular (i.e., $x+\mathrm{j} y$) form to polar form (i.e., $|a| \mathrm{e}^{\mathrm{j} \theta}$)

Figure 1: Complex number $a \in \mathbb{C}$ depicted as a vector in the complex plane.

Corollary 5 (Complex Exponential Representations of Sine and Cosine)
Using Theorem 4, we have that

$$
\begin{equation*}
\cos (\theta)=\frac{\mathrm{e}^{\mathrm{j} \theta}+\mathrm{e}^{-\mathrm{j} \theta}}{2} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\sin (\theta)=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \tag{15}
\end{equation*}
$$

Proof. Using Theorem 4 and the even/odd nature of cosine/sine respectively, we have the following direct results:

$$
\begin{align*}
\mathrm{e}^{\mathrm{j} \theta} & =\cos (\theta)+\mathrm{j} \sin (\theta) \tag{16}\\
\mathrm{e}^{-\mathrm{j} \theta} & =\cos (\theta)-\mathrm{j} \sin (\theta) \tag{17}
\end{align*}
$$

From this, we have that

$$
\begin{align*}
2 \cos (\theta) & =\mathrm{e}^{\mathrm{j} \theta}-\mathrm{j} \sin (\theta)+\mathrm{e}^{-\mathrm{j} \theta}+\mathrm{j} \sin (\theta) \tag{18}\\
\cos (\theta) & =\frac{\mathrm{e}^{\mathrm{j} \theta}+\mathrm{e}^{-\mathrm{j} \theta}}{2} \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
2 \mathrm{j} \sin (\theta) & =\mathrm{e}^{\mathrm{j} \theta}-\cos (\theta)-\mathrm{e}^{-\mathrm{j} \theta}+\cos (\theta) \tag{20}\\
2 \mathrm{j} \sin (\theta) & =\mathrm{e}^{\mathrm{j} \theta}-\mathrm{e}^{-\mathrm{j} \theta} \tag{21}\\
\sin (\theta) & =\frac{\mathrm{e}^{\mathrm{j} \theta}-\mathrm{e}^{-\mathrm{j} \theta}}{2 \mathrm{j}} \tag{22}
\end{align*}
$$

Contributors:

- Anish Muthali.
- Aditya Arun.
- Anant Sahai.
- Nikhil Shinde.
- Druv Pai.
- Neelesh Ramachandran.

[^0]: ${ }^{a}$ Here, atan $2(y, x)$ is a function that returns the angle from the positive x-axis to the vector from the origin to the point (x, y). See https://en.wikipedia.org/wiki/Atan2.

