EECS 16B Notes

Simon Kuang, Seth Sanders

Spring (now Fall) 2020

Introduction

These are notes for EECS 16B, a freshman-level survey of topics in electrical engineering. I (Simon) mostly wrote them during the Spring 2020 semester of EECS 16B paraphrasing Prof. Sanders's lectures the same semester. The sentences are my own; the source graphics ${ }^{1}$ and a lot of proofreading are Seth's.

If you find a mistake or can suggest an improvement, let me know on GitHub

I release these notes under Creative Commons Attribution-NonCommercialShareAlike 4.0 International (©()()(0)

The file you're viewing was compiled at 2020-10-01 20:59:50-07:00.

[^0]
Contents

Introduction i
Contents ii
List of Figures iv
1 16A review and prerequisites 1
1.1 The language of circuits 1
1.2 Current-voltage characteristic 2
1.3 Linear algebra 3
2 Transistor Circuits 4
2.1 mOSFET behavior at a low level 4
2.2 An nmos inverter 7
2.3 A cmos inverter 9
2.4 A cmos inverter chain with capacitance 10
3 Transient Analysis 13
3.1 RC transient in an inverter chain 13
3.2 Uniqueness 17
4 Differential equations with inputs 19
4.1 RC with exponential input 19
4.2 General scalar differential equation 21
5 Vector differential equations and second-order circuits 22
5.1 Guess-and-check for RC filter with cosine input. 22
5.2 Second-order filter with two capacitors 23
5.3 General state-space linear ODEs 23
6 Diagonalization to solve vector differential equations 27
6.1 Solution technique 27
6.2 Numerical example from RCRC circuit 28
6.3 Introduction to inductors 30
6.4 Example: RL circuit 31
7 Inductors and RLC Circuits 32

Contents

7.1 LR 32
7.2 LC 32
7.3 LRC 35
8 Phasors 38
8.1 Exponential inputs and outputs 38
8.2 Phasor representation of a sinusoid 39
8.3 Current and voltage phasors in circuits. 41
9 Frequency Response and Bode Plots 43
9.1 Phasors review 43
9.2 Transfer functions 45
10 Resonance in RLC Circuits 47
10.1 Time-domain analysis 48
10.2 Reparameterized transfer function 50
10.3 Applications of (R)LC filtering 50

List of Figures

1.1 Current and voltage annotated on a passive element. 1
1.2 I-V characteristic of a resistor. 2
1.3 I-V characteristic of a voltage source. 2
1.4 I-V characteristic of a current source. 3
2.1 Physical construction of a simple mosfet. 4
2.2 Currents and voltages labeled on an nmos transistor. 5
2.3 I-V characteristic of an nmos transistor at different values of v_{GS}. 5
2.4 Regions of an nmos I-V characteristic. 6
2.5 Currents and voltages labeled on a pmos transistor. 6
2.6 I-V characteristic of a PMOS transistor at different values of v_{GS}. 7
2.7 A inverter built using an nMOs transistor. 7
2.8 Truth table of the nMO inverter. 8
2.9 A inverter built using the cmos design.. 8
2.10 Equivalent circuit of Figure 2.9 when $v_{\text {in }}=V_{\text {DD }}$. 9
2.11 A chain of inverters, which is kind of similar to a computer. 10
2.12 An inverter taken from a chain with a capacitor modeling the next stage. 10
2.13 An inverter outputting V_{DD} with load capacitor. 10
2.14 Energy stored in a capacitor can be computed by an integral under the $\mathrm{V}=\mathrm{Q} / \mathrm{C}$ curve. 11
2.15 смоs load capacitor forced from voltage $V_{D D}$ to 0 11
3.1 Model of nmos transistor with G-S capacitance. 13
3.2 Model of pmos transistor with G-S capacitance. 14
3.3 A cmos inverter at three levels of abstraction. 14
3.4 Two consecutive cmos inverters, part of a longer chain. 14
3.5 Input signal to the first inverter of Fig ure 3.4 15
3.6 Analog redrawing of Figure 3.4, showing switch actions of the first inverter, as well as a distinguished node. 15
3.7 Sketch of transient from t_{1} to t_{2} in Figure 3.6|| 17
4.1 An amp with three knobs to adjust playback. 19
4.2 RC circuit as a filter. 20
5.1 Filter with two resistors and two capacitors. 23
5.2 Decomposition of \vec{x} along eigenbasis directions \vec{v}_{1} and \vec{v}_{2}. 25
6.1 Illustration of multiplication actions of $A, \Lambda, \mathrm{~V}$, and V^{-1}. 28
6.2 Parallels between capacitors and inductors. 30
6.3 RL circuit, which is similar to an RC circuit (cf.|Figure 4.2) 31
7.1 An RL circuit with an (AC) voltage source. 32
7.2 An LC circuit. 33
7.3 Current and voltage of an oscillating LC circuit. 34
7.4 Phase portrait of an oscillating LC circuit. 34
7.5 An LRC circuit. 36
7.6 The effects of the real and imaginary parts of an eigenvalue $\lambda=$ $\lambda_{r}+j \lambda_{i}$, when neither is zero. 36
8.1 An RC circuit with a sinusoidal voltage source and its phasor domain representation. 41
9.1 Bode magnitude plot of Equation 9.19 45
9.2 Bode phase plot of Equation 9.19|| 46
10.1 An LRC circuit. 47
10.2 Eigenvalue locus from imaginary pair at $R=0$ to negative real at critical R, as R increases from 0 48
10.3 Figure 10.1, but reparameterized using ω_{n} and ξ. 49
10.4 Homogeneous response of an LRC circuit with $R>0$. 49
10.5 Bode plot of an LRC filter with $\xi=0.1$. 50
10.6 An $\mathrm{R} \approx 0$ LC circuit used as an matching network. 51
10.7 An $\mathrm{R} \approx 0$ LC circuit used in a DC-DC converter. 51
10.8 Output of the switch in|Figure 10.7 approximated as an offset sine wave. 52

Lecture 1

16A review and prerequisites

1.1 The language of circuits

Electrical circuits are models, specifically, abstractions of underlying physicsbased descriptions of realities that govern behavior of an electrical system under analysis. Mathematically, circuits are collections of nodes joined by branch elements. Between every pair of adjacent nodes there is a voltage difference, measured in volts, as well as a current, measured in amps. You should be able to explain, both in approximate physical terms, and, if possible, by a mechanical analog, what voltage and current are. Given a circuit drawing, you should be able to write a comprehensive set of voltage-current constraints that fully predicts what is happening in the circuit. For a well-posed circuit model with N nodes, one preferred method is Nodal Analysis, which involves writing $\mathrm{N}-1$ linearly independent KCL node equations, and incorporating KVL and element branch consraints while writing the node equations.

Figure 1.1: Current and voltage annotated on a passive element.
Understand how current and voltage are annotated on a circuit. Our terms are "voltage across branch element X " and "current through branch element X." The phrases "voltage through..." or "current across..." do not make sense. Understand, as shown in Fig. 1.1. that the reference directions for voltage

Figure 1.2: I-V characteristic of a resistor.

Figure 1.3: I-V characteristic of a voltage source.
and current are such that power absorbed by a circuit element is given by the formula $v i$.

1.2 Current-voltage characteristic

Resistor

As shown in Fig. 1.2, resistors enforce a proportionality relationship between current and voltage:

$$
\begin{align*}
\mathrm{V} & =\mathrm{RI} \tag{1.1}\\
\mathrm{I} & =\mathrm{GV} \tag{1.2}
\end{align*}
$$

The ratio V / I is called resistance. The ratio I / V is called conductance.

Voltage source

As shown in Fig. 1.3, a voltage source will provide any current (or none at all) to maintain its target voltage.

Current source

As shown in Fig. 1.4, a current source will provide any voltage (or none at all) to maintain its target current.

Figure 1.4: I-V characteristic of a current source.

Circuit-solving techniques

Be familiar with the following methods for solving circuits:

- Series elements, e.g. two resistors in series
- Parallel elements, e.g. two resistors in parallel.
- Voltage and current dividers
- Kirchoff's voltage and current laws
- Norton and Thévenin equivalent circuits
- Nodal analysis
- Power calculations

1.3 Linear algebra

Know what a vector is. Know what eigenvalues and eigenvectors are, and know how to solve for the eigenvalues and eigenvectors of a matrix, by solving for the null space of $A-\lambda I$, where λ is an indeterminate. Know why this technique works.

Lecture 2

Transistor Circuits

2.1 mOSFET behavior at a low level

Transistors are nonlinear circuit elements that are integral to building digital electronics. We'll focus on a class of transistor called mosfet (metal-oxide semiconductor field-effect transistor), of which there are two types, nмоs and mos. For the most part, we will view mosfets from a digital perspective as voltage-controlled switches (more on that later), but we'll first have a look at the analog world under the hood.

The physical makeup of a mosfet is shown in Figure 2.1 It is a device built on a silicon substrate with three terminals: source (S), drain (D), and gate (G). What makes a transistor a transistor is 2) mediated by gate voltage. (No current enters the gate of a mosfet: $\mathrm{I}_{\mathrm{G}}=0$.) 1) a current-voltage characteristic between drain and source, These quantities are labeled on Figure 2.2 Notice that voltages are understood with reference to their difference from V_{S}, so:

- D-S current-voltage characteristic is between I_{D} and $v_{\mathrm{DS}}=v_{\mathrm{D}}-v_{\mathrm{S}}$,
- parameterized by $v_{\mathrm{GS}}=v_{\mathrm{G}}-v_{\mathrm{S}}$.

Figure 2.1: Physical construction of a simple мозfet.

Figure 2.2: Currents and voltages labeled on an nmos transistor.

Figure 2.3: I-V characteristic of an mos transistor at different values of v_{GS}.

The role of $v_{G S}$ in nmos

Figure 2.3 depicts several current-voltage characteristics of an nos, parameterized by v_{GS}. There's a lot happening on this graph in both the vertical and horizontal directions. Here's a self-guided tour:

- Notice the horizontal line lying along the positive v_{DS}-axis. This is the plot of the I-V characteristic when $v_{\mathrm{GS}}<v_{\mathrm{t}, \mathrm{n}}$, where $v_{\mathrm{t}, \mathrm{n}}>0$ is the threshold voltage for an nmos transistor. The current-voltage characteristic is $\mathrm{I}=0$, the transistor is behaving as a current source corresponding to zero current-in other words, it's an open circuit. The transistor is "off." 1
- Notice that three I-V curves, parameterized by how much v_{GS} exceeds $v_{\mathrm{t}, \mathrm{n}}$, lie above the line $\mathrm{I}=0$. Each of them is intersected by what looks like the eastern half of a dotted upward-facing parabola rising from the origin. This parabola divides the quadrant into two regions, one left and

[^1]| region \# | on/off? | v_{GS} predicate | v_{DS} predicate | name |
| :--- | :--- | :--- | :--- | :--- |
| 0 | off | $v_{\mathrm{GS}}<v_{\mathrm{t}, \mathrm{n}}$ | any | |
| 1 | on | $v_{\mathrm{GS}}>v_{\mathrm{t}, \mathrm{n}}$ | low | "linear region" |
| 2 | on | $v_{\mathrm{GS}}>v_{\mathrm{t}, \mathrm{n}}$ | high | "saturation" |

Figure 2.4: Regions of an nмos I-V characteristic.

Figure 2.5: Currents and voltages labeled on a pmos transistor.
one right. The left region is called region 1 ; the right region is called region 2.

- Focus on region 1, which is called the Linear Region. Notice that in region 1 near the origin, I_{D} and v_{DS} are proportional for every value of v_{GS}. The slope $\mathrm{G}=\mathrm{I}_{\mathrm{D}} / v_{\mathrm{DS}}$ increases for higher values of v_{GS}. This means that the D-S resistance $R=G^{-1}$ transitions from ∞ to a finite (perhaps small) value as v_{GS} increases past $v_{\mathrm{t}, \mathrm{n}}$. A resistor that can alternate between finite and infinite resistance is called a switch: in the Linear Region the transistor is a voltage-controlled switch.
- Focus on region 2, which is called Saturation, Here the I_{D} increases only very weakly as v_{DS} increases. For a given $\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}$ increases with increasing v_{GS} : the transistor behaves approximately as a voltage-controlled current source!

These characteristics are summarized in Figure 2.4 Regions 0 and 1 can be used to implement a switch. Region 2 is used for analog electronics-dependent sources, amplifiers, etc.

pmos transistors: opposite of nmos

Another kind of mosfet is the pmos. They have a similar construction as nmos transistors, but their behavior is opposite, and for the "on" condition of $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{t}, \mathrm{p}}, \mathrm{V}_{\mathrm{t}, \mathrm{p}}<0$. Figure 2.5 and Figure 2.6 are the counterparts of Figure 2.2 and Figure 2.3 , respectively.

For most of this class, we'll use more idealized models of these transistors in digital logic settings. In the voltage-controlled switch perspective, nмоs

Figure 2.6: I-V characteristic of a PMOS transistor at different values of v_{GS}.

Figure 2.7: A inverter built using an nmos transistor.
transistors open at lower voltages and close at higher voltages, and pmos transistors close at lower voltages and open at high ones.

2.2 An nmos inverter

One building block we need to understand digital logic is the inverter, which is a circuit that outputs a high voltage when its input is a low voltage, and vice versa. The high voltage represents a digital value of 1 (true), and the low voltage represents a digital value of 0 (false).

It's possible to build an inverter using an nmos transistor, as shown in Figure 2.7. The high voltage is called $V_{D D}$, which stands for the voltage supplied by the high power rail, and in this example has a value of 1 volt ${ }^{2}$ In this example, our reference voltage will be ground- 0 volts.

[^2]| $\nu_{\text {in }}$ | $\nu_{\text {out }}$ |
| :--- | :--- |
| 0 | $\mathrm{~V}_{\mathrm{DD}}$ |
| V_{DD} | 0 |

Figure 2.8: Truth table of the nmos inverter.

Figure 2.9: A inverter built using the смоs design..

Analysis

- (Case $\left.v_{\text {in }}=0\right)$ The transistor, as a switch, is off. As a result, the terminal $v_{\text {out }}$ is connected directly to $V_{D D}$ by a resistor. Because no current flows into the voltage terminal, by Ohm's law there can be no voltage drop across the resistor. Therefore $v_{\text {out }}=V_{D D}$.
- (Case $v_{\text {in }}=V_{\mathrm{DD}}$) The transistor, as a switch, is on. The terminal $v_{\text {out }}$ has a short to ground, so $v_{\text {out }}=0$.

Figure 2.8 shows the truth table of this circuit and verifies that this circuit is indeed an inverter.

Power consumption

When $v_{\text {in }}=0$, the circuit consumes no power, as we have established that there is no current through the resistor between $V_{D D}$ and $v_{\text {out }}$. When $v_{\text {in }}=V_{D D}$, there is a path from V_{DD} through the resistor, then the transistor, to ground. The circuit consumes power $\mathrm{VI}=\mathrm{V}_{\mathrm{DD}}^{2} / R$. While this might not necessarily be a lot, in computing applications with countless transistors, it adds up, and moving heat away from a dense circuit poses engineering challenges. Dense digital circuits were made possible by the discovery of the CMOS inverter architecture, which avoids a path from V_{DD} to ground.

Figure 2.10: Equivalent circuit of Figure 2.9 when $v_{\text {in }}=V_{D D}$.

2.3 A смоs inverter

Figure 2.9 shows an inverter circuit that exemplifies the смоs design strategy of using PMOS and nMOs transistors together.

Analysis

- (Case $\left.v_{\mathrm{in}}=V_{\mathrm{DD}}\right)$
- The pmos having as its source $V_{D D}$ and $v_{\text {out }}$ as its drain $V_{G S, 1}=0$, which is higher than $V_{\mathrm{t}, \mathrm{p}}$. Therefore there is no path from V_{DD} to $\nu_{\text {out }}$.
- The nmos having $v_{\text {out }}$ as its drain and ground as its source has $\mathrm{V}_{\mathrm{GS}, 2}=\mathrm{V}_{\mathrm{DD}}$, which is higher than $\mathrm{V}_{\mathrm{t}, \mathrm{n}}$. Therefore, due to the terminal's short to ground, $v_{\text {out }}=0$.

The equivalent circuit once the switch model has been applied is shown in Figure 2.10

- (Case $\left.v_{\mathrm{in}}=0\right)$
- The pmos, having $V_{G S, 1}=-V_{D D}<V_{t, p}$, turns on.
- The nmos, having $V_{G S, 2}=0<V_{t, n}$, turns off.

Therefore $V_{\text {out }}=V_{D D}$.

Power consumption

All currents are zero in this model, so no power is consumed.

Figure 2.11: A chain of inverters, which is kind of similar to a computer.

Figure 2.12: An inverter taken from a chain with a capacitor modeling the next stage.

Figure 2.13: An inverter outputting $V_{D D}$ with load capacitor.

2.4 A смоs inverter chain with capacitance

Contrary to our last conclusion, inverters in real electronics certainly do consume some power. We'll pretend digital circuits are chains of inverters (Figure 2.11although this model won't teach you how to build a computer, it is close enough to real смоs networks to illustrate when and where power is expended.

We will concentrate our analysis on just one stage of the cmos inverter chain. A single inverter is shown in Figure 2.12, with a capacitor between $v_{\text {out }}$ and ground to model the next stage's load. Figure 2.13 shows the equivalent circuit when the output of this inverter settles at $V_{D D}$.

Figure 2.14: Energy stored in a capacitor can be computed by an integral under the $V=Q / C$ curve.

Figure 2.15: смоs load capacitor forced from voltage $V_{D D}$ to 0 .

Potential energy in a capacitor

The energy stored in the capacitor when it has voltage $V_{D D}$ is given by the formula

$$
\begin{equation*}
\mathrm{E}_{\text {cap }}=\frac{1}{2} C V_{\mathrm{DD}}^{2} \tag{2.1}
\end{equation*}
$$

which can be derived by using the facts that 1) that voltage is energy per unit charge and 2) a capacitor obeys $\mathrm{Q}=\mathrm{CV}$, and integrating through the total charge stored in the capacitor: $\int_{0}^{C V_{D D}} v_{C} d q$ (Figure 2.14).

When the inverter's input changes from low to high, the output must change from $V_{D D}$ to 0 Figure 2.15. That means that the load capacitor must discharge
fully, burning $\frac{1}{2} \mathrm{CV}_{\mathrm{DD}}^{2}$ of potential energy as heat.

Total energy supplied

Even though the capacitor only stores and discharges $\frac{1}{2} \mathrm{CV}_{\mathrm{DD}}^{2}$, an up-down cycle costs $C V_{D D}^{2}$. This is because the voltage source must offer $Q=C V_{D D}$ of charge at V_{DD} energy per unit charge. Where does this go? Let's follow the energy as the output changes from 0 to 1 and back to 0 .

1. $\left(q_{c}=0, v_{C}=0\right)$
2. Voltage source loads $C V_{D D}$ of charge at $V_{D D}$ energy per unit charge, at a total expense of $C V_{D D}^{2}$. Half of its energy output is burned by "parasitic" resistance en route to the capacitor, and the other half is stored in the capacitor.
3. $\left(q_{\mathrm{C}}=C V_{\mathrm{DD}}, v_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}\right)$
4. Transistors toggle, and the capacitor drains, generating $\frac{1}{2} \mathrm{CV}_{\mathrm{DD}}^{2}$ of heat on the pull-down circuit.
5. $\left(q_{C}=0, v_{C}=0\right)$

Where does the energy in a device go?

With reference to our chain-of-inverters model, power consumption in digital devices is mainly explained by three phenomena:

- If the inverter flips every cycle at a clock speed of f_{s}, the circuit will burn $f_{s} C V_{D D}^{2}$ charging its capacitors.
- Leakage: a transistor that's "off" isn't 100% off, and a small amount of current flows and burns some energy.
- Short-circuit current (smaller): when the input is flipping between 0 and 1, there's a very short instant during which both transistors may be on, and some current flows through the momentary $\mathrm{V}_{\mathrm{DD}}-\mathrm{ground}$ short.

Lecture 3

Transient Analysis

(For this lecture, а молfet transistor is considered to transition between "on" and "off" at $v_{\mathrm{GS}}=\frac{1}{2} V_{\mathrm{DD}}$.)

We'll enrich our analog model of mолғетs as voltage-controlled switches by acknowledging capacitance between the mолғет's gate and source. Figure 3.1 and Figure 3.2 depict naos and pmos transistors in this model.

Figure 3.3 summarizes the three levels of abstraction with which we are able to reason about смоs inverters. On the very left is a digital symbol for an inverter that hides how the inverter works. In the center is the construction of an inverter using complementary мозғетs. On the right is a fairly faithful analog representation of an inverter that will allow us to interrogate the assumptions that, thus far, have enabled us to treat the analog circuit as a digital one.

3.1 RC transient in an inverter chain

Let's return to the case study of a chain of inverters, this time focusing on just two consecutive inverters. In Figure 3.4 three wires are labeled as follows:

Figure 3.1: Model of mos transistor with G-S capacitance.

Figure 3.2: Model of mos transistor with G-S capacitance.

Figure 3.3: А смоs inverter at three levels of abstraction.

Figure 3.4: Two consecutive emos inverters, part of a longer chain.

- $v_{\text {in }}$ is the input to the first inverter,
- $v_{\mathrm{o}_{1}}$ is the output of the first inverter (and the input to the second), and
- $v_{\mathrm{O}_{2}}$ is the output of the second.

The digital logic interpretation is that $v_{\mathrm{o}_{2}}$ is the double negation of v_{in}, that is, $v_{\mathrm{o}_{2}}=v_{\text {in }}$.

We will study what happens when $v_{\text {in }}$ is driven by the input depicted in Figure 3.5 It will begin having remained at 0 for a long time, change to v_{DD} at time t_{1}, then return to 0 at time $t_{2}>t_{1}$. Figure 3.6 shows the actions of the switches of the first inverter's transistors at times t_{1} and t_{2}. For the rest of this section, we'll just concentrate on what happens to v_{01}.

Figure 3.5: Input signal to the first inverter of Figure 3.4

Figure 3.6: Analog redrawing of Figure 3.4 , showing switch actions of the first inverter, as well as a distinguished node.

Before t_{1}

As $v_{\text {in }}=0$ well before t_{1}, we can assume that the circuit has settled, and the output of the first inverter is v_{DD}.

After t_{1}, before t_{2}

At t_{1}, the pull-up switch opens, and the pull-down switch closes. KCL applied to the distinguished (red) middle node of Figure 3.6 requires the outgoing currents to sum to zero. Using Ohm's Law once and the capacitor currentvoltage relationship twice, we have the following equation:

$$
\begin{align*}
\frac{v_{\mathrm{o}_{1}}}{\mathrm{R}_{\mathrm{N}}}+\mathrm{C}_{\mathrm{N}} \frac{\mathrm{~d}}{\mathrm{dt}} v_{\mathrm{o}_{1}}+\mathrm{C}_{\mathrm{P}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(v_{\mathrm{o}_{1}}-v_{\mathrm{DD}}\right) & =0 \tag{3.1}\\
\frac{\mathrm{~d}}{\mathrm{dt}} v_{\mathrm{o}_{1}}+\frac{1}{\mathrm{R}_{\mathrm{N}}\left(\mathrm{C}_{\mathrm{N}}+\mathrm{C}_{\mathrm{P}}\right)} v_{\mathrm{o}_{1}} & =0 \tag{3.2}
\end{align*}
$$

This is a differential equation that we will analyze with initial condition $v_{\mathrm{o}_{1}}\left(\mathrm{t}_{1}\right)=\mathrm{V}_{\mathrm{DD}}$. For equations of this sort we will identify a characteristic quantity τ as follows:

$$
\begin{equation*}
\tau=R_{N}\left(C_{N}+C_{P}\right) \tag{3.3}
\end{equation*}
$$

The International System of Units means that τ is measured in Ohm-Farads, or seconds. For this reason, τ is called the time constant of the system. A time constant on the order of tens of picoseconds is considered state-of-the-art for modern devices, arising from resistances on the order of kiloOhms and capacitances on the order of femtofarads. Rewriting using τ,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}_{1}}=-\frac{1}{\tau} v_{\mathrm{o}_{1}} \tag{3.4}
\end{equation*}
$$

We will refer to the constant of proportionality between $\frac{d}{d t} \nu_{\mathrm{o}_{1}}$ and $\nu_{\mathrm{o}_{1}}$ as λ.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}_{1}}=\lambda \nu_{\mathrm{o}_{1}} \tag{3.5}
\end{equation*}
$$

There are many heuristic techniques to propose a solution to this differential equation. One of them is called Separation of Variables, which involves equations such as $\int \frac{d v_{o_{1}}}{v_{o_{1}}}=\int \lambda d t$. The resulting solution form, where A is a constant that remains to be determined, is all that you will need to know about this variety of differential equation:

$$
\begin{equation*}
v_{\mathrm{o}_{1}}(\mathrm{t})=A e^{\lambda \mathrm{t}} \tag{3.6}
\end{equation*}
$$

(As an aside, you can verify that $v_{\mathrm{O}_{1}}(\mathrm{t})=A e^{\lambda \mathrm{t}}$ is a solution- differentiating both sides with respect to t results in $\frac{d}{d t} \nu_{\mathrm{o}_{1}}(\mathrm{t})=A \lambda e^{\lambda t}=\lambda\left(A e^{\lambda t}\right)$.) Our next goal is to determine A. We can do so by choosing A to meet the initial condition $v_{\mathrm{o}_{1}}\left(\mathrm{t}_{1}\right)=\mathrm{V}_{\mathrm{DD}}$. Substituting $\nu_{\mathrm{o}_{1}}(\mathrm{t})=A e^{\lambda \mathrm{t}}$,

$$
\begin{align*}
A e^{\lambda t_{1}} & =V_{D D} \tag{3.7}\\
A & =V_{D D} e^{-\lambda t_{1}} \tag{3.8}\\
V_{o_{1}} & =\left(V_{D D} e^{-\lambda t_{1}}\right) e^{\lambda t} \tag{3.9}\\
& =V_{D D} e^{-\left(\frac{t-t_{1}}{\tau}\right)} \tag{3.10}
\end{align*}
$$

Figure 3.7 is a sketch of $v_{\text {in }}$ and $v_{\mathrm{o}_{1}}$ after t_{1} and before t_{2}. Notice that $v_{\mathrm{o}_{1}}$ doesn't immediately jump to 0 like the digital model assumes. Rather, $v_{\mathrm{o}_{1}}$ decays exponentially toward 0 at a rate predicted by τ. Discharging a capacitor takes time, and digital devices' clock speed is limited by how quickly binary values settle in between logic gates.

After t_{2}

We will try to write a differential equation describing the evolution of $\nu_{\mathrm{O}_{1}}$ at time t_{2} and beyond. Figure 3.6 shows that at time t_{2}, the pull-up switch closes, and the pull-down switch opens. KCL applied to the same central node yields

Figure 3.7: Sketch of transient from t_{1} to t_{2} in Figure 3.6.
the following differential equation:

$$
\begin{align*}
\frac{v_{\mathrm{O}_{1}}-V_{\mathrm{DD}}}{R_{\mathrm{P}}}+\left(\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{\mathrm{N}}\right) \frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}_{1}} & =0 \tag{3.11}\\
\frac{d}{d t} v_{\mathrm{o}_{1}}+\frac{1}{R_{P}\left(C_{P}+C_{N}\right)} v_{\mathrm{o}_{1}} & =\frac{v_{\mathrm{DD}}}{R_{P}\left(C_{P}+C_{N}\right)} \tag{3.12}
\end{align*}
$$

The previous solution for $v_{0_{1}}$, which is valid up until time t_{2}, may be evaluated at t_{2} for a boundary condition valid past t_{2} :

$$
\begin{equation*}
v_{\mathrm{o}_{1}}\left(\mathrm{t}_{2}\right)=\mathrm{V}_{\mathrm{DD}} e^{-\left(\frac{\mathrm{t}_{2}-\mathrm{t}_{1}}{\tau}\right)} \tag{3.13}
\end{equation*}
$$

A solution for $v_{0_{1}}$ from t_{2} onwards is:

$$
\begin{equation*}
v_{\mathrm{o}_{1}}=\mathrm{V}_{\mathrm{DD}}+\left(v_{\mathrm{o}_{1}}\left(\mathrm{t}_{2}\right)-\mathrm{V}_{\mathrm{DD}}\right) e^{-\left(\frac{t-\mathrm{t}_{2}}{\tau_{\mathrm{P}}}\right)}, \tag{3.14}
\end{equation*}
$$

where $\tau_{P}=R_{P}\left(C_{P}+C_{N}\right)$.

3.2 Uniqueness

We solved a differential equation. Differential equations are universal and ubiquitous in science and engineering.

A theorem states that a large class of differential equations with boundary conditions have unique solutions. These differential equations are of the form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} x=\mathrm{f}(\mathrm{x}, \mathrm{t}), \quad x(0)=\mathrm{x}_{0} \tag{3.15}
\end{equation*}
$$

where

1. for all values of $t, f(x, t)$ is differentiable with respect to x and $\left|\frac{\partial f}{\partial x}(x, t)\right|<$ M for some nonnegative real number M; and
2. for all values of $x, f(x, t)$ has a finite number of discontinuities in t in any unit interval $\left[t_{0}, t_{0}+1\right]$.

If these conditions hold, then our differential equation has a unique solution.
Note that these conditions are in fact quite loose, and are more than enough to certify that unique solutions exist to differential equations of the form $\frac{\mathrm{d}}{\mathrm{dt}} x=\mathrm{f}(\mathrm{x})=\lambda x$. It is important that we have proofs of existence and uniqueness because methods such as Separation of Variables are not inherently rigorous. Only once we have verifed that a proposed solution satisfies the differential equation and boundary condition may we claim that it is a solution. Because these problems have unique solutions, we may be certain that the model we are using is physically deterministic-it tells precisely what must happen, not just what may happen.

Lecture 4

Differential equations with inputs

4.1 RC with exponential input

In this section we will derive, in a more hands-on way, the behavior of an RC circuit forced by an exponential input. If you have ever used an ampwith knobs for treble and bass (Figure 4.1), then you have interacted with two circuits similar to the one shown in Figure 4.2. The resistor with a arrow is a variable resistor, or potentiometer ${ }^{1}$ that might be controlled by one of the amp's knobs.

In Figure 4.2 .

- $v_{\text {in }}$ represents the amp's analog input,
- v_{o} is used to drive the speakers after subsequent amplification, and
- R represents the setting on one of the potentiometers.

By studying the distinguished (green) node, we can write the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}}(\mathrm{t})=-\frac{1}{\mathrm{RC}} v_{\mathrm{o}}(\mathrm{t})+\frac{1}{\mathrm{RC}} v_{\mathrm{in}}(\mathrm{t}) . \tag{4.1}
\end{equation*}
$$

[^3]

Figure 4.1: An amp with three knobs to adjust playback.

Figure 4.2: RC circuit as a filter.

We'll constrain $v_{\text {in }}$ to have the following form:

$$
\begin{equation*}
v_{\mathrm{in}}(\mathrm{t})=\mathrm{V}_{\mathrm{in}} \mathrm{e}^{\mathrm{st}} \tag{4.2}
\end{equation*}
$$

While it seems that this form is arbitrary, it will prove insightful, because $e^{s t}$ is an eigenfunction for input-output behavior of this circuit, i.e. we expect

$$
\begin{equation*}
v_{\mathrm{o}}(\mathrm{t})=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{\mathrm{st}} \tag{4.3}
\end{equation*}
$$

We can determine V_{0} by substituting our parameterization of v_{0} into Equation 4.1. whose LHS. . .

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}}(\mathrm{t}) & =\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~V}_{\mathrm{o}} e^{\mathrm{st}} \tag{4.4}\\
& =s V_{\mathrm{o}} e^{s t} \tag{4.5}
\end{align*}
$$

. . . is equated with the RHS:

$$
\begin{equation*}
s V_{o} e^{s t}=-\frac{1}{R C} V_{o} e^{s t}+\frac{1}{R C} V_{i n} e^{s t} \tag{4.6}
\end{equation*}
$$

Now we can isolate V_{o}.

$$
\begin{align*}
s V_{0}+\frac{1}{R C} V_{o} & =\frac{1}{R C} V_{\text {in }} \tag{4.7}\\
V_{o} & =\left(\frac{1}{R C}\right)\left(\frac{1}{s+\frac{1}{R C}}\right) V_{\text {in }} \tag{4.8}
\end{align*}
$$

Substituting $\lambda=-\frac{1}{R C}$,

$$
\begin{equation*}
V_{o}=\frac{1}{1-\frac{s}{\lambda}} V_{\text {in }} \tag{4.9}
\end{equation*}
$$

All together, our solution for $v_{\mathrm{o}}(\mathrm{t})$ is the following:

$$
\begin{equation*}
\nu_{\mathrm{o}}(\mathrm{t})=\mathrm{V}_{\mathrm{o}} e^{\mathrm{st}}=\frac{1}{1-\frac{\mathrm{s}}{\lambda}} V_{\mathrm{in}} e^{\mathrm{st}} \tag{4.10}
\end{equation*}
$$

Suppose that we have an initial condition for v_{o} at time 0 .

$$
\begin{equation*}
\left.v_{\mathrm{o}}\right|_{\mathrm{t}=0}=v_{1} \tag{4.11}
\end{equation*}
$$

Then our solution, taking this fact into account, will be

$$
\begin{equation*}
v_{\mathrm{o}}(\mathrm{t})=A e^{-\frac{t}{\mathrm{RC}}}+\frac{1}{\mathrm{RC}}\left(\frac{V_{\mathrm{in}} e^{s t}}{s+\frac{1}{R C}}\right), \tag{4.12}
\end{equation*}
$$

where A remains to be determined, viz. by evaluating both sides at $t=0$:

$$
\begin{align*}
v_{1} & =A+\frac{1}{R C}\left(\frac{V_{\mathrm{in}}}{s+\frac{1}{\mathrm{RC}}}\right) \tag{4.13}\\
A & =v_{1}-\frac{1}{\mathrm{RC}}\left(\frac{V_{\mathrm{in}}}{s+\frac{1}{\mathrm{RC}}}\right) . \tag{4.14}
\end{align*}
$$

This concludes our example. A solution to a linear differential equation will, generally, have the following structure:

$$
\begin{equation*}
v(\mathrm{t})=v_{\text {homogeneous }}(\mathrm{t})+v_{\text {particular }}(\mathrm{t}), \tag{4.15}
\end{equation*}
$$

where $v_{\text {homogeneous }}(\mathrm{t})$ corresponds to the initial condition, and $v_{\text {particular }}(\mathrm{t})$ to the input term.

4.2 General scalar differential equation

We will verify that the following general differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} x(\mathrm{t})=\lambda x(\mathrm{t})+\mathrm{u}(\mathrm{t}) ; \quad x\left(\mathrm{t}_{0}\right)=x_{0} \tag{4.17}
\end{equation*}
$$

has the following solution, which is a sum of a homogeneous and a particular term:

$$
\begin{equation*}
x(t)=e^{\lambda\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{\lambda(t-\tau)} u(\tau) d \tau . \tag{4.18}
\end{equation*}
$$

We can check the initial condition $x\left(t_{0}\right)=x_{0}$: the former term evaluates to x_{0} and the latter to 0 . Next, we can verify that $\frac{d}{d t} x(t)=\lambda x(t)+u(t)$ holds by differentiating.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} x(\mathrm{t})=\left\{\lambda e^{\lambda\left(\mathrm{t}-\mathrm{t}_{0}\right)} x_{0}\right\}+\mathfrak{u}(\mathrm{t})+\left\{\int_{\mathrm{t}_{0}}^{\mathrm{t}} \lambda e^{\lambda(\mathrm{t}-\tau)} \mathfrak{u}(\tau) \mathrm{d} \tau\right\} \tag{4.19}
\end{equation*}
$$

The two terms in curly braces sum to $\lambda x(\mathrm{t})$, so Equation 4.17 is satisfied.

Lecture 5

Vector differential equations and second-order circuits

5.1 Guess-and-check for RC filter with cosine input

Last lecture we derived the folowing equation modeling the input-output properties of an amp: (where R is set by a potentiometer)

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\text {out }}(\mathrm{t})=-\frac{1}{\mathrm{RC}} v_{\text {out }}(\mathrm{t})+\frac{1}{\mathrm{RC}} v_{\text {in }}(\mathrm{t}) ;\left.\quad v_{\text {out }}\right|_{\mathrm{t}_{0}}=\mathrm{V} \tag{5.1}
\end{equation*}
$$

In this section we will try to determine the result in $v_{\text {out }}$ when $v_{\text {in }}$ has the following sinusoidal form:

$$
\begin{equation*}
v_{\text {in }}(t)=V_{\text {in }} \cos (\omega t) \tag{5.2}
\end{equation*}
$$

This defines a sinusoid with amplitude $V_{\text {in }}$ and a frequency of ω, which is angular frequency, in rad/s. Angular frequency is related to cycles/second by $\omega=2 \pi \mathrm{f}$, where f is in units of Hz .

We can solve for $v_{\text {out }}$ by guessing that the particular solution-the summand that corresponds to $v_{\text {in }}$-has the form $A \cos (\omega t+\phi)$. The second summand of $v_{\text {out }}$ is the homogeneous solution, which corresponds to the initial condition. It has the form $B e^{-\frac{1}{R C}\left(t-t_{0}\right)}$.

$$
\begin{equation*}
v_{\text {out }}(t)=A \cos (\omega t+\phi)+B e^{-\frac{1}{R C}\left(t-t_{0}\right)} \tag{5.3}
\end{equation*}
$$

Substitution into the differential equation and initial conditions result in the following constants:

$$
\begin{align*}
& A=\frac{V_{\text {in }}}{\sqrt{\omega^{2}(R C)^{2}+1}} \tag{5.4}\\
& \phi=-\tan ^{-1}(\omega R C) \tag{5.5}\\
& B=\left.v_{\text {out }}\right|_{t_{0}}-A \cos \left(\omega t_{0}+\phi\right) \tag{5.6}
\end{align*}
$$

Figure 5.1: Filter with two resistors and two capacitors.

5.2 Second-order filter with two capacitors

Perhaps a "better" filter could be constructed by using two capacitors and two resistors instead of just one. Figure 5.1 depicts the proposed circuit, which is a "second-order circuit" or "second-order" filter, with values $C_{1}=C_{2}=1 \mu \mathrm{~F}$, $R_{1}=\frac{1}{3} \mathrm{M} \Omega$, and $R_{2}=\frac{1}{2} \mathrm{M} \Omega$. KCL at the two dotted-circled upper nodes yields:

$$
\begin{align*}
\mathrm{C}_{1} \frac{\mathrm{~d}}{\mathrm{dt}} v_{1}+\frac{v_{1}-v_{\mathrm{in}}(\mathrm{t})}{\mathrm{R}_{1}}+\frac{v_{1}-v_{2}}{\mathrm{R}_{2}} & =0 \tag{5.7}\\
\mathrm{C}_{2} \frac{\mathrm{~d}}{\mathrm{dt}} v_{2}+\frac{v_{2}-v_{1}}{\mathrm{R}_{2}} & =0 \tag{5.8}
\end{align*}
$$

In order to view this system of differential equations in state-space form, we will isolate derivatives on the LHS and emphasize that the RHS consists of linear combinations of v_{1}, v_{2}, and $v_{\text {in }}(t)$:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{1} & =-v_{1}\left(\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \frac{1}{\mathrm{C}_{1}}\right)+v_{2}\left(\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}\right)+v_{\mathrm{in}}(\mathrm{t})\left(\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}\right) \tag{5.9}\\
\frac{\mathrm{d}}{\mathrm{dt}} v_{2} & =v_{1}\left(\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\right)-v_{2}\left(\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\right) \tag{5.10}
\end{align*}
$$

Written in matrix-vector form with physical parameters substituted,

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
v_{1} \tag{5.11}\\
v_{2}
\end{array}\right]=\left[\begin{array}{rr}
-5 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{l}
3 \\
0
\end{array}\right] v_{\mathrm{in}}(\mathrm{t})
$$

5.3 General state-space linear ODEs

Generally, a system of linear differential equations similar to the one derived above has the following form:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \vec{x}=A \vec{x}+\overrightarrow{\mathrm{b}} u(\mathrm{t}) \tag{5.12}
\end{equation*}
$$

where \vec{x} is a vector and A is a 2×2 matrix.
Suppose that A has an eigenvector \vec{v} for an eigenvalue λ. We propose the following solution to the homogeneous problem $\frac{d}{d t} \vec{x}=A \vec{x}$:

$$
\begin{equation*}
\vec{x}(\mathrm{t})=\vec{v} \mathrm{e}^{\lambda \mathrm{t}} \tag{5.13}
\end{equation*}
$$

and verify that " $\frac{d}{d t} \vec{x}$ " and " $A \vec{x}$ " for this candidate solution are equal:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\vec{v} e^{\lambda t}\right) & =\lambda \vec{v} e^{\lambda t} \tag{5.14}\\
A\left(\vec{v} e^{\lambda t}\right) & =\lambda \vec{v} e^{\lambda t} \tag{5.15}
\end{align*}
$$

Detour: diagonalization of A

Let's additionally assume that A has two linearly independent eigenvectors:

$$
\begin{align*}
& A \vec{v}_{1}=\lambda_{1} \vec{v}_{1} \tag{5.16}\\
& A \vec{v}_{2}=\lambda_{2} \vec{v}_{2} \tag{5.17}
\end{align*}
$$

These two relationships can be expressed simultaneously using matrices that consolidate the eigenvectors (side by side) and eigenvalues (on a diagonal):

$$
A\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{5.18}\\
0 & \lambda_{2}
\end{array}\right]
$$

Calling the former two matrices V and the latter Λ,

$$
\begin{equation*}
A V=V \Lambda \tag{5.19}
\end{equation*}
$$

Because we chose two linearly independent eigenvectors to constitute V, V is invertible. Stating A in terms of its eigenvectors and eigenvalues is called the eigenvector-eigenvalue decomposition of A :

$$
\begin{equation*}
\mathrm{A}=\mathrm{V} \wedge \mathrm{~V}^{-1} \tag{5.20}
\end{equation*}
$$

Second-order homogeneous solution from modes

Generally, $\vec{x}(0)$ will be a linear combination of \vec{v}_{1} and \vec{v}_{2} :

$$
\begin{equation*}
\vec{x}(0)=\tilde{x}_{1}(0) \vec{v}_{1}+\tilde{x}_{2}(0) \vec{v}_{2} \tag{5.21}
\end{equation*}
$$

These coefficients can be solved by inverting V :

$$
\left[\begin{array}{l}
\tilde{x}_{1}(0) \tag{5.22}\\
\tilde{x}_{2}(0)
\end{array}\right]=\mathrm{V}^{-1} \overrightarrow{\mathrm{x}}(0)
$$

Figure 5.2: Decomposition of \vec{x} along eigenbasis directions \vec{v}_{1} and \vec{v}_{2}.
We can build a homogeneous solution for $\vec{x}(t)$ by superposing one-dimensional solutions in each eigenvector's respective direction:

$$
\begin{align*}
\vec{x}(t) & =\vec{v}_{1} e^{\lambda_{1} t} \tilde{x}_{1}(0)+\vec{v}_{2} e^{\lambda_{2} t} \tilde{x}_{2}(0) \tag{5.23}\\
& =V\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1}(0) \\
\tilde{x}_{2}(0)
\end{array}\right] \tag{5.24}
\end{align*}
$$

To verify the initial condition, we can observe that the diagonal matrix of exponentials becomes an identity matrix at time 0 :

$$
\vec{x}(0)=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \tag{5.25}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1}(0) \\
\tilde{x}_{2}(0)
\end{array}\right],
$$

which is true by construction Equation 5.21.

Modal decomposition

In the previous section, we wrote $\vec{\chi}(0)$ in eigenbasis-aligned coordinates $\tilde{x}_{1}(0)$ and $\tilde{\chi}_{2}(0)$. In this section, we will follow \tilde{x}_{1} and \tilde{x}_{2} as functions of t. Recall that the eigenbasis-aligned coordinates are defined as follows:

$$
\vec{x}=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1} \tag{5.26}\\
\tilde{x}_{2}
\end{array}\right]=V \overrightarrow{\tilde{x}} .
$$

In reverse,

$$
\begin{equation*}
\overrightarrow{\tilde{x}}=V^{-1} \vec{x} \tag{5.27}
\end{equation*}
$$

We can use the Chain Rule to obtain a differential equation for $\overrightarrow{\tilde{\chi}}$:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\tilde{x}} & =\mathrm{V}^{-1} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{x} \tag{5.28}\\
& =\mathrm{V}^{-1}(A \vec{x}+\overrightarrow{\mathrm{b}} u) \tag{5.29}\\
& =\mathrm{V}^{-1} A V \overrightarrow{\tilde{x}}+\mathrm{V}^{-1} \overrightarrow{\mathrm{~b} u} \tag{5.30}\\
& =\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \overrightarrow{\tilde{x}}+\overrightarrow{\tilde{b}} u, \quad \overrightarrow{\mathrm{~b}}=V^{-1} \mathrm{~b} \tag{5.31}
\end{align*}
$$

This vector differential equation is effectively scalar in each variable, in which scalar techniques can be applied separately. The separation of x into its eigenbasis-aligned components is called modal decomposition; $\vec{v}_{1} e^{\lambda_{1} t}$ and $\vec{v}_{2} e^{\lambda_{2} t}$ are the two modes of this system.

Lecture 6

Diagonalization to solve vector differential equations

In the last lecture, a second-order low-pass filter circuit using two resistors and two capacitors led us to the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \vec{x}=A \vec{x}+\vec{b} u, \tag{6.1}
\end{equation*}
$$

where $\vec{x}=\left[\begin{array}{l}v_{1}(t) \\ v_{2}(t)\end{array}\right]$ and $\vec{x}(0)$ or $\vec{x}\left(t_{0}\right)$ is known. We represented \vec{x} as a linear combination of A 's eigenvectors \vec{v}_{1} (for eigenvalue λ_{1}) and \vec{v}_{2} (for eigenvalue λ_{2}):

$$
\begin{align*}
\vec{x} & =\vec{v}_{1} \tilde{x}_{1}+\vec{v}_{2} \tilde{x}_{2} \tag{6.2}\\
& =\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]=V \overrightarrow{\tilde{x}} \tag{6.3}
\end{align*}
$$

We will assume that λ_{1} and λ_{2} are distinct, which implies that A has an invertible matrix of linearly independent eigenvectors V.We established that

$$
A V=V \Lambda, \quad V=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{6.4}\\
0 & \lambda 2
\end{array}\right] .
$$

These findings are summarized in Figure 6.1. which shows how $\vec{x}, A \vec{x}, \vec{x}$, and $\Lambda \vec{\chi}$ are related by matrix multiplication (along arrows).

6.1 Solution technique

A system

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{x}}=\mathrm{A} \overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{b} u} ; \quad \overrightarrow{\mathrm{x}}\left(\mathrm{t}_{0}\right) \tag{6.5}
\end{equation*}
$$

is solved as follows:

Figure 6.1: Illustration of multiplication actions of A, Λ, V, and V^{-1}.

1. Compute eigenvalues λ_{1} and λ_{2} of A, as well as their respective eigenvectors \vec{v}_{1} and \vec{v}_{2}.
2. Construct $V=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$ and define $\overrightarrow{\tilde{x}}=V^{-1} x$.
3. Construct $\Lambda=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ and $\tilde{b}=V^{-1} b$. Solve the differential equation $\frac{d}{d t} \overrightarrow{\tilde{x}}=\Lambda \overrightarrow{\tilde{x}}+\tilde{b} u$ with initial condition $\tilde{x}\left(t_{0}\right)=V^{-1} x\left(t_{0}\right)$. (More on this later.)
4. Recover a solution for \vec{x} using $\vec{x}=V \overrightarrow{\tilde{x}}$.

6.2 Numerical example from RCRC circuit

Equation 5.11 captured a second-order low-pass filter using

$$
A=\left[\begin{array}{rr}
-5 & 2 \tag{6.6}\\
2 & -2
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

We will solve the differential equation for $\vec{x}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ using the technique of the previous section.

Eigenvalues and eigenvectors

We will solve for eigenvectors λ as roots of $\operatorname{det}(\lambda I-A)$, the characteristic polynomial of A.

$$
\operatorname{det}\left[\begin{array}{cc}
\lambda+5 & -2 \tag{6.7}\\
-2 & \lambda+2
\end{array}\right]=\lambda^{2}+7 \lambda+6=0
$$

This quadratic equation in the indeterminate λ is called the characteristic equation of A. It has the following roots:

$$
\begin{equation*}
\lambda_{1}=-1 ; \quad \lambda_{2}=-6 \tag{6.8}
\end{equation*}
$$

Next we will solve for an eigenvector belonging to eigenvalue λ_{1}, by choosing a nonzero vector from the null space of $\lambda_{1} I-A$:

$$
\begin{align*}
\lambda_{1} I-A & =\left[\begin{array}{rr}
4 & -2 \\
-2 & 1
\end{array}\right] \tag{6.9}\\
\vec{v}_{1} & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \tag{6.10}
\end{align*}
$$

... and, mutatis mutandis, for λ_{2} :

$$
\begin{align*}
\lambda_{2} I-A & =\left[\begin{array}{ll}
-1 & -2 \\
-2 & -4
\end{array}\right] \tag{6.11}\\
\vec{v}_{2} & =\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \tag{6.12}
\end{align*}
$$

Differential equation in new coordinates

In our example,

$$
\begin{align*}
\mathrm{V} & =\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right], \text { so } \tag{6.13}\\
\mathrm{V}^{-1} & =\left[\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right] . \tag{6.14}
\end{align*}
$$

Our differential equation in $\overrightarrow{\tilde{x}}$ will be

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\tilde{x}} & =\Lambda \overrightarrow{\tilde{x}}+\mathrm{V}^{-1} \overrightarrow{\mathrm{~b} u} \tag{6.15}\\
& =\left[\begin{array}{rr}
-1 & 0 \\
0 & -6
\end{array}\right] \overrightarrow{\tilde{x}}+\left[\begin{array}{l}
\frac{3}{5} \\
\frac{6}{5}
\end{array}\right] . \tag{6.16}
\end{align*}
$$

With $t_{0}=0, \overrightarrow{\tilde{x}}$ is solved as follows:

$$
\begin{align*}
\overrightarrow{\tilde{x}}(t) & =\text { (homogeneous solution) }+ \text { (particular solution) } \tag{6.17}\\
& =\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right] \overrightarrow{\tilde{x}}(0)+\int_{0}^{t}\left[\begin{array}{cc}
e^{\lambda_{1}(t-\tau)} & 0 \\
0 & e^{\lambda_{2}(t-\tau)}
\end{array}\right] \overrightarrow{\tilde{b} u} u(\tau) d \tau \tag{6.18}
\end{align*}
$$

viz., in individual components,

$$
\left\{\begin{array}{l}
\tilde{x}_{1}(t)=e^{\lambda_{1} t} \tilde{x}_{1}(0)+\int_{0}^{t} e^{\lambda_{1}(t-\tau)} \tilde{b}_{1} u(\tau) d \tau \tag{6.19}\\
\tilde{x}_{2}(t)=e^{\lambda_{2} t} \tilde{x}_{2}(0)+\int_{0}^{t} e^{\lambda_{2}(t-\tau)} \tilde{b}_{2} u(\tau) d \tau
\end{array}\right.
$$

$$
\dot{q} \quad U^{+} \frac{1}{T} c-F_{\text {ross }}
$$

$$
\frac{1}{t a}=i
$$

electric field

Figure 6.2: Parallels between capacitors and inductors.

Solution in original coordinates

A solution for $\vec{x}(t)$ may be reconstituted from eigenbasis-aligned coordinates using the following equation:

$$
\vec{x}(t)=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{l}
\tilde{x}_{1}(t) \tag{6.20}\\
\tilde{x}_{2}(t)
\end{array}\right]
$$

6.3 Introduction to inductors

Inductors are a branch element that are analogous to capacitors. Figure 6.2 compares them with capacitors, and the parallels are repeated below.

$$
\begin{align*}
\mathrm{q} & =\text { charge (Coulomb) } & \lambda & =\text { flux (Weber = Volt-second) } \tag{6.21}\\
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{q} & =\mathrm{i} & \frac{\mathrm{~d}}{\mathrm{dt}} \lambda & =v \tag{6.22}\\
v & =\frac{\mathrm{q}}{\mathrm{C}} & \mathrm{i} & =\frac{\lambda}{\mathrm{L}} \tag{6.23}\\
\mathrm{E}_{\mathrm{C}} & =\frac{1}{2} \mathrm{C} v^{2} & \mathrm{E}_{\mathrm{L}} & =\frac{1}{2}{L i^{2}}^{2}
\end{align*}
$$

Figure 6.3: RL circuit, which is similar to an RC circuit (cf. Figure 4.2.

6.4 Example: RL circuit

Figure 6.3 shows a circuit with a time-varying voltage source, a resistor, and an inductor. KCL at the marked upper right node yields

$$
\begin{equation*}
\frac{v-v_{\mathrm{in}}}{\mathrm{R}}+\mathfrak{i}=0 \tag{6.25}
\end{equation*}
$$

In addition, from the current-voltage relationship of an inductor,

$$
\begin{equation*}
\mathrm{L} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}=v \tag{6.26}
\end{equation*}
$$

Eliminating v and isolating $\frac{d}{d t} \mathfrak{i}$, we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathfrak{i}=-\frac{\mathrm{R}}{\mathrm{~L}} \mathfrak{i}+\frac{v_{\mathrm{in}}}{\mathrm{~L}} \tag{6.27}
\end{equation*}
$$

The state variable for an inductor is i, and this differential equation may be solved the same way we solved RC circuits.

Lecture 7

Inductors and RLC Circuits

7.1 LR

The RL circuit in Figure 7.1 can be described by the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathfrak{i}=-\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{i}+\frac{1}{\mathrm{~L}} v_{\mathrm{in}} . \tag{7.1}
\end{equation*}
$$

It has eigenvalue $\lambda=-\frac{R}{L}$ and time constant $\tau=\frac{L}{R}$. Inductance is a ratio of magnetic flux (volt-seconds) to current (amps), so inductance divided by resistance works out to units of seconds.

7.2 LC

The LC circuit in Figure 7.2 can be described by the following two differential equations, which originate in Kirchoff's voltage and current laws, respectively.

$$
\begin{align*}
\mathrm{C} \frac{\mathrm{~d}}{\mathrm{dt}} v+\mathfrak{i} & =0 \tag{7.2}\\
\mathrm{~L} \frac{\mathrm{~d}}{\mathrm{dt}} \mathfrak{i} & =v \tag{7.3}
\end{align*}
$$

Figure 7.1: An RL circuit with an (AC) voltage source.

Figure 7.2: An LC circuit.

In vector form, with $\vec{x}=\left[\begin{array}{l}v \\ i\end{array}\right]$,

$$
\frac{\mathrm{d}}{\mathrm{dt}} \vec{x}=\left[\begin{array}{rr}
0 & -\frac{1}{\mathrm{C}} \tag{7.4}\\
\frac{1}{\mathrm{~L}} & 0
\end{array}\right] \vec{x}
$$

This equation can be solved given an initial condition (knowing the value $\vec{\chi}\left(\mathrm{t}_{0}\right)$ at some particular time t_{0}), yielding a solution for v and i that is good at every point in time. Substituting $\mathrm{L}=1 \mathrm{H}$ and $\mathrm{C}=1 \mathrm{~F}$,

$$
\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{x}}=\left[\begin{array}{rr}
0 & -1 \tag{7.5}\\
1 & 0
\end{array}\right] \vec{x}
$$

We will analyze this system by taking eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Its eigenvalues are the roots of its characteristic polynomial $\operatorname{det}(\lambda I-A)=\lambda^{2}+1$, which are $\pm \mathfrak{j}$. Call them $\lambda_{1}=j$ and $\lambda_{2}=-j$. Solving for eigenvectors,

$$
\begin{align*}
& \lambda_{1} \rightsquigarrow\left[\begin{array}{rr}
j & 1 \\
-1 & j
\end{array}\right] \vec{v}_{1}=\overrightarrow{0} \Longrightarrow \vec{v}_{1}=\left[\begin{array}{r}
1 \\
-j
\end{array}\right] \tag{7.6}\\
& \lambda_{2} \rightsquigarrow\left[\begin{array}{rr}
-j & 1 \\
-1 & -j
\end{array}\right] \vec{v}_{2}=\overrightarrow{0} \Longrightarrow \vec{v}_{2}=\left[\begin{array}{l}
1 \\
j
\end{array}\right] \tag{7.7}
\end{align*}
$$

Conjugate pairs

Notice that $\lambda_{2}=\bar{\lambda}_{1}$ and $\vec{v}_{2}=\overline{\vec{v}_{1}}$. The eigenvalues and eigenvectors come in conjugate pairs because A is real, and the characteristic polynomial $p(\lambda)=$ $\operatorname{det}(\lambda I-A)$ has real-valued coefficients. The Fundamental Theorem of Algebra states that a polynomial of degree n has n roots. When the polynomial has real coefficients, then roots are real or occur in complex conjugate pairs: let $p(\lambda)=0$. Then $\overline{p(\lambda)}=\overline{0}=0$:

$$
\begin{align*}
\overline{p(\lambda)} & =\overline{\lambda^{n}}+\overline{a_{n-1} \lambda^{n-1}}+\ldots+a_{1} \bar{\lambda}+a_{0}=0 \tag{7.8}\\
& =(\bar{\lambda})^{n}+a_{n-1}(\bar{\lambda})^{n-1}+\ldots+a_{1} \bar{\lambda}+a_{0}=0 \tag{7.9}
\end{align*}
$$

Figure 7.3: Current and voltage of an oscillating LC circuit.

Figure 7.4: Phase portrait of an oscillating LC circuit.

From this we can see that whenver λ_{1} is a root of the real polynomial $p(\lambda)$, so is $\bar{\lambda}_{1}$.

Conjugate pairing also happens with eigenvectors when A is real. If $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$, then conjugating both sides, we have

$$
\begin{align*}
\overline{\left(A \vec{v}_{1}\right)} & =\overline{\left(\lambda_{1} \vec{v}_{1}\right)} \tag{7.10}\\
A \overline{\vec{v}_{1}} & =\bar{\lambda}_{1} \overline{\vec{v}_{1}} \tag{7.11}
\end{align*}
$$

This shows that $\overline{\vec{v}_{1}}$ is an eigenvector as well, completing a pair with \vec{v}_{1}.

Back to LC circuit

Let's take initial condition $\vec{x}(0)=\left[\begin{array}{l}1 \mathrm{~V} \\ 0 \mathrm{~A}\end{array}\right]$. As a combination of \vec{v}_{1} and \vec{v}_{2},

$$
\overrightarrow{\mathrm{x}}(0)=\frac{1}{2} \underbrace{\left[\begin{array}{r}
1 \tag{7.12}\\
-\mathrm{j}
\end{array}\right]}_{\vec{v}_{1}}+\frac{1}{2} \underbrace{\left[\begin{array}{l}
1 \\
\mathrm{j}
\end{array}\right]}_{\vec{v}_{2}}
$$

Therefore, the same linear combination will construct $\vec{\chi}(t)$ from its constituent modes.

$$
\begin{align*}
\vec{x}(t) & =\frac{1}{2} \underbrace{\left[\begin{array}{r}
1 \\
-j
\end{array}\right]}_{\vec{v}_{1}} e^{j t}+\frac{1}{2} \underbrace{\left[\begin{array}{l}
1 \\
j
\end{array}\right]}_{\overrightarrow{v_{2}}} e^{-j t} \tag{7.13}\\
& =\left[\begin{array}{c}
\frac{1}{2} e^{j t}+\frac{1}{2} e^{-j t} \\
\frac{1}{j} e^{j t}-\frac{1}{2 j} e^{-j t}
\end{array}\right]=\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right], \tag{7.14}
\end{align*}
$$

which follows from the identities $\cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right)$ and $\sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)$, which are both consequences of Euler's formula $e^{j \theta}=\cos \theta+j \sin \theta$.

Under an oscilloscope, $v(t)=\sin t$ and $\mathfrak{i}(t)=\cos t$ might appear as they do in Figure 7.3. If $\vec{x}(t)$ is plotted as a parametric curve in the plane (called a phase portrait), the result is a counterclockwise traversal of the unit circle, shown in Figure 7.4. This means that the \vec{x} vector has constant length:

$$
\begin{equation*}
v^{2}+\mathfrak{i}^{2}=1 \text { for all } \mathrm{t} . \tag{7.15}
\end{equation*}
$$

Euler's formula

Euler's formula states that $e^{\mathrm{j} \theta}=\cos \theta+\mathrm{j} \sin \theta$. This can be derived from the series expansion of the exponential function around $\theta=0$,

$$
\begin{equation*}
e^{z}=1+z+\frac{1}{2!} z^{2}+\ldots \tag{7.16}
\end{equation*}
$$

Substituting $z=\mathrm{j} \theta$, we have

$$
\begin{equation*}
e^{j \theta}=1+j \theta+\frac{-1}{2!} \theta^{2}+\frac{-j}{3!} \theta^{3}+\ldots, \tag{7.17}
\end{equation*}
$$

whose even terms add to $\cos \theta$:

$$
\begin{equation*}
\cos \theta=1-\frac{1}{2!} \theta^{2}+\frac{1}{4!} \theta^{4}+\ldots \tag{7.18}
\end{equation*}
$$

and whose odd terms add to $j \sin \theta$:

$$
\begin{equation*}
\sin \theta=\theta-\frac{1}{3!} \theta^{3}+\frac{1}{5!} \theta^{5} \ldots \tag{7.19}
\end{equation*}
$$

7.3 LRC

The following node equations describe the LRC circuit in Figure 7.5
(1) $-i+\frac{v_{1}-v}{R}=0$
(2) $\frac{v-v_{1}}{\mathrm{R}}+\mathrm{C} \frac{\mathrm{d}}{\mathrm{dt}} v=0$
$L \frac{d}{d t} \mathfrak{i}=-v_{1}$

Figure 7.5: An LRC circuit.

Figure 7.6: The effects of the real and imaginary parts of an eigenvalue $\lambda=$ $\lambda_{r}+j \lambda_{i}$, when neither is zero.

After using Equation 7.20 to eliminate v_{1}, we have the following two differential equations:

$$
\begin{align*}
& \mathrm{C} \frac{\mathrm{~d}}{\mathrm{dt}} v=\mathrm{i} \tag{7.23}\\
& \mathrm{~L} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}=-\mathrm{Ri}-v \tag{7.24}
\end{align*}
$$

or, in vector form,

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
v \tag{7.25}\\
\mathrm{i}
\end{array}\right]=\left[\begin{array}{rr}
0 & \frac{1}{\mathrm{C}} \\
-\frac{1}{\mathrm{~L}} & -\frac{\mathrm{R}}{\mathrm{~L}}
\end{array}\right]\left[\begin{array}{l}
v \\
\mathrm{i}
\end{array}\right]
$$

From its characteristic equation

$$
\begin{equation*}
0=\lambda^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \lambda+\frac{1}{\mathrm{LC}}, \tag{7.26}
\end{equation*}
$$

we obtain eigenvalues

$$
\begin{equation*}
\lambda_{1,2}=-\frac{1}{2} \frac{R}{L} \pm j \sqrt{\left(\frac{1}{2} \frac{R}{L}\right)^{2}-\frac{1}{L C}} . \tag{7.27}
\end{equation*}
$$

As R increases from zero, the eigenvalues move in significant ways.

1. When $R=0$, the eigenvalues are the imaginary pair $\pm j \sqrt{\frac{1}{L C}}$.
2. When $\left(\frac{1}{2} \frac{R}{L}\right)^{2}=-\frac{1}{L C}$, the eigenvalues are both $-\frac{1}{2} \frac{R}{L}$.
3. When $\left(\frac{1}{2} \frac{R}{L}\right)^{2}>-\frac{1}{L C}$, the eigenvalues are distinct and real-valued.

Between (1) and (2), the eigenvalues are neither real nor pure imaginary:

$$
\begin{equation*}
\lambda_{1,2}=\underbrace{-\frac{1}{2} \frac{R}{\mathrm{~L}}}_{\lambda_{r}} \pm \mathfrak{j} \underbrace{\sqrt{\left(\frac{1}{2} \frac{R}{\mathrm{~L}}\right)^{2}-\frac{1}{\mathrm{LC}}}}_{\lambda_{i}}=\lambda_{r} \pm \mathfrak{j} \lambda_{i} \tag{7.28}
\end{equation*}
$$

The time domain response will incorporate $e^{\lambda t}$, which has the following trigonometric interpretation:

$$
\begin{align*}
e^{\left(\lambda_{r}+j \lambda_{i}\right) t} & =e^{\lambda_{r} t} e^{j \lambda_{i} t} \tag{7.29}\\
& =e^{\lambda_{r} t}\left(\cos \lambda_{i} t+j \sin \lambda_{i} t\right), \tag{7.30}
\end{align*}
$$

a sinusoid of angular frequency λ_{i} under an envelope with rate λ_{r}, as shown in Figure 7.6

Lecture 8

Phasors

8.1 Exponential inputs and outputs

Phasors are a ubiquitous method for understanding particular responses of linear differential equations, given sinusoidal input. The following differential equation is familiar as the capacitor voltage of an RC circuit with $v_{\text {in }}$ across both components:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{o}}=-\frac{1}{\mathrm{RC}} v_{\mathrm{o}}+\frac{1}{\mathrm{RC}} v_{\mathrm{in}}, \quad \lambda=-\frac{1}{\mathrm{RC}} \tag{8.1}
\end{equation*}
$$

Equation 5.3 showed the solution to this differential equation with $v_{\text {in }}=$ $V_{\text {in }} \cos \omega t$, purportedly obtained by direct substitution. While that works, an easier way to the solution is to practice on a general exponential input:

$$
\begin{equation*}
v_{\mathrm{in}}=V_{\mathrm{in}} \mathrm{e}^{\mathrm{st}} . \tag{8.2}
\end{equation*}
$$

Assuming that $v_{0}=V_{o} e^{s t}$ is also exponential with the same rate s,

$$
\begin{align*}
s V_{o} e^{s t} & =-\frac{1}{R C} V_{o} e^{s t}+\frac{1}{R C} V_{\text {in }} e^{s t} \tag{8.3}\\
V_{o} & =\frac{1}{1+s R C} V_{\text {in }}=\frac{1}{1-\frac{s}{\lambda}} V_{\text {in }} \tag{8.4}
\end{align*}
$$

If our circuit has not existed with its input forever, then the solution for v_{0} is a superposition of $V_{o} e^{\text {st }}$ with a homogeneous response, in which A is a constant that depends on the initial condition.

$$
\begin{equation*}
v_{o}=V_{0} e^{s t} \underbrace{+A e^{\lambda t}}_{\rightarrow 0 \text { if } \operatorname{Re}\{\lambda\}<0} \tag{8.5}
\end{equation*}
$$

If λ has a negative real part, then the impact of the initial condition tends to zero as $t \rightarrow \infty$. Sinusoidal inputs and outputs arise as superpositions of exponentials where s has no real part:

$$
\begin{align*}
s & =j \omega \leadsto e^{s t}=\cos \omega t+j \sin \omega t \tag{8.6}\\
\cos \omega t & =\operatorname{Re}\left\{e^{j \omega t}\right\}=\operatorname{Re}\{\cos \omega t+j \sin \omega t\} \tag{8.7}\\
\cos \omega t & =\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right) \tag{8.8}\\
\sin \omega t & =\frac{1}{2 j}\left(e^{j \omega t}-e^{-j \omega t}\right) \tag{8.9}
\end{align*}
$$

8.2 Phasor representation of a sinusoid

A phasor is a complex number that has amplitude and phase information of a time-domain sinusoid. By writing the following cosine as the real part of a complex exponential, we can factor the phasor part from the time-varying part.

$$
\begin{align*}
x(t) & =A \cos (\omega t+\phi), \quad A \text { real, positive } \tag{8.10}\\
& =\operatorname{Re}\left[A e^{j(\omega t+\phi)}\right] \tag{8.11}\\
& =\operatorname{Re}[\underbrace{A e^{j \phi}}_{\text {phasor }} e^{j \omega t}] \tag{8.12}
\end{align*}
$$

The phasor representation of $A \cos (\omega t+\phi)$ is $A e^{j \phi} . \phi$ is the phase of this sinusoid.

Uniqueness

Phasors uniquely represent the sinusoids that they represent. Suppose we assign the phasors A_{1} and A_{2} to sinusoids x_{1} and x_{2}, respectively:

$$
\begin{align*}
& x_{1}(t)=\operatorname{Re}\left\{A_{1} e^{j \omega t}\right\} \xrightarrow{\text { phasor representation }} A_{1} \tag{8.13}\\
& x_{2}(t)=\operatorname{Re}\left\{A_{2} e^{j \omega t}\right\} \xrightarrow{\text { phasor representation }} A_{2} \tag{8.14}
\end{align*}
$$

Uniqueness means that $\left(x_{1}=x_{2}\right) \Longleftrightarrow\left(A_{1}=A_{2}\right)$. We can see see that $A_{1}=A_{2}$ implies $x_{1}=x_{2}$, because the identity $\operatorname{Re}\left\{A_{1} e^{j \omega t}\right\}=\operatorname{Re}\left\{A_{2} e^{j \omega t}\right\}$ follows immediately from $A_{1}=A_{2}$.

To show that $x_{1}=x_{2}$ implies $A_{1}=A_{2}$, we verify the real and imaginary layers of this equation independently. The real part emerges at $t=0: x_{1}(0)=$ $\operatorname{Re}\left\{A_{1}\right\}$ and $x_{2}(0)=\operatorname{Re}\left\{A_{2}\right\}$. Therefore $\operatorname{Re}\left\{A_{1}\right\}=\operatorname{Re}\left\{A_{2}\right\}$. On the other hand, we need $t=\frac{\pi}{2} \frac{1}{\omega}$ to access the imaginary part. From

$$
\begin{equation*}
\left.x_{1}\right|_{t=\frac{\pi}{2} \frac{1}{\omega}}=\left.x_{2}\right|_{t=\frac{\pi}{2} \frac{1}{\omega}} \tag{8.15}
\end{equation*}
$$

follows

$$
\begin{equation*}
\operatorname{Re}\left\{A_{1} e^{j \frac{\pi}{2}}\right\}=\operatorname{Re}\left\{A_{2} e^{j \frac{\pi}{2}}\right\} . \tag{8.16}
\end{equation*}
$$

Applying $e^{j \frac{\pi}{2}}=\mathfrak{j}$,

$$
\begin{align*}
\operatorname{Re}\left(A_{1} \mathfrak{j}\right) & =\operatorname{Re}\left(A_{2} \mathfrak{j}\right. \tag{8.17}\\
\operatorname{Re}\left[\operatorname{Re}\left(A_{1}\right) \mathfrak{j}+\mathfrak{j}^{2} \operatorname{Im}\left(A_{1}\right)\right] & =\operatorname{Re}\left[\operatorname{Re}\left(A_{1}\right) \mathfrak{j}+\mathfrak{j}^{2} \operatorname{Im}\left(A_{1}\right)\right] \tag{8.18}\\
-\operatorname{Im}\left(A_{1}\right) & =-\operatorname{Im}\left(A_{2}\right) \tag{8.19}
\end{align*}
$$

Linearity

Linearity of the phasor transformation means that a real linear combination of sinusoids is represented as the same linear combination of the sinusoids' respective phasors. For real constants a_{1} and a_{2}, the phasor representation of $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ is $a_{1} A_{1}+a_{2} A_{2}$. Beginning with our two sinusoids as real parts of scaled complex exponentials,

$$
\begin{align*}
& x_{1}(t)=\operatorname{Re}\left(A_{1} e^{j \omega t}\right) \tag{8.20}\\
& x_{2}(t)=\operatorname{Re}\left(A_{2} e^{j \omega t}\right), \tag{8.21}
\end{align*}
$$

we may form the following linear combination with real coefficients a_{1} and a_{2} :

$$
\begin{align*}
a_{1} x_{1}(t)+a_{2} x_{2}(t) & =\operatorname{Re}\left(a_{1} A_{1} e^{j \omega t}\right)+\operatorname{Re}\left(a_{2} A_{2} e^{j \omega t}\right) \tag{8.22}\\
& =\operatorname{Re}\left[\left(a_{1} A_{1}+a_{2} A_{2}\right) e^{j \omega t}\right] . \tag{8.23}
\end{align*}
$$

Differentiation

Phasors represent differentiation in time as multiplication by $j \omega$: if

$$
\begin{equation*}
x(t)=\operatorname{Re}\left[A e^{j \omega t}\right] \tag{8.24}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d}{d t} x(t)=\operatorname{Re}[\underbrace{j \omega A}_{\text {new phasor }} e^{j \omega t}] . \tag{8.25}
\end{equation*}
$$

Figure 8.1: An RC circuit with a sinusoidal voltage source and its phasor domain representation.

8.3 Current and voltage phasors in circuits

These three properties translate circuit laws from time domain into phasor domain:

$$
\begin{align*}
& \begin{array}{lll}
& \begin{array}{l}
\text { time } \\
(\mathrm{KVL})
\end{array} \quad \longleftrightarrow \text { phasor } \\
\sum_{\text {loop }} v=0 & \longleftrightarrow \sum_{\text {loop }} \mathrm{V}=0
\end{array} \tag{8.26}\\
& \text { (кСL) } \quad \sum_{\text {node }} i=0 \quad \longleftrightarrow \quad \sum_{\text {node }} \mathrm{I}=0 \tag{8.27}
\end{align*}
$$

as well as current-voltage relationships:

$$
\begin{array}{rlll}
\text { (resistor) } & v=\mathrm{Ri} & \longleftrightarrow & \mathrm{~V}=\mathrm{RI} \\
\text { (capacitor) } & \mathrm{i}=\mathrm{C} \frac{\mathrm{~d}}{\mathrm{dt} v} & \longleftrightarrow & \mathrm{I}=\mathrm{j} \omega \mathrm{CV} \\
\text { (inductor) } & v=\mathrm{L} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} & \longleftrightarrow & V=j \omega \mathrm{LI} \tag{8.30}
\end{array}
$$

RC revisited

Because capacitors establish a proportional relationship between their voltage and current phasors, they may be regarded as impedances in phasor domain having impedance $\frac{1}{i \omega \mathrm{C}}$. A sinusoidally-excited RC circuit is translated into phasor domain in Figure 8.1. In phasor domain, V_{o} is recognized as the lower half of a voltage divider spanning $V_{\text {in }}$:

$$
\begin{align*}
V_{\mathrm{o}} & =\frac{\frac{1}{j \omega \mathrm{C}}}{\frac{1}{j \omega \mathrm{C}}+\mathrm{R}} V_{\text {in }} \tag{8.31}\\
& =\frac{1}{1+j \omega C R} V_{\text {in }} \tag{8.32}
\end{align*}
$$

Converting back to time domain,

$$
\begin{align*}
v_{o}(t) & =\operatorname{Re}\left\{V_{o} e^{j \omega t}\right\} \\
& =\operatorname{Re}\left\{\frac{1}{1+j \omega C R} V_{i n} e^{j \omega t}\right\} \tag{8.34}
\end{align*}
$$

Changing V_{0} to polar form,

$$
\begin{align*}
& =\operatorname{Re}\left\{\frac{1}{|1+j \omega C R| e^{j<(1+j \omega C R)}} V_{\text {in }} e^{j \omega t}\right\} \tag{8.35}\\
& =\operatorname{Re}\left\{\frac{1}{|1+j \omega C R| e^{j \tan ^{-1}(\omega C R)}} V_{\text {in }} e^{j \omega t}\right\} \tag{8.3}\\
& =\operatorname{Re}\left\{\frac{V_{\text {in }}}{|1+j \omega C R|} e^{j\left(\omega t-\tan ^{-1}(\omega C R)\right)}\right\} \tag{8.37}\\
v_{o}(t) & =\frac{V_{\text {in }}}{|1+j \omega C R|} \cos \left(\omega t-\tan ^{-1}(\omega C R)\right) \tag{8.38}
\end{align*}
$$

For low frequencies ($\omega R \mathrm{R} \ll 1$), $|1+j \omega C R|$. The output has about the same amplitude as the input. For high frequencies $(\omega R C \ll 1)|1|+j \omega C R \mid$. As the amplitude at the filter output vanishes at high frequencies, this RC circuit functions as a low-pass filter.

[^4]
Lecture 9

Frequency Response and Bode Plots

9.1 Phasors review

Phasors analyze a system at a single frequency ω. Because the period of a complex exponential is $2 \pi, \omega$ is naturally expressed in rad/s. Conversion to cycles per second (f, in Hz) is given by $\omega=2 \pi f$, and the period is $T=\frac{1}{f}$.

In the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \vec{x}=A \vec{x}(\mathrm{t})+\overrightarrow{\mathrm{b}} u(\mathrm{t}) \tag{9.1}
\end{equation*}
$$

with sinusoidal input $u(t)$, phasor analysis can lead to a particular solution for $x(t)$ with sinusoidal components.

The following identities relate complex numbers to sinusoids:

$$
\begin{align*}
e^{j \omega t} & =\cos \omega t+j \sin \omega t \tag{9.2}\\
\cos \omega t & =\operatorname{Re}\left[e^{j \omega t}\right]=\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right) \tag{9.3}\\
\sin \omega t & =\operatorname{Im}\left[e^{j \omega t}\right]=\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right) \tag{9.4}
\end{align*}
$$

Phasors respect the following properties when translating to and from time domain:
uniqueness There is a one-to-one correspondence between functions $A \cos (\omega t+\phi)$ and phasors $A e^{j \phi}$, where A is real and positive.
linearity If a_{1} and a_{2} are real numbers, then the following addition law holds vertically:

$$
\begin{align*}
a_{1} x_{1}(t) & =A_{1} \cos \left(\omega t+\phi_{1}\right) \tag{9.5}\\
a_{2} x_{2}(t) & =A_{2} \cos \left(\omega t+\phi_{1}\right) \tag{9.6}
\end{align*} e^{j \phi_{1}} . A_{2} e^{j \phi_{2}} .
$$

differentiation Differentiation in time domain corresponds to multiplication by $j \omega$ in phasor domain.

$$
\begin{align*}
x(\mathrm{t}) & \longleftrightarrow A e^{\mathrm{j} \phi} \tag{9.8}\\
\frac{\mathrm{~d}}{\mathrm{dt}} x(\mathrm{t}) & \longleftrightarrow \mathrm{j} \omega A e^{\mathrm{j} \phi} \tag{9.9}
\end{align*}
$$

In a vector-valued system excited by sinusoidal input u,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \overrightarrow{\mathrm{x}}(\mathrm{t})=\mathrm{A} \vec{x}(\mathrm{t})+\overrightarrow{\mathrm{b}} \mathbf{u}(\mathrm{t}), \tag{9.10}
\end{equation*}
$$

Let \vec{X} be a (vector) phasor representing \vec{x} :

$$
\begin{equation*}
\vec{x}(t)=\overrightarrow{\operatorname{Re}}\left[\vec{X} e^{j \omega t}\right], \tag{9.11}
\end{equation*}
$$

and Ua (scalar) phasor representing \mathfrak{u} :

$$
\begin{equation*}
\mathfrak{u}(\mathrm{t})=\operatorname{Re}\left[\mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \mathrm{u}\right] \tag{9.12}
\end{equation*}
$$

so that Equation 9.10 translates,

$$
\begin{equation*}
j \omega \vec{X}=A \vec{X}+\vec{b} u . \tag{9.13}
\end{equation*}
$$

The particular solution has phasor X.

$$
\begin{equation*}
\vec{X}=(j \omega I-A)^{-1} \vec{b} U \tag{9.14}
\end{equation*}
$$

Because of the linearity property, linear laws such as KVL (a linear relationship of branch voltages) and KCL (a linear relationship of branch currents) apply to phasor voltages and currents, respectively.

Resistors are linear circuit elements, with a proportionality relationship between voltage and current that holds in phasor domain:

$$
\begin{equation*}
v=\mathrm{Ri} \quad \longleftrightarrow \quad \mathrm{~V}=\mathrm{RI} \tag{9.15}
\end{equation*}
$$

Capacitors are also linear circuit elements, however the current-voltage proportionality in phasor domain has an imaginary ratio.

$$
\begin{equation*}
\mathrm{i}=\mathrm{C} \frac{\mathrm{~d}}{\mathrm{dt}} v \quad \longleftrightarrow \mathrm{I}=\underbrace{\mathrm{j} \omega \mathrm{C}}_{\text {admittance }} \mathrm{V} \tag{9.16}
\end{equation*}
$$

The proportionality $\mathfrak{i}=\mathrm{Gv}$ (time domain, G real) is called conductance. In phasor domain with a complex ratio, it is called admittance. The inverse of admittance is called impedance, and generalizes resistance.

$$
\begin{align*}
& \mathfrak{i}=\mathrm{C} \frac{\mathrm{~d}}{\mathrm{dt}} v \quad \longleftrightarrow \mathrm{~V}=\underbrace{\frac{1}{j \omega \mathrm{C}}}_{\text {cap. impedance }} \mathrm{I} \tag{9.17}\\
& v=\mathrm{L} \frac{\mathrm{~d}}{\mathrm{dt}} \mathfrak{i} \quad \longleftrightarrow \quad \mathrm{~V}=\underbrace{j \omega \mathrm{~L}}_{\text {ind. impedance }} \mathrm{I} \tag{9.18}
\end{align*}
$$

Figure 9.1: Bode magnitude plot of Equation 9.19.

9.2 Transfer functions

We can now solve for particular solutions algebraically. From the RC filter example, Equation 8.32 can be solved for a phasor ratio $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{in}}$:

$$
\begin{equation*}
H(j \omega)=\frac{V_{\mathrm{o}}}{V_{\mathrm{in}}}=\frac{1}{1+j \omega R C} \tag{9.19}
\end{equation*}
$$

$\mathrm{H}(\mathrm{j} \omega)$ is called the transfer function of this system. It is a complex-valued function of angular frequency ω whose magnitude is the amplitude scaling factor of this input-output signal pair, and whose phase is the phase shift. Analyzing systems by following algebraic functions of a frequency parameter ω is a strategy generally called "frequency domain.' ${ }^{11}$

Bode plots

Engineers like to examine information at log scales, especially when it spans orders of magnitude ${ }_{2}^{2}$ Frequency perception in human hearing ranges from roughly 20 Hz to 20 kHz .

A Bode plot of the transfer function $\mathrm{H}(\mathrm{j} \omega)$ is the following two things:

1. A log-log plot of $|\mathrm{H}(\mathrm{j} \omega)|$ vs. ω.
2. A angle-log plot of $\angle \mathrm{H}(\mathrm{j} \omega)$ vs. ω.

Magnitude

For $\mathrm{H}(\mathrm{j} \omega)$ above,

$$
\begin{align*}
|H(j \omega)| & =\left|\frac{1}{1+j \omega R C}\right| \tag{9.20}\\
& =\frac{1}{\sqrt{1+\omega^{2}(R C)^{2}}} \tag{9.21}
\end{align*}
$$

[^5]

Figure 9.2: Bode phase plot of Equation 9.19.

On a log-log scale (Figure 9.1), this looks approximately like a flat left asymptote and a downhill right asymptote, meeting at $\left.H(j \omega)\right|_{\omega=\frac{1}{\tau}} \approx 13^{3}$

Phase

To find the phase of $\mathrm{H}(\mathrm{j} \omega)$, we can write it as a complex number in rectangular form, times a real coefficient:

$$
\begin{equation*}
H(j \omega)=\frac{1}{1+j \omega R C}=\frac{1-j \omega R C}{1+\omega^{2}(R C)^{2}}=\frac{1-j \omega \tau}{(\text { positive real })} \tag{9.22}
\end{equation*}
$$

The numerator is in the fourth quadrant of the complex plane, and its angle of depression is given by

$$
\begin{align*}
\theta & =\tan ^{-1}\left(\frac{\text { rise }}{\text { run }}\right) \tag{9.23}\\
& =\tan ^{-1}\left(\frac{-\omega \tau}{1}\right)=\tan ^{-1}(-\omega \tau) \tag{9.24}\\
& =-\tan ^{-1}(\omega \tau) . \tag{9.25}
\end{align*}
$$

For positive inputs on a log scale, the inverse tangent function smoothly transitions from 0 to 90 degrees, crossing 45 degrees at 1 . Our function, plotted in Figure 9.2, is the opposite. It has a left asymptote of 0 degrees and a right asyptote of -90 degrees. The transition, centered at $\omega^{*}=\frac{1}{\tau}$, is so fast within a multiple by 10 of ω that the asymptotes look nearly flat left and right of the transition region.

[^6]
Lecture 10

Resonance in RLC Circuits

To analyze the LRC circuit in Figure 10.1 assign phasors to both $v_{\text {in }}$ and v_{0} :

$$
\begin{align*}
& v_{\text {in }}(t)=\operatorname{Re}[\underbrace{V_{\text {in }}}_{\text {phasor }} e^{j \omega t}] \tag{10.1}\\
& v_{0}(t)=\operatorname{Re}[\underbrace{V_{0}}_{\text {also phasor }} e^{j \omega t}] \tag{10.2}
\end{align*}
$$

V_{0} spans the rightmost leg of a a three-way voltage divider (V_{in} among impedances $j \omega L, R$, and $\frac{1}{j \omega C}$, so the transfer function is the following impedance ratio:

$$
\begin{align*}
\frac{V_{0}}{V_{\text {in }}}=H(j \omega) & =\frac{\frac{1}{j \omega C}}{\frac{1}{j \omega C}+R+j \omega L} \tag{10.3}\\
& =\frac{1}{L C(j \omega)^{2}+j \omega R C+1} \tag{10.4}
\end{align*}
$$

Figure 10.1: An LRC circuit.

Figure 10.2: Eigenvalue locus from imaginary pair at $R=0$ to negative real at critical R, as R increases from 0 .

10.1 Time-domain analysis

Eigenvalues, two ways

In Equation 7.25, we found a state space differential equation model of this circuit with the following matrix:

$$
A=\left[\begin{array}{rr}
0 & \frac{1}{C} \tag{10.5}\\
-\frac{1}{L} & -\frac{R}{L}
\end{array}\right]
$$

Its eigenvalues,

$$
\begin{equation*}
\lambda_{1,2}=-\frac{1}{2} \frac{R}{L} \pm j \sqrt{\left(\frac{1}{2} \frac{R}{L}\right)^{2}-\frac{1}{L C}} \tag{10.6}
\end{equation*}
$$

are a complex conjugate pair on the imaginary axis when $R=0$. As R approches a critical value, they slowly approach the same point on the negative real axis. Their rendezvous is depicted in Figure 10.2. (Afterwards, they separate but remain real and negative.) We will reparameterize these eigenvalues in a way that traces their trajectory. Call the undamped (angular) frequency ω_{n} :

$$
\begin{equation*}
\left.\lambda_{1,2}\right|_{\mathrm{R}=0}= \pm \sqrt{-\frac{1}{\mathrm{LC}}}= \pm \mathrm{j} \omega_{\mathrm{n}}, \tag{10.7}
\end{equation*}
$$

and define a damping coefficient ξ (Greek letter xi) that goes from 0 to 1 as the two eigenvalues leave the imaginary axis and meet at a negative real.

$$
\begin{equation*}
\xi=\frac{1}{2} \frac{\mathrm{R}}{\sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}} \tag{10.8}
\end{equation*}
$$

This parameterization appears in Figure 10.3

Figure 10.3: Figure 10.1. but reparameterized using ω_{n} and ξ.

Figure 10.4: Homogeneous response of an LRC circuit with $R>0$.

Homogeneous response

With the same choices of ω_{n} and ξ, the eigenvalues of A can be expresssed as

$$
\begin{equation*}
\lambda_{1,2}=-\xi \omega_{n} \pm j \omega_{n} \sqrt{1-\xi^{2}} \tag{10.9}
\end{equation*}
$$

The general form of the homogeneous response (modulo possible scaling and phase shift) is

$$
\begin{align*}
v(t) & =\operatorname{Re}\left\{e^{\lambda_{1} t}\right\} \tag{10.10}\\
& =e^{-\xi \omega_{n} t} \operatorname{Re}\left\{e^{j \omega_{n} \sqrt{1-\xi^{2}} t}\right\} \tag{10.11}\\
& =e^{-\xi \omega_{n} t} \cos \left(\omega_{n} \sqrt{1-\xi^{2}} t\right) \tag{10.12}
\end{align*}
$$

The graph of $v(t)$, sketched in Figure 10.4 is a sinusoid with period $\frac{2 \pi}{\omega_{n} \sqrt{1-\xi^{2}}}$, trapped inside an exponential decaying at rate $\xi \omega_{n}$.

Figure 10.5: Bode plot of an LRC filter with $\xi=0.1$.

10.2 Reparameterized transfer function

With the $\omega_{n}-\xi$ parameterization, this circuit's transfer function becomes

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {in }}}=H(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+(j \omega) 2 \xi \omega_{n}+\omega_{n}^{2}} \tag{10.13}
\end{equation*}
$$

We can imagine the Bode plot of $\mathrm{H}(\mathrm{j} \omega)$ as having three pieces:

- When $\omega \ll \omega_{n}, \mathrm{H}(\mathrm{j} \omega) \approx 1$.
- When $\omega=\omega_{n}, H(j \omega)=\frac{-j}{2 \xi}$. The magnitude is called "Q.' ${ }^{1}$
- When $\omega \gg \omega_{n}, \mathrm{H}(j \omega) \approx \frac{-\omega_{n}^{2}}{\omega^{2}}$.

A possible plot is shown in Figure 10.5

10.3 Applications of (R)LC filtering

Radio

The power amplifier in a cellular handset runs off a low voltage, limited by the typical single cell lithium-ion battery voltage of about 3.6V. Internally, the amplifier circuit is only able to generate a sinusoid of voltage in the $1-2 \mathrm{~V}$ range. This would create an extreme challenge in driving an antenna with

[^7]

Figure 10.6: An $R \approx 0$ LC circuit used as an matching network.

Figure 10.7: An $\mathrm{R} \approx 0$ LC circuit used in a DC-DC converter.
impedance in the 50-75 Ω range; namely, it would be impossible to develop the $\approx 1 \mathrm{~W}$ power level without somehow boosting the voltage between the solid-state amplifier and the antenna. This is exactly where the LC network of Figure 10.6 comes to the rescue. In this example, the LC network is called a matching network, and is used to boist the voltage to better "match" the antenna impedance. A matching network as in Figure 10.6before the antenna improves the performance by altering the effective impedance of the antenna.

$$
\begin{equation*}
v_{\text {in }}=\underbrace{a(t)}_{\text {slow }} \cos (\underbrace{\omega_{n} t}_{\text {fast }}+\underbrace{\phi(t)}_{\text {slow }}) \tag{10.14}
\end{equation*}
$$

Taking the capacitor voltage as an output, we have $\left|v_{\mathrm{o}}\right| \approx \frac{1}{2 \xi}\left|v_{\mathrm{a}}\right|$.

DC-DC converter

To step down a DC voltage source by 50%, we can use an inverter operating alternating at a 50% duty cycle to generate an offset square wave whose DC component is the voltage we are trying to deliver ${ }^{2}$ An LC filter reduces the AC component of the switch output, without dissipating power.

[^8]

Figure 10.8: Output of the switch in Figure 10.7. approximated as an offset sine wave.

The inverter output v_{a} can be approximated as a sine wave with a DC offset Figure 10.8):

$$
\begin{equation*}
v_{\mathrm{a}}(\mathrm{t})=\underbrace{\frac{1}{2} V_{\mathrm{bat}} \sin (\omega \mathrm{t})}_{\mathrm{ac}}+\underbrace{\frac{1}{2} V_{\mathrm{bat}}}_{\mathrm{dc}} \tag{10.15}
\end{equation*}
$$

We can use superposition to compute v_{o}. The filter passes DC at unity gain, and it scales and shifts the AC component.

$$
\begin{equation*}
v_{\mathrm{o}}(\mathrm{t})=\frac{1}{2} V_{\mathrm{bat}}+V_{\mathrm{o}} \cos (\omega t+\phi) \tag{10.16}
\end{equation*}
$$

In order to have a convincing DC output, we need $V_{o} \ll V_{\text {bat }}$. That sinusoid, as well as everything else that makes a square wave a square wave, will have to fit into the $|\mathrm{H}(j \omega)| \approx \frac{\omega_{n}^{2}}{\omega^{2}}$ high-frequency region of Equation 10.13 . That means we need to choose an ω_{n} such that $\omega_{n} \ll \omega$. For the DC amplitude to exceed the AC "ripple" amplitude by a factor of 100, for instance, ω would have to exceed $10 \omega_{n}$.

[^0]: ${ }^{1}$ which I lightly edited in GIMP

[^1]: ${ }^{1}$ English semantics for "on" and "off" in circuits can be counterintuitive. An open circuit/switch is off, and vice versa.

[^2]: ${ }^{2}$ For obscure historical reasons.

[^3]: ${ }^{1}$ Electric guitars use this circuit component, which guitarists call "pots," to blend the pickups' signals.

[^4]: ${ }^{1}$ The approximation is good when $\omega R C>10$.

[^5]: ${ }^{1}$ An ideal hi-fi audio system, for example, would convert data on the recording medium to sound pressure in the air in a way that treats all frequencies equally.
 ${ }^{2}$ A piano keyboard lays out fundamental frequencies from left to right on a log scale.

[^6]: ${ }^{3}$ It's actually $\frac{1}{\sqrt{2}}$ (a real number) but this approximation works better with the piecewise linear style.

[^7]: ${ }^{1}$ Quality factor, or how selective this filter is of its favorite frequency.

[^8]: ${ }^{2}$ For efficiency, we can use parallel NMOS and PMOS transistors to realize the switch to reduce resistance. We also want an inductor with the smallest possible parasitic resistance.

