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1. Intelligent Memory (27 pts)

The performance of most machine learning applications is dominated by memory accesses, and hence many
researchers are developing new types of memories that attempt to address this issue. In this problem, we
will analyze a circuit that is relevant to an emerging type of memory known as “R-RAM” (Resistive RAM).
R-RAM cells store information in the value of their internal resistance. For this problem, we will look at an
R-RAM cell storing binary information – specifically:

R-RAM Cell

Rbit

Rbit =

{
1MΩ, Cell stores a “0”
100kΩ, Cell stores a “1”

For the rest of this problem, consider the circuit (which is associated with reading out an R-RAM cell)
shown below:

VDD

Rbit

row
10 fF

+

−

Voutpre
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(a) (8 pts) Before analyzing the circuit directly, design a CMOS logic gate that implements the function
row = A0 ·A1 ·A2 ·A3.
(Note that the A0, A1, A2, and A3 inputs are typically the address bits that decide which row within the
memory to access.)

Solution:
We will first draw the pull-down network composed of NMOS transistors. Recall that the AND oper-
ator corresponds to series transistors in the pull-down network.

A0

A1

A2

A3

row

Then, we will add the pull-up network composed of PMOS transistors. All of the series transitors
above turn into parallel transistors.
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A0

A1

A2

A3

A0 A1 A2 A3

VDD

row
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Now consider the case where row = pre =VDD and the circuit is in steady state. At time t = 0, both the
row and pre signals change their values to 0V. We will read out the state of the R-RAM by measuring
the voltage Vout at t = 1ns after this transition occurs – i.e., by measuring Vout(1ns).
Note that throughout this problem, you can assume that the transistors are ideal – i.e., that their Ron =
0Ω. You should also assume that VDD = 1V. Note that you do not need to provide a fully simplified
numerical answer for any remaining sub-parts of this question. In particular, you can leave exponential
terms (i.e. ex) unsimplified.

(b) (8 pts) What is the value of Vout(1ns) if the R-RAM stores a “0”?

Solution:

1MΩ

+

−

Vout10fF

VDD

Figure 1: t < 0

1MΩ

+

−

Vout10fF

VDD

Figure 2: t ≥ 0
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We know that Vout(0) = 0 because of the short circuit to ground.

iC =C
dVout

dt
VDD−Vout

Rbit
= 10 ·10−15 dVout

dt
V̂out =Vout−VDD

− 1
10−8 V̂out =

dV̂out

dt
V̂out = ke−t/10−8

Vout = 1+ ke−t/10−8

Vout(0) = 0 = 1+ ke0→ k =−1

Vout(t) = 1− e−t/10−8

Vout(1ns) = 1− e−0.1
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(c) (4 pts) What is the value of Vout(1ns) if the R-RAM stores a “1”?

Solution:
The solution to this is identical to the previous part, just with a different resistor value (1MΩ →
100kΩ):

Vout(t) = 1− e−t/10−9

Vout(1ns) = 1− e−1

(d) (7 pts) How much energy has been delivered by the voltage source VDD between t = 0ns and t = 1ns
if the R-RAM is storing a “1”?

Solution:

iVDD =
VDD−Vout

Rbit
= 10−5e−t/10−9

EVDD =
∫ 1ns

0
PVDDdt

=
∫ 1ns

0
iVDDVDD dt

=VDD

∫ 10−9

0
10−5e−t/10−9

dt

= 10−5
∫ 10−9

0
e−t/10−9

dt

= 10−5
(
−10−9

)
e−t/10−9

∣∣∣10−9

0

= 10−14(−e−1− (−1))

= 10−14(1− e−1)
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2. Mechanical Differential Equations (19 pts)
Consider the circuit shown below.

−
+Vin

L iL
S2

+

−

Vout

S1

R

iR

C

iC

At t < 0, S1 is on (short-circuited), and S2 is off (open-circuited).
At t ≥ 0, S1 is off (open-circuited), and S2 is on (short-circuited).

(a) (4 pts) Right after the switches change state (i.e., at t = 0), what is the value of iL?

Solution: VL = L diL
dt = 0, ic =C dVout

dt = 0 =⇒ Vout =Vin, iL = iR, so iL(0−) = Vin
R .

−
+Vin

L iL
+

−

VoutR

iR

C

iC

t < 0, t < 0.

Right after switches change state, the inductor current cannot change instantaneously (since this could
require infinite voltage across it), so iL(0+) = Vin

R .

−
+Vin

L iL
+

−

Vout

R

iR

C

iC

At t < 0, S1 is on (short-circuited), and S2 is off (open-circuited).
At t ≥ 0, S1 is off (open-circuited), and S2 is on (short-circuited).
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(b) (5 pts) Choosing the state variables as~x(t) =

[
Vout(t)
iL(t)

]
, derive the A matrix that captures the behavior

of this circuit for t ≥ 0 with the matrix differential equation d~x(t)
dt = A~x(t)+~b, where~b is a vector of

constants.

Solution:

V = L
diL
dt

Vin−Vout = L
diL
dt

diL
dt

=−Vout

L
+

Vin

L

iC = iL =C
dVout

dt
dVout

dt
=

1
C

iL

d
dt

[
Vout
iL

]
=

[
0 1

C
− 1

L 0

][
Vout
iL

]
+

[
Vin
L
0

]

A =

[
0 1

C
− 1

L 0

]
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(c) (10 pts) Assuming that Vout(0) = 0V, derive an expression for Vout(t) for t ≥ 0.

Solution:
We perform a change of variables, so that V̂out(t) =Vout−Vin. The A matrix will not change, but the~b
vector goes to zero.

det(A−λ I) = 0

λ
2 +

1
LC

= 0

λ =± j
1√
LC

At this point, there are two possible solutions.
Method 1:

V̂out(t) = k1 cos
(

t√
LC

)
+ k2 sin

(
t√
LC

)
Vout(t) = k1 cos

(
t√
LC

)
+ k2 sin

(
t√
LC

)
+Vin

Vout(0) = 0 = k1 cos(0)+ k2 sin(0)+Vin

k1 =−Vin

iL(0) =
Vin

R
=C

dVout

dt
(0)

Vin

RC
=− k1√

LC
sin(0)+

k2√
LC

cos(0)

k2 =

√
L/C
R

Vin

Vout =Vin

(
1− cos

(
t√
LC

)
+

√
L/C
R

sin
(

t√
LC

))
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Method 2:

V̂out(t) = k1e j 1√
LC

t
+ k2e− j 1√

LC
t

Vout(t) = k1e j 1√
LC

t
+ k2e− j 1√

LC
t
+Vin

Vout(0) = 0 = k1e0 + k2e0 +Vin

k1 + k2 =−Vin

iL(0) =
Vin

R
=C

dVout

dt
(0)

Vin

RC
= j

k1√
LC
− j

k2√
LC

k1− k2 =− j

√
L/C
R

Vin

k1 =−Vin(
1
2
+ j

√
L/C
2R

),k2 =−Vin(
1
2
− j

√
L/C
2R

)

Vout(t) =Vin

(
−(1

2
+ j

√
L/C
2R

)e j 1√
LC

t − (
1
2
− j

√
L/C
2R

)e− j 1√
LC

t
+Vin

)

EECS 16B, Fall 2018, Midterm 1 12



SID:

3. Phasor Gainz (6 pts)

Derive H( jω) = Ṽout
Ṽin

for the circuit shown below.

Hint: Simplifying your initial expressions should lead to a very compact result for H( jω).

+

−
Vin

1pF

2pF

2kΩ

1kΩ

+

−

Vout

Solution:

If we perform KCL at the node between the two capacitors and use the element I-V relationships ("Ohms
law"), we get:

Ṽin−Ṽout

1/ jω ·10−12 +
Ṽin−Ṽout

2 ·103 =
Ṽout

1/ jω ·2 ·10−12 +
Ṽout

103

(Ṽin−Ṽout)
1+ jω ·2 ·10−9

2000
= Ṽout

1+ jω ·2 ·10−9

1000

Ṽin−Ṽout =
2000
1000

Ṽout

Ṽin = (1+2)Ṽout

Ṽout

Ṽin
=

1
3
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4. Equality for All Frequencies (24 pts)

Note: A Bode plot cheat sheet has been provided on page 2 of the exam.

(a) (8 pts) Imagine that we have two chips (chip A and chip B) trying to communicate a voltage signal
from one chip to the other across a long wire. We will model this scenario with the circuit shown
below, where VA models a circuit inside of chip A that is creating the signal, and Vout is the voltage
received by chip B.

+

−
VA

1 kΩ

1 pF

1 kΩ

1 pF

+

−

Vout

Note for this circuit, you can assume that

H( jω) =
Ṽout

ṼA
=

1
(1+ jω ·0.5 ·10−9)(1+ jω ·10−9)

Sketch the magnitude and phase Bode plots of H( jω). Be sure to label (a) the locations of each
pole/zero, (b) the magnitude values at each pole/zero location, (c) the slopes (in dB/dec) of all segments
of the magnitude plot, (d) the low-frequency (ω = 0) and high-frequency (ω = ∞) values of the phase,
(e) the frequencies at which the slope of the phase changes. Note that you do not need to specifically
label the values of the phase at the pole/zero frequencies.
Solution:
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(b) (6 pts) Now let’s look at adding an “equalizer” circuit to chip B, as modeled below. The goal of this
equalizer is to make it so that Vout =VA, which is equivalent to stating that Ṽout

ṼA
= 1. Sketch a magnitude

Bode plot of what |Heq( jω)| would need to be in order to achieve the goal of making Ṽout
ṼA

= 1.

+

−
VA

1 kΩ

1 pF

1 kΩ

1 pF

−

+

Heq( jω)

+

−

Vi, eq

+

−

Vout

Solution:
We want |Heq( jω)| · |H( jω)| = 0dB for all frequencies. |Heq( jω)| needs to add a slope of 20 dB/dec
or 40 dB/dec whenever |H( jω)| subtracts the same amount.
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(c) (10 pts) Your colleague suggests the circuit shown below in order to realize Heq( jω). (I.e., the transfer
function Ṽout

Ṽi, eq
of this circuit should be equal to Heq( jω).) Choose values for C1 and C2, such that the

magnitude of the frequency response of this circuit matches the plot shown below (which may or may
be the correct answer to part (b)).

+

−

Vi, eq

1 kΩ

C1

1 kΩ

C21 kΩ

1 kΩ

−

+

−

+
+

−

Vout

Solution:
The circuit consists of two cascaded inverting amplifiers, but with impedances rather than resistors.

+

−

Vin

−

+

Z1

Z2

+

−

Vout

The transfer function of the inverting amplifier is:

Ṽout

Ṽin
=−Z2

Z1
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For this specific circuit:
Z2 = 1kΩ

Z1 = 1kΩ ‖ 1
jωC

Z1 =

1kΩ

jωC

1kΩ+ 1
jωC

=
1kΩ

1+ jω ·1kΩ ·C

Therefore,
Z2

Z1
=

1kΩ

1kΩ

1+ jω·1kΩ·C
= (1+ jω ·1kΩ ·C)

Thus, each op-amp provides one zero at ω = 1
1kΩ·C .

From the Bode plot, we have zeros at ω = 3 ·109 and ω = 12 ·109. So:

1
1kΩ ·C1

= 3 ·109

C1 =
1

1 ·103 ·3 ·109 =
1
3

pF

1
1kΩ ·C2

= 12 ·109

C2 =
1

1 ·103 ·12 ·109 =
1
12

pF
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[ADDITIONAL SPACE FOR SOLUTION TO PART (C)]
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5. Circuits∞ (16 pts)

We sometimes model wires and other physical structures by decomposing them into an infinite number of
(infinitely short) “sub-sections”. In particular, long wires between two electrical circuits are often modeled
as below:

+

−

VA

+

−

VB

. . .

=

L

C

In this problem, we will examine the equivalent impedance of such a structure. As a reminder, the equivalent
impedance Z̃eq of a circuit with some phasor voltage Ṽtest across it and some phasor current Ĩtest flowing
through it is Z̃eq =

Ṽtest
Ĩtest

.

(a) (5 pts) For the circuit shown below (which is a single sub-section in our wire model), derive Z̃eq using
a test current source (as shown below). Your answer should be a function of L, C, and ω .

Itest

+

−
Vtest

L

C

Solution:

Itest

+

−
Vtest

LiL u1

C

ic

ĩL = ĩc = Ĩtest

Ṽtest− ũ1

jωL
= jωCũ1 = Ĩtest

ũ1 =
Ĩtest

jωC

Ĩtest =
Ṽtest

jωL
− Ĩtest

jωL jωC
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(1−ω
2LC)Ĩtest = jωCṼtest

Z̃eq =
Ṽtest

Ĩtest
=

1−ω2LC
jωC

(b) (8 pts) Now let’s compute the Z̃eq of the entire wire (which has an infinite number of sub-sections).
Note that this Z̃eq is not the same as your answer to part (a). The method we will use to do this relies
on the idea that if we remove only one out of an infinite number of sections, the equivalent impedance
of the remaining circuit (which still has an infinite number of sections, since ∞− 1 = ∞) should not
change. This results in the circuit model shown below:

Itest

+

−
Vtest

L

C Z̃eq

Using the fact that the Z̃eq of the circuit shown above (as a reminder, Z̃eq =
Ṽtest
Ĩtest

) should be equal to the
Z̃eq included within the circuit itself, solve for Z̃eq as a function of L, C, and ω .

Solution:
Setting up nodal analysis:

Itest

+

−
Vtest

LiL u1

C
ic

Z̃eq

iZeq

Using parallel equivalence:

Itest

+

−
Vtest

L

Z̃C ‖ Z̃eq

Using series equivalence:

Itest

+

−
Vtest Z̃L + Z̃C ‖ Z̃eq

Z̃eq = Z̃L + Z̃C ‖ Z̃eq

Z̃eq = jωL+
Z̃eq

1+ jωCZ̃eq
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Cross multiplying and isolating Z̃eq:

(1+ jωCZ̃eq−1)Z̃eq = jωL(1+ jωCZ̃eq)

( jωC)Z̃2
eq +(( jω)2LC)Z̃eq− jωL = 0

Z̃2
eq +( jωL)Z̃eq−

L
C

= 0

Z̃eq =
− jωL±

√
−ω2L2 +4 L

C

2

(c) (3 pts) What is the DC value of Z̃eq – i.e., what is Z̃eq when ω = 0?

Solution:

Z̃eq(0) =
0±
√

0+4 L
C

2
=

√
L
C
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