EECS 16B Designing Information Devices and Systems II
 Fall 2018 Elad Alon and Miki Lustig

Name:

SID: \qquad

Discussion Section and TA (Monday): \qquad

Discussion Section and TA (Wednesday): \qquad
\qquad

Lab Section and TA: \qquad

Name and SID of left neighbor: \qquad

Name and SID of right neighbor: \qquad

Instructions

- You have 120 minutes to complete this exam. Check that the exam contains 12 pages total.
- After the exam begins, write your SID in the top right corner of each page of the exam.
- Only the front pages will be scanned and graded; you can use the back pages as scratch paper.
- Do not remove any pages from the exam or unstaple the exam as this disrupts scanning. If needed, cross out any work you do not want to be graded.
- Provide explanation with every answer. Final answers with no explanation will not be given credit.

Problem	Points
1	50
2	40
3	30
4	40
5	30

Table of Unit Prefixes

Prefix	M	k	m	μ	n	p	f
Value	10^{6}	10^{3}	10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}

1. Circuit Controls ($\mathbf{5 0}$ points)

Consider the following circuit with ideal op-amps:

(a) Write a state space model $\frac{d \vec{x}(t)}{d t}=A \vec{x}(t)+B u(t)$ with $\vec{x}(t)=\left[\begin{array}{l}V_{1}(t) \\ V_{2}(t)\end{array}\right]$. You can assume the golden rules of op-amps apply here. using galen rate:

$$
\begin{aligned}
& i_{1}=\frac{V_{1}-u(t)}{R} \Rightarrow \frac{d v_{2}}{d t}=\frac{u(t)-V_{1}}{C R} \\
& i_{2}=\frac{u(t)+v_{2}}{R} \Rightarrow \frac{d v_{1}}{d t}=\frac{-u(t)-v_{2}}{R C}
\end{aligned}
$$

$$
\overrightarrow{\dot{x}}(t)=\left[\begin{array}{cc}
0 & -\frac{1}{R c} \\
-\frac{1}{R c} & 0
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{k} \\
+\frac{1}{R}
\end{array}\right] u(t)
$$

$$
A=\left[\begin{array}{cc}
0 & -\frac{1}{\Omega c} \\
-\frac{1}{\pi c} & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
-\frac{1}{\sqrt{2}} \\
+\frac{1}{\pi c}
\end{array}\right]
$$

(b) Consider the following continuous time system:

$$
\frac{d \vec{x}(t)}{d t}=\left[\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right] \vec{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

Where $0<|a|<\infty$ and $0<|b|<\infty$. Is the system stable?
characteristic polynomial:

$$
\lambda^{2}-a b=0
$$

$\operatorname{cose} 1 \quad a>0, b>0$ or $a<0$, bro

$$
\begin{aligned}
& \lambda^{2}=|a||b| \quad \lambda_{1,2} \pm \sqrt{|a||b|} \text { not stable } \\
& p>0 \text { or } a>0, b<0 \quad \operatorname{Re}\left\{\lambda_{2}\right\}>0
\end{aligned}
$$

Case 1 aco b>o or $a>0, b<0$

$$
\begin{aligned}
& \lambda^{2}= \\
& \text { table }
\end{aligned}
$$

Stable Not Stable
(c) Let $\vec{y}(t)=C \vec{x}(t)$, where $C=\left[\begin{array}{ll}0 & 1\end{array}\right]$. Is the system observable?

$$
O=\left[\begin{array}{c}
c \\
C A
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
b & 0
\end{array}\right] \Rightarrow \operatorname{Ronk}\{0\}=\alpha
$$

\qquad
(d) For the system in part (b), we design a state feedback controller $u(t)=K \vec{x}(t)$, where $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$. Find the k_{1} and k_{2} values which will drive the system to equilibrium with eigenvalues $\lambda_{1}=\lambda_{2}=-1$.

Need $A+B / C$ to have eigenvals of $\lambda_{1}=\lambda_{2}=-1$

$$
\left(\begin{array}{cc}
0 & a \\
b & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
k_{1} & k_{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & a \\
b+k_{1} & k_{2}
\end{array}\right)
$$

characteristic polynomial:

$$
\begin{aligned}
& -\lambda\left(k_{2}-\lambda\right)-a\left(b+k_{1}\right)=0 \\
& -\lambda k_{2}+\lambda^{2}-a b-a k_{1}=0 \\
& \lambda^{2}-k_{2} \lambda-a b-a k_{1}=0
\end{aligned}
$$

similarly,

$$
\begin{gathered}
(\lambda+1)(\lambda+1)=\lambda^{2}+2 \lambda+1 \\
-k_{2}=\alpha \Rightarrow k_{2}=-2 \\
+a b+a k_{1}=-1 \\
k_{1}=\frac{-1-a b}{a}
\end{gathered}
$$

$$
k_{1}=-\frac{1+a b}{a} \quad k_{2}=-2
$$

2. System Responses (40 points)

Consider again the system:

$$
\frac{d \vec{x}(t)}{d t}=\left[\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right] \vec{x}(t)
$$

Where $0<|a|=|b|<\infty$, ie $a=b$ or $a=-b$. For each of the following plots, state if the plot could be a possible system response for some initial state $\vec{x}(0)$. Provide a sufficient explanation to your answer. The solid line is $x_{1}(t)$ and the dashed line is $x_{2}(t)$.
Possible?(Yes)/ No
Explanation.
oscillatory
(b)

\qquad
(c)

Possible? Yes No
Explanation:
Explanation:
there is only explotion with $e^{\text {at }}$ not tess rates.
(d)

Possible? Yes No
Explanation:
There are no complex eigenvals just pare real or jonoginary
(e)

Possible? Yes No
Explanation:
since the resents are not oscillatory the most likely form of solabision is:

$$
\alpha[1] e^{+a t}+\beta\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] e^{-a t}
$$

while in general decay and explode could be a saltation, the above curve is impossible.
For x_{1} to drop g and then rise, $\beta \gg$
for x_{2} to start at zero and explode $\beta=\alpha$
so the answer is no.
Thanks for Alermish mehty for pointing ont the problem in the original solution.
3. Discrete Time System ($\mathbf{3 0}$ points)

Consider the discrete-time system

$$
x(t+1)=\left[\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

Where $-\infty<a<\infty,-\infty<b<\infty$
(a) Under what conditions on a, b is the system stable?

Case I: $a>0, b>0$
acc bro

$$
\lambda_{1,2}= \pm \sqrt{|a||b|}
$$

case II: $a<0, b>0 \quad a>0 \quad b<0$
$\sqrt{|a| b \mid}<1$
$|a| b \mid<1$
$|a| / b \mid<1$
(b) Determine the inputs of an open-loop controller that will take the system from

$$
\vec{x}(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { to } \vec{x}(2)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) \cdot \vec{\mu}=\left[\begin{array}{l}
1 \\
y
\end{array}\right]
$$

$$
u(0)=\frac{1}{a} \quad u(1)=1
$$

\qquad

4. SVD (40 points)

(a) Let $A \in \mathbb{R}^{2 \times 2}$ and $\vec{x}=\left[\begin{array}{c}\sin (\theta) \\ \cos (\theta)\end{array}\right],\|\vec{x}\|=1$. Now let $\vec{y}=A \vec{x}$. Below is the plot of $\|\vec{y}\|$ vs θ.

What can we learn of the SVD of A? In the space provided below, complete the matrices that can be determined with the above information, and explain what's missing.

We know that $\sigma_{2} \leqslant M\left(A x \| \leqslant \sigma_{1}\right.$
so $\sigma_{1}=5 \quad \sigma_{2}=1$
since we obsere allyl Ulecan be arbitrarily rotated, so be donn know le

$$
u=\left[\begin{array}{l}
j \\
j
\end{array}\right] s=\left[\begin{array}{cc}
\delta & 0 \\
0 & 1
\end{array}\right] v=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

(b) Let $A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times N}$ be full rank matrices and let $\vec{x} \in \mathbb{R}^{N}$ have $\|\vec{x}\|=1$. We compute $\vec{y}=A \cdot B \cdot \vec{x}$. Find the upper bound for $\|\vec{y}\|$ in terms of the singular values of A and B. Explain your answer

\qquad

5. Data Science ($\mathbf{3 0} \mathbf{~ p t s}$)

After midterm 2, we conducted a survey in which we asked students to rate the difficulty of midterms 1 and 2 on a continuous scale from 0 to 10 . The results of the scatter plots are below.

Midterm 2

(1) Subtract the mean of each column and store the demeaned data in \tilde{A}
(2) Compute the SVD: $\tilde{A}=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T}$
(3) $\tilde{A}^{T} u_{1}=\left[\begin{array}{c}-41.7 \\ 46.9\end{array}\right], \quad \tilde{A}^{T} u_{2}=\left[\begin{array}{l}8.6 \\ 7.6\end{array}\right]$
(a) Draw a scatter plot of the projected $\tilde{A} v_{1}, \tilde{A} v_{2}$ points on the PCA basis. Explain your answer.

$$
\begin{aligned}
& \text { Because of } 3 \text {, miff bat negative inner propluct with } \\
& P C_{1} \text { so } R_{1} \text { points night } \rightarrow \text { Deft } \\
& P C_{2} \text { points bottom beth pos top sight }
\end{aligned}
$$

(b) Let $\left[a_{i}, b_{i}\right]$ be the rating of the i th student, and \vec{v}_{2} be the second principal component vector. What would it mean for $\left[\begin{array}{ll}a_{i} & b_{i}\end{array}\right] \vec{v}_{2}>\left[\begin{array}{ll}a_{j} & b_{j}\end{array}\right] \vec{v}_{2}$? Circle the answer within each set of slashes. Explain your answer.
μ_{2} books to hate gosisiom position inner- prochat
with both a
also forint rather than
This direction indicates more elifficunty
on both exams.
Unfortunately this is not enough information...

all points similar projection un \vec{v}_{2} lie on this line.

O case for student i finding mid al more difficult bax mid easier lion student j
Δ case for student i finding mid α more difficult, but mid 1 easier thun student j

* case for student; finding both midberns

So, all answers could be right except student j finding both mielterns harder than student i

