Midterm 2

 $(\ensuremath{\underline{I}})$ This is a preview of the published version of the quiz

Started: Nov 15 at 3:16am

Quiz Instructions

Midterm 2 is open book. You are allowed to use any lecture/course notes, homeworks, discussions, or websites (except those for collaborative documents or forums). In addition to this, we will allow the use of a calculator and a Python File or Notebook. You <u>may not</u> access or post on any collaborative documents (e.g. Google Docs) or forums (e.g. Chegg). **Collaboration with other students is prohibited.**

Assuming you do not have an approved time extension, you will have 1 hour (60 minutes) to complete the Midterm and you may begin the Midterm at any point during the window of 7:10-8:30 pm. However, the Midterm will close at 8:30 pm, meaning that you must start by 7:30 pm to have the full 1 hour. **We are not Zoom proctoring.**

We will not clarify anything during the exam so please do your best with the information provided. If you have an issue during your exam please email us at <u>eecs16b-fa20@berkeley.edu (mailto:eecs16b-fa20@berkeley.edu)</u> and CC the professors (<u>seth.sanders@berkeley.edu (mailto:seth.sanders@berkeley.edu)</u> and <u>mlustig@eecs.berkeley.edu (mailto:mlustig@eecs.berkeley.edu)</u>.

Good luck!

Question 11 ptsConsider the following continuous-time system:
$$\frac{d}{dt}\vec{x}(t) = \begin{bmatrix} 1 & -1 \\ -6 & 0 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 1 \\ \alpha \end{bmatrix} u(t).$$

For which values of α is this system controllable?

Mark all the correct options.

Question 2

2 pts

Suppose we have a system $\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_2(x_2) \end{bmatrix}$ with f_1 and f_2 plotted below.

How many equilibrium points are there with $0 \leq x_1 \leq 5$ and $0 \leq x_2 \leq 5$?

[Select]

For each of the following, state whether the system is stable or unstable when linearized about this point:

$x_1=2, x_2=3$	[Select]	~
$x_1=0, x_2=4$	[Select]	~

Question 3

Let us model a biological system as the following set of differential equations:

$$rac{d}{dt}m=k_1-d_1m$$
 $rac{d}{dt}p=k_2m-d_2p$

Where k_1, k_2, d_1, d_2 are all constants, with units appropriate to the situation. If a biological system like this is allowed to persist for a long time, *m* and *p* will converge to a unique equilibrium. What are the values of *m* and *p* at this equilibrium?

m =	[Select]		~
(i) $\frac{k_1}{d_1}$	(ii) $-rac{k_1}{d_2}$	(iii) 0	$(iv) \; \frac{-k_1 k_2}{d_1 d_2}$
p =	[Select]		~
(i) $\frac{k_1 k_1}{d_1 d_1}$	$\frac{k_2}{d_2}$ (ii) $-\frac{k_1}{d_1}$	$\frac{k_2}{d_2}$ (iii)	0 (iv) $\frac{k_2}{d_2}$

Question 4

2 pts

We have the following discrete time system:

$$ec{x}(t+1) = egin{bmatrix} -1 & 0 \ 2 & 1 \end{bmatrix} ec{x}(t) + egin{bmatrix} 1 \ -1 \end{bmatrix} u(t),$$

$$ec{x}(0) = egin{bmatrix} 1 \ -2 \end{bmatrix}.$$

Mark if the following statements about this system are **True/False**.

It is possible to design an input sequence
$$u(0), u(1), u(2), u(3)$$
 to reach
any $\vec{x}^* \in \mathbb{R}^2$ at $t = 4$.
[Select] \checkmark
It is possible to design an input sequence $u(0), u(1)$ to reach
 $x(2) = \begin{bmatrix} 1+\alpha \\ -2-\alpha \end{bmatrix}$ for any scalar $\alpha \in \mathbb{R}$.
[Select] \checkmark
This system is controllable.
[Select] \checkmark
In a single time step, we can reach $x(1) = \begin{bmatrix} 1+\alpha \\ -2-\alpha \end{bmatrix}$ for any scalar
 $\alpha \in \mathbb{R}$.
[Select] \checkmark

Question 5

1 pts

Consider the following discrete time linear system:

$$ec{x}(t+1) = egin{bmatrix} 0 & 1 \ 1 & -2 \end{bmatrix} ec{x}(t) + egin{bmatrix} 0 \ 1 \end{bmatrix} u(t).$$

For feedback control $u(t) = \begin{bmatrix} k_1 & k_2 \end{bmatrix} \vec{x}(t)$, which of the following values of k_2 make the eigenvalues of the resulting closed loop system sum to zero?

○ 2

○ 1

○ -1

Question 6

Taejin is trying to identify an unknown linear discrete-time system of the

form
$$\begin{bmatrix} x(t+1)\\ y(t+1) \end{bmatrix} = \underbrace{\begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}}_{A} \begin{bmatrix} x(t)\\ y(t) \end{bmatrix} + \underbrace{\begin{bmatrix} b_{11}\\ b_{21} \end{bmatrix}}_{B} u(t)$$

To do this, he applies the following sequence of scalar inputs $u(0), u(1), \ldots, u(10), u(11)$

and observes the following states

 $x(0), y(0), x(1), y(1), \ldots, x(11), y(11), x(12), y(12)$

Which of the following are valid set-ups that can be used to solve for the A and B matrices?

$$\begin{bmatrix} x(0) & y(0) & u(0) & u(0) \\ x(1) & y(1) & u(1) & u(1) \\ \vdots & \vdots & \vdots & \vdots \\ x(11) & y(11) & u(11) & u(11) \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ b_{11} & b_{21} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} x(1) & y(1) \\ x(2) & y(2) \\ \vdots & \vdots \\ x(12) & y(12) \end{bmatrix}$$
[Select]

$$egin{bmatrix} x(0) & y(0) & u(0) \ x(1) & y(1) & u(1) \ dots & dots & dots & dots \ x(11) & y(11) & u(11) \end{bmatrix} egin{bmatrix} a_{11} & a_{21} \ a_{12} & a_{22} \ b_{11} & b_{21} \end{bmatrix} = egin{bmatrix} x(1) & y(1) \ x(2) & y(2) \ dots & dots & dots \ x(12) & y(12) \end{bmatrix}$$

[Select]

Question 72 ptsGiven an over-constrained system of equations $D\vec{p}=\vec{y}$

Question 81 ptsConsider the following dynamical system with $a, d, \lambda, \mu > 0$, $\frac{d}{dt}x_1(t) = x_1(t)(a - bx_2(t) - \lambda x_1(t))$ $\frac{d}{dt}x_2(t) = x_2(t)(-d + cx_1(t) - \mu x_2(t))$ Which of the following is the A matrix when you linearize around the equilibrium of the form $(\frac{a}{\lambda}, 0)$. $\circ \begin{bmatrix} -a & -\frac{ab}{\lambda} \\ 0 & -d + \frac{ac}{\lambda} \end{bmatrix}$ $\circ \begin{bmatrix} a + \frac{bd}{\mu} & -\frac{ab}{\lambda} \\ 0 & d \end{bmatrix}$

0

$$\begin{bmatrix} -a & 0 \\ -\frac{cd}{\mu} & -d + \frac{ac}{\lambda} \end{bmatrix}$$

$$\stackrel{\bigcirc}{} \begin{bmatrix} a + \frac{bd}{\mu} & 0 \\ -\frac{cd}{\mu} & d \end{bmatrix}$$

Question 9		1 pts		
$A\in R^{2 imes 2}$ is a diagonal matrix with singular values $\ \sigma_1\ =0.5,\ \sigma_2=0.1.$ Complete the following statements:				
When <i>A</i> is the [Select]	matrix in: $ec{x}(t+1) = Aec{x}(t) + Bec{x}$	u(t),		
When <i>A</i> is the [Select]	matrix in $rac{d}{dt}ec{x}(t) = Aec{x}(t) + Bu(t)$	÷),		

Quiz saved at 3:17am Submit Quiz