
Final Exam @ 2022-02-27 17:52:10-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Final Exam Solutions Final Exam

Section 0: Pre-exam questions (4 points)
1. Honor Code: Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules and do this exam on my own.

Note that if you do not copy the honor code and sign your name, you will get a 0 on the exam.

2. How are you hoping to relax during winter break? (2 pts)

Solution: Any answer that actually answers the question gets full credit.

3. Think about something that you know how to do well and enjoy doing. What is it? (2 pts)

Solution: Any answer that actually answers the question gets full credit.
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4. SVD Calculation (11 points)

(a) (7pts) Let A =

 0 2√
2 0
0 1

. The eigenvalues of AA⊤ =

4 0 2
0 2 0
2 0 1

 are 5, 2, 0 with corresponding

unnormalized eigenvectors

20
1

 ,

01
0

 ,

−1
0
2

.

In addition, we know that:

A⊤

2 0 −1
0 1 0
1 0 2

 =

[
0

√
2 0

5 0 0

]
(1)

Solution: Observe that this problem is just asking you to carry out a process that you studied in
HW11’s question entitled “SVD from the other side.” You had practice doing this in discussion 10B
as well.
Write out the singular value decomposition (SVD) of A in any form you choose (outer product
form, compact, or full). (No need to show work.)

Solution: The normalized eigenvectors of AA⊤ are the columns of U :

U =

2
√
5

5 0 −
√
5

5
0 1 0√
5
5 0 2

√
5

5

 (2)

Also, the singular values of A are the square roots of the eigenvalues of AA⊤. Since Σ is the same
shape as A and contains the singular values along its diagonal (with zeros elsewhere):

Σ =


√
5 0

0
√
2

0 0

 (3)

Finally, we can find the columns of V from the columns of U and the nonzero singular values:

v⃗1 =
1

σ1
A⊤u⃗1 =

[
0
1

]
(4)

v⃗2 =
1

σ2
A⊤u⃗2 =

[
1
0

]
(5)

V =

[
0 1
1 0

]
(6)

Writing the SVD in outer product form yields:

A =

2∑
i=1

σiu⃗iv⃗
⊤
i =

√
5

2
√
5

5
0√
5
5

[
0 1

]
+
√
2

01
0

[
1 0

]
(7)
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where u⃗i and v⃗i are the columns of U and V , respectively. We can also write the full SVD:

A = UΣV ⊤ =

2
√
5

5 0 −
√
5

5
0 1 0√
5
5 0 2

√
5

5



√
5 0

0
√
2

0 0

[
0 1
1 0

]
(8)

or the compact SVD:

A = UΣV ⊤ =

2
√
5

5 0
0 1√
5
5 0

[√
5 0

0
√
2

][
0 1
1 0

]
(9)

For these specific numbers, once you had the first two columns of U and know the Σ, you could also
just read off what the v⃗i have to be since you knew that the first column of A is a scaled multiple of u⃗2
and the second column of A is a scaled multiple of u⃗1. The numbers were made simple enough to let
you do this as a valid way of solving the problem.

(b) (4pts) What is the best rank 1 approximation of A (i.e., what is the rank 1 matrix B that mini-
mizes∥A−B∥F )? Write your answer as a 3× 2 dimensional matrix. (No need to show work)

Solution: The best rank 1 approximation is B = σ1u⃗1v⃗
⊤
1 , or the outer product of the vectors u⃗i and

v⃗i that correspond to the largest singular value σ1.
In this case:

B =
√
5

2
√
5

5
0√
5
5

[
0 1

]
=

0 2
0 0
0 1

 (10)

For this specific problem, you could also observe that the two columns of A are clearly orthogonal to
each other. Consequently, the best rank 1 approximation can only capture one of them, which means
that you just want the heavier one which is the second one. From this, you could have immediately
seen that B must have this form. This is also a valid alternative way to solve this problem.
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5. Gram-Schmidt with Complex Vectors (11 points)

Suppose you are given two complex vectors v⃗1 =

[
j
1

]
and v⃗2 =

[
1
0

]
. In addition, the complex inner

products are given as:

⟨v⃗1, v⃗1⟩ = v⃗∗1 v⃗1 = 2 (11)

⟨v⃗2, v⃗2⟩ = v⃗∗2 v⃗2 = 1 (12)

⟨v⃗1, v⃗2⟩ = v⃗∗2 v⃗1 = +j (13)

⟨v⃗2, v⃗1⟩ = v⃗∗1 v⃗2 = −j (14)

Use the Gram-Schmidt algorithm to generate an orthonormal sequence of vectors (u⃗1, u⃗2) from the list of
vectors (v⃗1, v⃗2), starting with v⃗1. If you start the Gram-Schmidt algorithm with v⃗2, you will receive zero
credit for this entire problem.

Solution: Observe that this problem is essentially the same as what you did in discussion 14B, except that
we flipped the sign of v⃗2 and simplified it further by just making things two dimensional instead of adding
one more v⃗3.

(a) (3pts) What is the first vector u⃗1? (No need to show work)

Solution: The first step of the Graham-Schmidt algorithm is to normalize the first vector v⃗1 to get
u⃗1. Remember that ⟨v⃗1, v⃗1⟩ =∥v⃗1∥2, so∥v⃗1∥ =

√
2.

u⃗1 =
v⃗1

∥v⃗1∥
=

1√
2

[
j
1

]
(15)

(b) (8pts) What is the second vector u⃗2? (Show work)

Solution: The second unnormalized basis vector r⃗2 is found by projecting v⃗2 onto u⃗1 and subtracting
the projection from v⃗2.

r⃗2 = v⃗2 − Pu⃗1
v⃗2 (16)

= v⃗2 −
⟨v⃗2, u⃗1⟩
⟨u⃗1, u⃗1⟩

u⃗1 (17)

= v⃗2 −
⟨v⃗2, v⃗1⟩
∥v⃗1∥

v⃗1
∥v⃗1∥

(18)
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=

[
1
0

]
−
(
−j

2

)[
j
1

]
(19)

=
1

2

[
1
j

]
(20)

The normalized basis vector is

u⃗2 =
r⃗2

∥r⃗2∥
=

1√
2

[
1
j

]
(21)
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6. Choosing cost functions for learning classification (9 points)

We have labeled data {(x⃗i, yi)} where the labels yi are either ‘+’ or ‘-’. We want to learn a vector w⃗ so that
we can use the sign of w⃗⊤x⃗ to classify x⃗. To do this, we will minimize a sum ctotal(w⃗) =

∑
i c

yi(x⃗⊤i w⃗).
We consider cost functions:

(a) Squared loss: c+(p) = (p− 1)2 and c−(p) = (p− (−1))2

(b) Exponential loss: c+(p) = e−p and c−(p) = e+p

(c) Logistic loss: c+(p) = ln
(
1 + e−p

)
and c−(p) = ln

(
1 + e+p

)
Solution: This problem engages exactly with the ideas in HW13’s problem entitled “Linearization to help
classification: discovering logistic regression and how to solve it” as well as what you saw in Discussion
13A. The jupyter notebooks associated with those is where you saw examples like these.

For the plotted data, which cost functions will result in learning reasonable classifiers? (Multiple
options might be correct and should be marked for full credit, but every plot has at least one correct option.)

Cost Function
Squared 2

Exponential 2

Logistic 2

Solution:

Squared Exponential Logistic
Reasonable Choice

Why? This data is pretty balanced and so any of these approaches will work. There are no outliers of any
kind to confuse least-squares.Solution:
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Cost Function
Squared 2

Exponential 2

Logistic 2

Note: You want to make sure that the two right-most
‘+’ points don’t influence your learned classifier by

too much.

Squared Exponential Logistic
Reasonable Choice 2 2

This data clearly has a “wrongly classified” outlier that is a “+” point deep in what should be “-” territory.
Both the squared loss and (especially) exponential loss will be quite sensitive to this while logistic loss will
end up largely ignoring this point. In such cases, we really need to be using logistic loss of the choices
offered here.

Cost Function
Squared 2

Exponential 2

Logistic 2

Solution:
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Squared Exponential Logistic
Reasonable Choice 2

In this case, we clearly have two masses of points in each category. The + category is particularly striking
because the second mass of points is deep within what we would consider “+” category. These type of points
will confuse squared loss quite a bit while both exponential and logistic loss don’t care about points that are
deeply within their own proper territories. They focus on things closer to the boundaries.
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7. Nonlinear Feedback Control (14 points)

Consider the following differential equation model for a control system:

d

dt
x⃗(t) = f⃗(x⃗(t)) + g⃗(x⃗(t))u(t) (22)

Assume that our state x⃗ =

[
x1
x2

]
is two-dimensional and our input u ∈ R is a scalar. Let our dynamics

functions be

f⃗(x⃗) =

[
x31
x22

]
, g⃗(x⃗) =

[
x2
x1

]
(23)

Solution: This problem is in the same style as what students did in the HW 13 problem entitled “Latch,”
except that there’s no surrounding motivation here. It also follows what was done in Discussion 12A closely.

(a) (4pts) Show that x∗1 = −1, x∗2 = 1, u∗ = 1 is an equilibrium point. (i.e. if we find ourselves exactly
in this state with exactly this input and no disturbances, we will not move from here.)

Solution:

h⃗(x⃗, u) = f⃗(x⃗) + g⃗(x⃗)u =

[
x31 + x2u
x22 + x1u

]
(24)

h⃗(x⃗∗, u∗) =

[
(−1)3 + (1)(1)
(1)2 + (−1)(1)

]
=

[
−1 + 1
1− 1

]
=

[
0
0

]
(25)

Since dx
dt = h⃗(x⃗∗, u∗) = 0⃗, this is a valid equilibrium point.
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(b) (8pts) Recall that our nonlinear controlled differential equation for the state x⃗(t) =

[
x1(t)
x2(t)

]
is given

by:

d

dt
x⃗(t) =

[
x31(t) + x2(t)u(t)
x22(t) + x1(t)u(t)

]
.

The equilibrium of interest has x⃗∗ =

[
−1
+1

]
and u∗ = +1.

We define the variables ⃗̃x = x⃗ − x⃗∗ and ũ = u − u∗ as the deviations from the equilibrium point
(x⃗∗, u∗).

What should the matrix A and vector b⃗ be in our locally linearized model d
dt
⃗̃x(t) ≈ A⃗̃x(t)+b⃗ũ(t)?

(Show work and give specific numbers for A and b⃗.)

Solution:

h⃗(x⃗, u) = f⃗(x⃗) + g⃗(x⃗)u =

[
x31 + x2u
x22 + x1u

]
(26)

∂h⃗

∂x⃗
=

[
3x21 u
u 2x2

]
(27)

A =
∂h⃗

∂x⃗

∣∣∣
x⃗=x⃗∗,u=u∗

=

[
3 1
1 2

]
(28)

∂h⃗

∂u
=

[
x2
x1

]
(29)

b⃗ =
∂h⃗

∂u

∣∣∣
x⃗=x⃗∗,u=u∗

=

[
1
−1

]
(30)
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(c) (2pts) Is the resulting linearized system from the above part controllable?
Solution:

C =
[⃗
b Ab⃗

]
=

[
1 2
−1 −1

]
(31)

The controllability matrix C has full rank of 2 so the system is controllable.
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8. Bode Plot Analysis of Band Stop and Notch Filters (35 points)

Consider a system with an input that consists of three signals, i.e. vi(t) = s1(t) + s2(t) + n(t), where
s1(t) = 2 cos

(
102t

)
and s2(t) = 2 cos

(
107t

)
are the two desired signals, and n(t) = 10 cos

(
104t

)
is an

interference signal. We wish to construct a filter so that the amplitude of the interference signal is attenuated
to be at most 1

10 times the amplitude of the desired signals after filtering.

Solution: This problem largely follows what you’ve seen in Discussion 5B as well as HW 6’s problem
entitled: “Bandpass Filter: Lowpass and Highpass Cascade.” This is was further reviewed for you a bit in
Discussion 15A where we went over a related problem from the Spring 21 final.

We will attempt two different ways of achieving this behavior. In parts (a), (b), and (c), we will analyze the
first approach, which is to use a band stop filter that attenuates the interference signal and passes the desired
signals. In part (d), we will analyze the second approach, which is to create a notch at the interference signal
frequency.

Input vi(t)

HPF

LPF

+ Filtered Output

Figure 1: Block diagram of a Band Stop Filter. The HPF and LPF blocks represent a high-pass filter and a low-pass
filter respectively. NOTE: Remember, you can always turn block diagrams into circuits by using the corresponding
circuit for the transfer function in the block diagram, and isolating transfer functions with buffers.
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(a) (10pts) Let’s start by analyzing the HPF path in fig. 1, which should pass s2(t) = 2 cos
(
107t

)
and

attenuate n(t) = 10 cos
(
104t

)
. Assume that the high-pass filter transfer function is HHPF(jω) =

j ω
106

1+j ω
106

.

i. Draw the magnitude and phase Bode plots of the high-pass filter HHPF(jω) =
j ω
106

1+j ω
106

.

101 102 103 104 105 106 107 108
10−6

10−5

10−4

10−3

10−2

10−1

100

101

ω (rad/s)

∣ ∣ H HP
F
(j
ω
)∣ ∣

Part (a) Magnitude Plot
∣∣HHPF(jω)

∣∣

101 102 103 104 105 106 107 108
−π

4

0

π
4

π
2

3π
4

ω (rad/s)
∡
H

H
P
F
(j
ω
)

Part (a) Phase Plot ∡HHPF(jω)

Figure 2: Part (a) Magnitude and Phase Bode Plots for the transfer function HHPF(jω).

Solution: The magnitude and phase Bode plots are shown in fig. 3. Students only need to
draw the Bode approximation straight lines (dashed lines in the plots) for full credit. The
true curves are drawn in solid lines just for reference.
This is a classic high-pass filter plot where we know that the corner frequency is 106 based on
the form of the transfer function. We see the classic drop of a factor of 10 in magnitude for every
factor of 10 in frequency to the left of this corner frequency and holding constant at 1 = 100 to the
right of this corner frequency. This is because when ω is small, the numerator is shrinking while
the denominator is not changing since the denominator is dominated by the 1.
For phase, at the corner frequency we are at π

4 since j
1+j =

1+j
2 clearly has equal and positive real

and imaginary parts. Under the Bode approximation, moving a factor of 10 or more in frequency to
the left makes everything dominated by the real term in the denominator, which makes the overall
transfer function almost entirely imaginary due to the +j in the numerator. This gives a phase of
π
2 . When the frequency is high — more than a factor of 10 above the cutoff frequency, everything
is dominated by the imaginary term in the denominator, which makes the overall transfer function
essentially real and positive. This gives a phase of 0. Connecting these regions with straight lines
in between gives the classic phase plot approximation for a high-pass filter.
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101 102 103 104 105 106 107 108
10−6

10−5

10−4

10−3

10−2

10−1

100

101

ω (rad/s)

∣ ∣ H HP
F
(j
ω
)∣ ∣

Part (a) Magnitude Plot
∣∣HHPF(jω)

∣∣
Bode Magnitude Plot

101 102 103 104 105 106 107 108
−π

4

0

π
4

π
2

3π
4

ω (rad/s)

∡
H

H
P
F
(j
ω
)

Part (a) Phase Plot ∡HHPF(jω)

Bode Phase Plot

Figure 3: Part (a) Magnitude and Phase Bode Plots for the transfer function HHPF(jω).

ii. By reading the corresponding values from the Bode plots, write down the approximate
output signal expressions corresponding to s1(t) = 2 cos

(
102t

)
, s2(t) = 2 cos

(
107t

)
and

n(t) = 10 cos
(
104t

)
after high-pass filtering. NOTE: You do not need to compute exact mag-

nitude and phase values using the transfer function. Just use the Bode approximation by reading
from the plots.
Solution: The outputs corresponding to s1(t), s2(t) and n(t) are given by

s̃1(t) = 2× 10−4 cos

(
102t+

π

2

)
= −2× 10−4 sin

(
102t

)
(32)

ñ(t) = 0.1 cos

(
104t+

π

2

)
= −0.1 sin

(
104t

)
(33)

s̃2(t) = 2 cos
(
107t

)
(34)

Full credit is given for any of the equivalent trigonometric expressions.
Here, we can read off the magnitude 10−4 and phase π

2 from the plot for frequency 102.
Similarly, we can see the magnitude 10−2 and phase π

2 from the plot for frequency 104. Multiply-
ing 10−2 with the initial amplitude 10 gives us the 0.1.
Finally, we can see the magnitude 1 = 100 and phase 0 from the plot for frequency 107. Conse-
quently, s2 is basically unchanged after passing through this filter.
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(b) (17pts) Now let’s analyze the LPF path in fig. 1, which should pass s1(t) = 2 cos
(
102t

)
and attenuate

n(t) = 10 cos
(
104t

)
. Assume that you are allowed to use multiple copies of a low-pass filter given by

HLPF(jω) =
1

1+j ω
103

and a unity gain buffer given by Hbuf(jω) = 1.

i. Remember that we wish to attenuate the amplitude of n(t) = 10 cos
(
104t

)
to be at most 1

10 times
the amplitude of s1(t) = 2 cos

(
102t

)
after filtering. At least how many copies of HLPF(jω) and

Hbuf(jω) do we need to cascade to achieve this goal? What is the overall transfer function
H1(jω) of this cascaded low-pass filter? NOTE: You do not have to simplify the expression.
Solution: We require 2 first-order low-pass filters cascaded with a buffer.
We can see this because a single first-order low-pass filter wouldn’t work. Why? Because the
spacing of the frequencies is such that the cutoff 103 is only a factor of 10 away from the interfer-
ence n(t)’s frequency of 104. This means that the simple low-pass filter can only attenuate by a
factor of 10, and that would bring the amplitude from 10 to just 1. But we need the amplitude to
be below 1

10 × 2 = 0.2. This means we need another factor of 10 attenuation, which we can get
by cascading two of the first-order low-pass filters through a buffer to prevent loading effects.
The overall transfer function is given by

H1(jω) = HLPF(jω) ·Hbuf(jω) ·HLPF(jω) =
1(

1 + j ω
103

)2 (35)

ii. Draw the magnitude and phase Bode plots of the overall low-pass filter H1(jω).

101 102 103 104 105 106 107 108
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

ω (rad/s)

∣ ∣ H 1(
jω
)∣ ∣

Part (b) Magnitude Plot
∣∣H1(jω)

∣∣

101 102 103 104 105 106 107 108
− 5π

4

−π

− 3π
4

−π
2

−π
4

0

π
4

ω (rad/s)

∡
H

1
(j
ω
)

Part (b) Phase Plot ∡H1(jω)

Figure 4: Part (b) Magnitude and Phase Bode Plots for the transfer function H1(jω).
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Solution: The magnitude and phase Bode plots are shown in fig. 5. Students only need to
draw the Bode approximation straight lines (dashed lines in the plots) for full credit. The
true curves are drawn in solid lines just for reference.
This is a composition of two classic first-order low-pass filters. To the left of the cutoff frequency,
the magnitude is 1. Since 1 × 1 = 1, the same magnitude exists for H1 to the left of the cutoff
frequency in the Bode approximation. For frequencies to the right of the cutoff frequency, the
classic first-order low-pass filter drops the magnitude by a factor of 10 for every factor of 10
increase in the frequency. Since 10 × 10 = 100, this means that H1 drops by a factor of 100 for
every factor of 10 increase in the frequency.
The same argument works for phase. Sufficiently to the left (a factor of 10 or more) of the cutoff
frequency, a classic first-order low-pass filter has a phase of 0 since it is just dominated by a
positive real number. More than a factor of 10 above the cutoff frequency, the imaginary term
in the denominator dominates, which turns into a phase of −π

2 for a classic first-order low-pass
filter. Because of how multiplication of complex numbers works in polar coordinates, phases add
when we cascade two filters. This means that for H1, the phase becomes −π once you are right
of a factor of 10 above the cutoff frequency. Connecting these with a straight line gives the Bode

approximation for phase, which does the right thing at the cutoff frequency since
(

1
1+j

)2
= 1

2j =

−1
2 j giving a phase of −π

2 .

101 102 103 104 105 106 107 108
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
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100

101

ω (rad/s)

∣ ∣ H 1(
jω
)∣ ∣

Part (b) Magnitude Plot
∣∣H1(jω)

∣∣
Bode Magnitude Plot

101 102 103 104 105 106 107 108
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−π
4
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ω (rad/s)

∡
H

1
(j
ω
)

Part (b) Phase Plot ∡H1(jω)

Bode Phase Plot

Figure 5: Part (b) Magnitude and Phase Bode Plots for the transfer function H1(jω).

iii. By reading the corresponding values from the Bode plots, write down the approximate
output signal expressions corresponding to s1(t) = 2 cos

(
102t

)
, s2(t) = 2 cos

(
107t

)
and

n(t) = 10 cos
(
104t

)
after the overall low-pass filtering using H1(jω). NOTE: You do not

need to compute exact magnitude and phase values using the transfer function. Just use the Bode
approximation by reading from the plots.
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Solution: The outputs corresponding to s1(t), s2(t) and n(t) are given by

s̃1(t) = 2 cos
(
102t

)
(36)

ñ(t) = 0.1 cos
(
104t− π

)
= −0.1 cos

(
104t

)
(37)

s̃2(t) = 2× 10−8 cos
(
107t− π

)
= −2× 10−8 cos

(
107t

)
(38)

Full credit is given for any of the equivalent trigonometric expressions.
For s1, we can read off the magnitude and phase and the result is that this survives the filter
entirely unchanged.
For n, we can read off the magnitude as 10−2 for the frequency 104 with a phase of −π. Since
10× 10−2 = 0.1, we get the expression above.
For s2, we can read off the magnitude as 10−8 for the frequency 107 with a phase of −π.
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We have redrawn fig. 1 here for your convenience with the cutoff/corner frequencies labeled.

Input vi(t)

HPF, ωc = 106 rads

LPF, ωc = 103 rads

+ Filtered Output

Figure 6: Block diagram of a Band Stop Filter.

(c) (3pts) Explain in words what is the effect of the complete filter above on the three signals s1(t) =
2 cos

(
102t

)
, s2(t) = 2 cos

(
107t

)
and n(t) = 10 cos

(
104t

)
? You do not have to provide numerical

answers for this part.

Solution: s1(t) is passed by LPF but severely attenuated by HPF, so the final result is approximately
s1(t).
s2(t) is passed by HPF but severely attenuated by LPF, so the final result is approximately s2(t).
n(t) is attenuated by both the LPF and HPF.
Hence the overall filter in fig. 1 exhibits band stop behavior, i.e. it passes low and high frequencies but
attenuates frequencies in the middle band.
Students get full credit for just the text description above. Detailed quantitative explanation is
shown below just for reference.
By adding the results from parts (a) (iii) and (b) (iii), the final output signal expressions are

s̃1(t) = 2× 10−4 cos

(
102t+

π

2

)
+ 2 cos

(
102t

)
≈ 2 cos

(
102t

)
= s1(t) (39)

ñ(t) = 0.1 cos

(
104t+

π

2

)
+ 0.1 cos

(
104t− π

)
= 0.1

√
2 cos

(
104t+

3π

4

)
(40)

s̃2(t) = 2 cos
(
107t

)
+ 2× 10−8 cos

(
107t− π

)
≈ 2 cos

(
107t

)
= s2(t) (41)

Hence the magnitude of the filtered interference signal is indeed less than 1
10 of the magnitude of the

desired signals. Notice that this is also true if we consider the “self-interference” that the phase-shifted
and attenuated signals might be construed as contributing through the other filter branch.
The overall transfer function of the band stop filter is

HBSF(jω) = HHPF(jω) +H1(jω) (42)

=
j ω
106

1 + j ω
106

+
1(

1 + j ω
103

)2 (43)

The band stop behavior can be easily visualized from the magnitude and phase plots in fig. 7.
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Figure 7: Part (c) Magnitude and ‘wrapped’ Phase Bode Plots for the transfer function HBSF(jω).
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Figure 8: Part (c) Magnitude and ‘unwrapped’ Phase Bode Plots for the transfer function HBSF(jω).

Note that both these magnitude and phase plots in fig. 7 follow the low-pass filter plots in fig. 5 at low
frequencies and the high-pass filter plots in fig. 3 at high frequencies. Also note that the phase plots in
fig. 7 and fig. 8 are equivalent.
If you think carefully about the kinds of approximations that we are doing, you can see how these
plots also reflect those approximations. There’s just one segment in the phase plot where our style of
approximations break down, and that is in the neighborhood of 104 frequency. Here, the amplitude is
so small that the phase can move around very easily when things get added together.
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(d) (5pts) Finally, let’s consider the second approach. Since we know the exact frequency of the inter-
ference signal n(t), we can use a Notch filter, as shown in fig. 9, to create a notch at that frequency,
instead of using the previous band stop filter. This should completely attenuate n(t) = 10 cos

(
104t

)
and pass signals of all other frequencies, including s1(t) and s2(t). If C = 10 µF in the Notch filter
in fig. 9, calculate the inductance L needed to completely block signals at 104 rads . NOTE: You do
not need to know the value of R to solve this question.

Solution: This part can be viewed as a natural follow-on to what you saw in both lecture and in
Discussion 5A on how to think about a filter that includes both an inductor and a capacitor.
(HINT: At ω = 104 rads , what do you want the impedance of the series connection of L and C to be?)

R
Input vi(t)

L

C

Filtered Output

Figure 9: LC Notch filter

Solution: The inductance value can be calculated as

L =
1

ω2
nC

=
1(

104
)2 × 10× 10−6

= 1mH (44)

The above calculation uses the formula that the resonant frequency is 1√
LC

. If a student didn’t already
have that on their cheat sheet, it is possible to simply say that you want the combined series impedance
to be zero at ωn = 104 so that the voltage divider doesn’t let the interference signal through. Since
the capacitor impedance is − j

ωnC
= −j10, we need the inductor impedance to be +j10 = jωnL. This

means that L = 10−3H is the solution.
Students get full credit for just the computations above. Detailed explanation is shown below.
The transfer function is given by

Hnotch(jω) =
j
(
ωL− 1

ωC

)
R+ j

(
ωL− 1

ωC

) (45)

Since we wish to create a notch at the interference frequency ωn = 104 rads , we have

Hnotch(jωn) = 0 (46)

=⇒ ωnL =
1

ωnC
(47)

=⇒ L =
1

ω2
nC

= 1mH (48)
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The notch behavior can be seen in the magnitude and phase plots in fig. 10 for different values of R.
Higher values of R increase the width of the notch.
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Figure 10: Part (d) Magnitude and Phase Bode Plots for the transfer function Hnotch(jω).

If R = 10Ω for example, then by reading from the plots in fig. 10, the final output signal expressions
are

s̃1(t) = 2 cos
(
102t

)
= s1(t) (49)

ñ(t) ≈ 0 (50)

s̃2(t) = 2 cos
(
107t

)
= s2(t) (51)
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9. Using a Nonlinear NMOS Transistor for Amplification (35 points)

Consider the following schematic where VDD = 1.5V, RL = 400Ω and the NMOS transistor has threshold
voltage Vth = 0.2V. We are interested in analyzing the response of this circuit to input voltages of the form
Vin(t) = Vin,DC + vin,AC(t), where Vin,DC is some constant voltage and vin,AC(t) = 0.001 cos(ωt)V is a
sinusoidal signal whose magnitude is much smaller than Vin,DC.

Solution: This problem is most directly related to HW 12’s problem “Linearizing for understanding am-
plification,” where you had to go through a nearly identical process, just with a different equation governing
the relationship between the input voltage and the current.

The I-V relationship of an NMOS can be modeled as non-linear functions over different regions of operation.
For simplicity, let’s just focus on the case when 0 ≤ VGS−Vth < VDS. In this regime of interest, the relevant
I-V relationship is given by

IDS(VGS) =
K

2
(VGS − Vth)

2 (52)

where K is a constant that depends on the NMOS transistor size and properties.

Solution: You might be wondering why this model has the source-drain connection modeled by a current
source instead of a resistor like you saw at the beginning of the course when we were discussing models
for NMOS and PMOS transistors. This is a consequence of the underlying physics of the transistor in this
regime. When the drain voltage is higher than the gate voltage, then the “puddle” of charge carriers that
form under the gate thins out dramatically in the neighborhood of the drain. This pinching off creates a limit
on how much current can flow because as the drain voltage goes higher this is offset by how increasingly
restricted the charge puddle is near the drain. These two effects end up essentially canceling each other
and instead of getting a resistor-like behavior where more drain-source voltage results in more drain-source
current, the current just saturates. You can learn more about this in 130 where you will learn in more detail
why and how this happens, and why the resulting relationship with the gate current has this quadratic form.

For our purposes here, this is just some equation governing the I-V relationship that we can differentiate if
we want to.

D

IDS

RL

VDD

Vout

S

G
Vin

(a) NMOS Transistor circuit
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Vout vs Vin

(b) Vout vs Vin in the regime of interest. Tangent is drawn
at the operating point Vin,DC = 0.6V, Vout,DC = 0.7V

Figure 11: NMOS figures.
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From Ohm’s law and KCL, we know that

Vout(t) = VDD −RLIDS(t). (53)

Note from fig. 11a that Vin = VGS and Vout = VDS. In fig. 11b, we can see the curve of Vout vs Vin in the
transistor operating regime of interest.

(a) (4 pts) Using eq. (52) and eq. (53), express Vout(t) as a function of Vin(t) symbolically. (You can
use VDD, RL, Vin,K, Vth in your answer.)

Solution:

Vout(t) = VDD −RLIDS(t)
∣∣∣
VGS=Vin(t)

(54)

= VDD −RL
K

2

(
Vin(t)− Vth

)2 (55)
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The input Vin(t) = Vin,DC+vin,AC(t) results in an output of the form Vout(t) = Vout,DC+vout,AC(t). Since
VDD is constant, we can linearize Vout(t) around Vout,DC from eq. (53), as illustrated in fig. 11b.

Av(Vin, Vout)

∣∣∣∣
V ⋆
in=Vin,DC

=
dVout

dVin

∣∣∣∣
V ⋆
in=Vin,DC

= −RL
dIDS

dVin

∣∣∣∣
V ⋆
in=Vin,DC

(56)

= −RL
dIDS

dVGS

∣∣∣∣
V ⋆
GS=Vin,DC

(57)

= −RLgm(VGS)
∣∣∣
V ⋆
GS=Vin,DC

(58)

Here Av is defined as the linearized voltage gain, which is illustrated by the slope of the tangent to the Vout

vs Vin curve in fig. 11b at the point
(
Vin,DC, Vout,DC

)
, and gm = dIDS

dVGS
is the transistor transconductance

linearized around the point V ⋆
GS = Vin,DC.

(b) (10pts) To linearize the whole circuit around the operating point V ⋆
in = Vin,DC, as shown in eq. (56),

eq. (57), eq. (58), we need to linearize the non-linear transistor I-V curve, given by IDS(VGS) =
K
2 (VGS − Vth)

2 in eq. (52) to find the linearized transconductance gain gm = dIDS
dVGS

.

i. Using eq. (52), derive the linearized transconductance gain gm = dIDS
dVGS

symbolically.
NOTE: Please simplify your answer.
Solution: Using eq. (52), the small signal transconductance gain is given by

gm =
dIDS

dVGS
= K(VGS − Vth) (59)

ii. From the following options, choose which circuit element can be used to represent the tran-
sistor in a linearized circuit with ∆IDS = gm∆VGS, where ∆IDS and ∆VGS are small devia-
tions around IDS and VGS respectively.

Select one Choices
⃝ resistor between G and S terminals
⃝ resistor between D and S terminals
⃝ voltage controlled current source between D and S terminals

Solution: The NMOS transistor behaves as a voltage controlled current source between D and S
terminals in this regime, with ∆VGS being the control voltage, as shown in fig. 12. (Yes, we gave
away the answer in the next part of the question.)
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Select one Choices
⃝ resistor between G and S terminals
⃝ resistor between D and S terminals

voltage controlled current source between D and S terminals

iii. Using K = 0.025 1
ΩV , and Vth = 0.2V and RL = 400Ω, calculate the numerical values of the

following quantities at the operating point
(
V ⋆
GS = 0.6V, V ⋆

DS = 0.7V
)
:

• linearized transconductance gain gm

• linearized voltage gain Av = −RLgm from eq. (58)
NOTE: Please simplify the numerical answers — this will also help you check your answer graph-
ically against fig. 11b if you want.
Solution: The numerical values at the given operating point are:

gm = 0.025× (0.6− 0.2) = 0.01
1

Ω
(60)

Av = −400× 0.01 = −4 (61)
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(c) (5pts) The circuit in fig. 12 below is a linearized model for the transistor circuit in fig. 11a, according
to eq. (56), eq. (57), eq. (58). Find the transfer function H1(jω) =

ṽout,AC(jω)
ṽin,AC(jω)

in terms of gm and
RL.
Solution: These latter parts of this problem are asking you to do a phasor-based analysis of the kinds
of circuits that you saw in HWs 2 and 3 when we were looking inside of an op-amp — except that
instead of a voltage-controlled voltage source there, we have a voltage-controlled current source here.
This kind of phasor-based analysis of circuits is something that you have seen many times in HWs as
well as discussion.

−
+

vin,AC(t)

G
+

−

vGS(t)

S

gmvGS(t)

D

RL

+

−

vout,AC(t)

Figure 12: Small signal model for NMOS circuit in fig. 11a, according to eq. (56), eq. (57), eq. (58).

Solution: In phasor domain, the voltage drop across the resistor is given by

ṽout,AC(jω) = −RLgmṽGS(jω) (62)

= −RLgmṽin,AC(jω) (63)

Hence the transfer function is given by

ṽout,AC(jω)

ṽin,AC(jω)
= −gmRL (64)

We gave away this answer in eq. (58).
There is no frequency-dependence here.

(d) (8pts) Consider the following modified model of the transistor circuit in fig. 11a where the transis-
tor has a drain capacitance CD as shown in fig. 13 below. Find the transfer function H2(jω) =
ṽout,AC(jω)
ṽin,AC(jω)

in terms of gm, RL, CD and jω. What type of filter is implemented by this circuit
model?
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−
+

vin,AC(t)

G
+

−

vGS(t)

S

gmvGS(t)

D

RL CD

−

+

vout,AC(t)

Figure 13: Small signal model for NMOS circuit in fig. 11a with drain capacitance.

Solution: Note that the voltage drop across the resistor and capacitor are the same, and so they are in
parallel. In phasor domain, we can just find the equivalent impedance of this parallel combination and
then use the definition of impedance to get the voltage drop.

Zeq =
(
ZR||ZC

)
=

(
RL||

1

jωCD

)
(65)

=

RL
jωCD

RL + 1
jωCD

=
RL

1 + jωRLCD
(66)

ṽout,AC(jω) = Zeq Ĩ = Zeq(−gmṽGS(jω)) (67)

= − RL

1 + jωCDRL
gmṽin,AC(jω) (68)

Therefore, the transfer function is given by

ṽout,AC(jω)

ṽin,AC(jω)
= − gmRL

1 + jωCDRL
(69)

This is a first order low pass filter.
You could also solve this through KCL but this is the most direct approach.
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(e) (8pts) Consider the following modified model of the transistor circuit in fig. 11a where Vin is not ideal
and has some resistance in series, Rin, and the transistor has a gate capacitance CGS as shown in fig. 14
below. Find the transfer function H3(jω) =

ṽout,AC(jω)
ṽin,AC(jω)

in terms of Rin, CGS, gm, RL, CD and jω.
(HINT: First analyze vGS(t) in phasor domain. Then try to re-use the result from the previous part.)

−
+

vin,AC(t)

Rin

G

CGS

+

−
vGS(t)

S

gmvGS(t)

D

RL CD

−

+

vout,AC(t)

Figure 14: Small signal model for NMOS circuit in fig. 11a with non-ideal source and gate capacitance, in addition
to drain capacitance.

Solution: First we analyze the voltage divider to get the transfer function from ṽin,AC(jω) to ṽGS(jω):

ṽGS(jω)

ṽin,AC(jω)
=

1

1 + jωCGSRin
(70)

From the previous part, we know that

ṽout,AC(jω)

ṽGS(jω)
= − gmRL

1 + jωCDRL
(71)

Cascading these 2 transfer functions, we get the overall transfer function given by

ṽout,AC(jω)

ṽin,AC(jω)
= − gmRL

(1 + jωCDRL)(1 + jωCGSRin)
(72)
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10. Minimum Norm Solutions for Circuits involving Resistors (32 points)

Consider a current is flowing into a network of two parallel resistors R1 and R2, as shown in fig. 15 below.

is R1

i1

R2

i2

Figure 15: Current is dividing into i1 and i2.

From EECS 16A, we know that we can equate the voltage drops across the parallel resistors to derive
i1 = R2

R1+R2
is and i2 = R1

R1+R2
is. In this problem, we will try to derive the same current division result

using the concept of minimum norm instead of voltage analysis.

Solution: This problem is directly testing ideas from Discussion 10A with a connection to HW 10’s
problem: weighted minimum norm.

It turns out that the current is will divide into two parts i1 and i2 in such a way that minimizes the total
power dissipation P = i21R1 + i22R2 in the resistors.

(a) (8pts) Argue that the current division result given by i1 = R2
R1+R2

is and i2 = R1
R1+R2

is minimizes
the total power dissipation P = i21R1+i22R2 using calculus. Use the fact that KCL gives i2 = is−i1
to express P as a function of i1 only. (HINT: Once you solve for the optimal i1, you don’t have to do
calculus again for i2. Just use KCL.)

Solution: We can minimize P as follows:

P = i21R1 + i22R2 = i21R1 + (is − i1)
2R2 (73)

=⇒ dP

di1
= 2i1R1 − 2(is − i1)R2 = 0 (74)

=⇒ i1 =
R2

R1 +R2
is (75)

=⇒ i2 = is − i1 =
R1

R1 +R2
is. (76)

Here, we notice that the quadratic has a positive constant multiplying the squared term, and so this
must be the unique minimum.
Hence it is proved that i1 = R2

R1+R2
is and i2 =

R1
R1+R2

is minimize P .
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(b) (12pts) Instead of using calculus to minimize the total power dissipation P , we can represent the

current division problem as a minimum norm problem. Consider the vector x⃗ =

[
x1
x2

]
where x1 =

i1
√
R1 and x2 = i2

√
R2. Notice that P = i21R1 + i22R2 = x21 + x22 =∥x⃗∥2.

i. Find the row vector A so that the KCL constraint i1 + i2 = is can be written as Ax⃗ = is.
Solution: The total power dissipation given by P =∥x⃗∥2 has to be minimized. KCL gives us

i1 + i2 = is (77)

=⇒ x1√
R1

+
x2√
R2

= is (78)

=⇒
[

1√
R1

1√
R2

]
x⃗ = is (79)

=⇒ Ax⃗ = is (80)

So A =
[

1√
R1

1√
R2

]
.

ii. Using the A matrix you found above, what is the minimum norm solution to Ax⃗ = is? Show
your work.
To help you save computation, the compact SVD of a general 1× 2 row vector is given by[

a b
]
=

[
1
]

︸︷︷︸
U

[√
a2 + b2

]
︸ ︷︷ ︸

Σ

[
a√

a2+b2
b√

a2+b2

]
︸ ︷︷ ︸

V ⊤

(81)

Solution: We know that the minimum norm solution for the system Ax⃗ = is is given by ˜⃗x =
A†is, where A† is the pseudo-inverse of A. Using eq. (81), the compact SVD of A is given by

A = UΣV ⊤ (82)[
1√
R1

1√
R2

]
=

[
1
]

︸︷︷︸
U

[√
R1+R2
R1R2

]
︸ ︷︷ ︸

Σ

1√
R1 +R2

[√
R2

√
R1

]
︸ ︷︷ ︸

V ⊤

(83)

The pseudo-inverse is given by

A† = V Σ−1U⊤ (84)

=
1√

R1 +R2

[√
R2√
R1

]
︸ ︷︷ ︸

V

[√
R1R2
R1+R2

]
︸ ︷︷ ︸

Σ−1

[
1
]

︸︷︷︸
U⊤

(85)

=

R2
√
R1

R1+R2
R1

√
R2

R1+R2

 (86)
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Hence the minimum norm solution is [
x1
x2

]
=

R2
√
R1

R1+R2
R1

√
R2

R1+R2

 is (87)

iii. Transform the minimum norm solution of Ax⃗ = is to the original variables i1 and i2, and
confirm that the result is i1 = R2

R1+R2
is and i2 = R1

R1+R2
is as the current-divider formula

predicts. Show your work.
Solution: Changing variables back to the current division problem, we have[

i1
i2

]
=

[
x1√
R1
x2√
R2

]
=

[
R2is

R1+R2
R1is

R1+R2

]
(88)

This matches the current division ratio from regular voltage analysis.
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(c) (12 pts) We can solve any arbitrarily complicated circuit network using KCL and norm minimization,
following the same technique that we used for the simple network in fig. 15. Consider a resistor
network which has n resistor branches, with currents i1, i2, . . ., in across the branch resistances R1,
R2, . . ., Rn respectively, and m total nodes each with current sources is1 , is2 , . . ., ism , which may
be positive, negative or zero, as shown in fig. 16. Then the m KCL equations at the m nodes can be

written as Ki⃗ = i⃗s, where K ∈ Rm×n, i⃗ =


i1
i2
...
in

 ∈ Rn, and i⃗s =


is1
is2
...

ism

 ∈ Rm. This KCL constraint

Ki⃗ = i⃗s completely captures what is visualized in fig. 16, so you don’t have to write any additional
KCL. Note that fig. 15 is a simple example of fig. 16 with n = 2 and m = 1.

R1

i1

R3

i3

R5

i5

R6

i6

R2

i2

is1 R4

i4

is2

R7

i7. . . . . .

...

...
...

...
...

Figure 16: A section of an arbitrarily complicated network with n branches and m nodes.

i. We can change variables to x⃗ = D⃗i to represent the KCL constraint Ki⃗ = i⃗s as Ax⃗ = i⃗s, and
so the minimization of dissipated power P =

∑n
j=1 i

2
jRj is just the minimization of

∑n
j=1 x

2
j =

∥x⃗∥2.
Find the diagonal matrix D, and then find the matrix A in terms of D and K.
(HINT: Look at how x⃗ was defined in the previous part.)
Solution: Define a vector x⃗ ∈ Rn where xj = ij

√
Rj ∀j ∈ [1, n]. Then we can change variables

from i⃗ to x⃗ using the relation

x⃗ =


√
R1 0 . . . 0
0

√
R2 . . . 0

...
...

. . .
...

0 0 . . .
√
Rn


︸ ︷︷ ︸

D

i⃗ (89)

=⇒ i⃗ = D−1x⃗ (90)

The diagonal matrix D ∈ Rn×n has non-zero diagonal elements, hence it is invertible. Hence the

Final Exam, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 32



Final Exam @ 2022-02-27 17:52:10-08:00

KCL can be represented as

Ki⃗ = i⃗s (91)

=⇒ KD−1︸ ︷︷ ︸
A

x⃗ = i⃗s (92)

Final Exam, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 33



Final Exam @ 2022-02-27 17:52:10-08:00

ii. Assume the compact SVD of A is given by A = UΣV ⊤. Use the minimum norm solution to
Ax⃗ = i⃗s to solve for i⃗. Recall from the previous part that x⃗ = D⃗i. Your final answer for i⃗ can
only use U , Σ, V , D, i⃗s as well as standard matrix operations like inverses, etc.
Solution: We can find i⃗ by using the min norm solution for eq. (92) as follows:

x⃗ = A†⃗is = V Σ−1U ⊤⃗is (93)

=⇒ i⃗ = D−1V Σ−1U ⊤⃗is. (94)

This connection between power-dissipation minimization and electrical circuits goes even deeper.
With the tools that you learn in Math 53 and EECS 127, you can see that the very concept of volt-
age itself can be understood via Lagrange multipliers (dual variables) associated with the KCL
constraints that are active at each node. There is a further sense in which the reason that “state”
is associated with inductors and capacitors is precisely because there is energy stored in these
circuit elements. This is intimately related to the concept of the Lagrangian formulation of me-
chanics that you might encounter in Physics and Mechanical Engineering. Different formulations
of “minimalist principles” are ubiquitous in science and engineering.
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11. A Proof in the Complex Case (12 points)

Suppose M is a generic m× n complex matrix with rank r and SVD M = UΣV ∗ =
∑r

i=1 σiu⃗iv⃗
∗
i , where

the matrices U = [u⃗1 · · · u⃗m] and V = [v⃗1 · · · v⃗n] have orthonormal columns according to the complex inner
product (i.e. the U and V matrices are unitary) and Σ is diagonal with real non-negative diagonal entries
sorted in non-ascending order.

Recall that we defined the Frobenius norm as

∥M∥F =

√√√√ m∑
i=1

n∑
j=1

∣∣Mij

∣∣2 (95)

and note that the same definition works for complex matrices.

Solution: This problem is a combination of HW 12’s problem “Low Rank Approximation of a Matrix”
with HW 14’s problem “Adapting proofs to the complex case.”

Suppose k < r. Prove that the best rank-at-most-k approximation to M in the Frobenius norm is
given by

∑k
i=1 σiu⃗iv⃗

∗
i .

In other words, prove that no matter what the collection of vectors {p⃗i} and {q⃗i} may be,∥∥∥∥∥∥M −
k∑

i=1

σiu⃗iv⃗
∗
i

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥M −
k∑

i=1

p⃗iq⃗
∗
i

∥∥∥∥∥∥
F

. (96)

You may use the following facts without proof:

• If U and V are square unitary matrices, then∥UA∥F =∥A∥F =∥AV ∥F .

• The best rank-at-most-k approximation to a diagonal m×n real matrix Σ with the diagonal consisting
of real non-negative values σi sorted in non-ascending order is given by

∑k
i=1 σie⃗m,ie⃗

∗
n,i, where e⃗k,i is

the ith column of a k × k identity matrix.
In math: No matter what the collection of vectors {s⃗i} and {w⃗i} may be,∥∥∥∥∥∥Σ−

k∑
i=1

σie⃗m,ie⃗
∗
n,i

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥Σ−
k∑

i=1

s⃗iw⃗
∗
i

∥∥∥∥∥∥
F

. (97)

• If U and V are square unitary matrices, then the rank of a matrix A is the same as the rank of UA and
the rank of AV .

• The inverse of a square unitary matrix U is given by its conjugate transpose U−1 = U∗, which is also
unitary.

Solution:

Write M = UΣV ∗ and fix {s⃗i}, {w⃗i}. We use the fact that∥UA∥F =∥A∥F and∥AV ∗∥F =∥A∥F to get∥∥∥∥∥∥Σ−
k∑

i=1

σie⃗m,ie⃗
∗
n,i

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥Σ−
k∑

i=1

s⃗iw⃗
∗
i

∥∥∥∥∥∥
F

(98)
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∥∥∥∥∥∥∥U
Σ−

k∑
i=1

σie⃗m,ie⃗
∗
n,i


∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥U
Σ−

k∑
i=1

s⃗iw⃗
∗
i


∥∥∥∥∥∥∥
F

(99)

∥∥∥∥∥∥∥U
Σ−

k∑
i=1

σie⃗m,ie⃗
∗
n,i

V ∗

∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥U
Σ−

k∑
i=1

s⃗iw⃗
∗
i

V ∗

∥∥∥∥∥∥∥
F

(100)

∥∥∥∥∥∥UΣV ∗ −
k∑

i=1

σiUe⃗m,ie⃗
∗
n,iV

∗

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥UΣV ∗ −
k∑

i=1

Us⃗iw⃗
∗
i V

∗

∥∥∥∥∥∥
F

(101)

∥∥∥∥∥∥UΣV ∗ −
k∑

i=1

σi(Ue⃗m,i)(V e⃗n,i)
∗

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥UΣV ∗ −
k∑

i=1

(Us⃗i)(V w⃗i)
∗

∥∥∥∥∥∥
F

(102)

∥∥∥∥∥∥M −
k∑

i=1

σiu⃗iv⃗
∗
i

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥M −
k∑

i=1

p⃗iq⃗
∗
i

∥∥∥∥∥∥
F

. (103)

Here we have p⃗i = σiUs⃗i and q⃗i = V w⃗i. Since U, V are orthonormal, and hence invertible, picking
p⃗i = Us⃗i is equivalent to picking s⃗i = U−1p⃗i = U∗p⃗i, and similarly picking q⃗i = V w⃗i is equivalent to
picking w⃗i = V −1q⃗i = V ∗q⃗i. So we have shown the statement for all p⃗i and q⃗i as desired.
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12. System ID for Continuous Systems (16 points)

So far we have seen system identification only done for discrete-time systems. But what if we really want
to identify some underlying continuous-time model instead? We will explore how to do so in this problem.

(a) (8pts) Suppose we believed that our system was of the form

d

dt
x(t) = λx(t) + bu(t) (104)

where x(t) ∈ R and u(t) ∈ R is a scalar input.
Given an initial condition x(t0), and that u(t) is some constant input ū over the interval [t0, tf ), then
for all t ∈ [t0, tf ), we know that this differential equation eq. (104) has the unique solution

x(t) = x(t0)e
λ(t−t0) +

eλ(t−t0) − 1

λ
bū. (105)

Assume that we record the state at known times τ0, τ1, . . . , τn as having corresponding state values
x0 = x(τ0), x1 = x(τ1), . . . , xn = x(τn). The continuous-time input is known to be piecewise
constant u(t) = ui for t ∈ [τi, τi+1), where we know the sequence of inputs u0, u1, . . . , un−1.

Solution: This question part builds on Discussion 6A most closely, together with some of the fram-
ing of Discussion 6B. It tests whether students understand where the equations come from in system
identification.
We now want to formulate this as a system ID question by relating the unknown parameters λ, b to
the data we have. However, the relationship between the parameters and the data we collected is now
non-linear. For the data point xi+1, use eq. (105) to write out how xi+1 should be related to λ and
b in the form

xi+1 = f(λ, xi, τi, τi+1) + bg(λ, xi, ui, τi, τi+1). (106)

What are the functions f and g?
Solution: We directly use (105) by plugging in t = τi+1 and t0 = τi. We can use this formula as the
input u(t) is a constant ui throughout this interval.

f(λ, xi, τi, τi+1) = xie
λ(τi+1−τi) (107)

g(λ, xi, ui, τi, τi+1) =
ui
λ
(eλ(τi+1−τi) − 1) (108)
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(b) (8pts) The previous part gave rise to a sequence of n equations of the form eq. (106). Because of
observation noise and imperfection in our model, we are going to assume that these equations hold
only approximately and hope to find values for the two parameters λ, b that minimize the cost function:

c(λ, b) =
n−1∑
i=0

ℓ
(
xi+1, f(λ, xi, τi, τi+1) + bg(λ, xi, ui, τi, τi+1)

)
(109)

where f(λ, x, σ, τ) and g(λ, x, u, σ, τ) are given nonlinear scalar functions, and ℓ(s, p) is a loss func-
tion that penalizes how far the prediction p is from the measured state s. For example, you could use
squared loss ℓ(s, p) = (s− p)2.
To find the best possible λ∗, b∗, you observe that you want to solve the nonlinear system of equations:

∂

∂λ
c(λ, b)

∣∣∣
λ∗,b∗

= 0 (110)

∂

∂b
c(λ, b)

∣∣∣
λ∗,b∗

= 0 (111)

and decide to do so using Newton’s method starting with an initial guess λ0, b0 and linearizing the
system of equations eq. (110) and eq. (111) to get a system of linear equations to solve at each step.
The system of linear equations at each iteration j + 1 can be expressed in vector form as:

A

[
λ− λj

b− bj

]
= y⃗. (112)

Solution: This problem engages with the ideas in HW13’s problem entitled “Linearization to help
classification: discovering logistic regression and how to solve it” and even more so, what you saw in
Discussion 13A. The only difference here is the larger context: the exact same techniques work to do
system identification as to do classification.
What are the entries of the matrix A and the vector y⃗ in terms of the appropriate partial deriva-
tives of c(λ, b) evaluated at the appropriate arguments?
Assume that you can use PyTorch to compute whatever derivatives of c(λ, b) that you want — all given
functions are sufficiently differentiable. You don’t have to take the derivatives by hand. You just need
to tell us what derivatives and what arguments to evaluate them at.

Solution: We want to solve a nonlinear vector equation f⃗(x⃗) = 0⃗. Linearizing this equation gives us

f⃗(x⃗) ≈ f⃗(x⃗∗) +
∂f⃗

∂x⃗
(x⃗∗)(x⃗− x⃗∗) = 0⃗ (113)

We want to solve for x⃗ as a function of our current guess x⃗∗, which means we want to solve

∂f⃗

∂x⃗
(x⃗∗)(x⃗− x⃗∗) = −f⃗(x⃗∗) (114)

For our objective, we want

f⃗(x⃗) =

[
∂c(λj ,bj)

∂λ
∂c(λj ,bj)

∂b

]
= 0⃗ (115)
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Then during each Newton’s iteration, we want to solve the linear system of equations[
∂2c
∂λ∂λ(λj , bj)

∂2c
∂λ∂b(λj , bj)

∂2c
∂b∂λ(λj , bj)

∂2c
∂b∂b(λj , bj)

][
λ− λj

b− bj

]
=

[
− ∂c

∂λ(λj , bj)

−∂c
∂b(λj , bj)

]
(116)

∂2c

∂x⃗∂x⃗
(λj , bj)

[
λ− λj

b− bj

]
= − ∂c

∂x⃗

⊤
(λj , bj) (117)

Thus the matrix A is the Hessian of c(λ, b) evaluated at λj , bj , and the vector y⃗ is the transpose of the
derivative of c(λ, b) evaluated at λj , bj . You don’t need to see this connection and full credit is given
if you just write out the partial derivative entries of A and y⃗.
The fact that you now have the tools to be able to do this problem is a testament to the awesome power
of what you have been taught in 16AB. Even to do system-identification in continuous-time for a linear
system, we need to be able to deal with fitting nonlinear equations. But once we have the ability to do
this kind of fitting, we can actually fit even more sophisticated nonlinear differential equations. The
advent of convenient tools for automatic differentiation like PyTorch have made it practically true in
many cases that if we can simulate a model, we can also fit that model to data.
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13. Movie Ratings with Missing Entries (23 points)

In a matrix R, you have users’ movie ratings. However, not all users watched all the movies.

R =


0.50 0.00 0.50 0.50 0.20 1.0
0.60 0.20 0.40 0.50 ? ?
0.50 0.50 0.00 0.25 0.60 1.0
0.60 0.10 0.50 0.55 ? ?

1.00 0.40 0.60 ? ? ?

 (118)

where the element at the ith row and jth column indicates the rating of movie i by user j. A “?” means that
there’s no rating for that movie.

Our goal is to predict ratings for the missing entries, so we can recommend movies to users. In order to do
this, you want to find the hidden goodness vectors for the movies, and the hidden sensitivity vectors of the
users. However, due to missing entries, it is not possible to run an SVD on the entire rating matrix R.

It turns out that we have a submatrix R′ in R that does not have any missing entries.

R′ =


0.50 0.00 0.50 0.50
0.60 0.20 0.40 0.50
0.50 0.50 0.00 0.25
0.60 0.10 0.50 0.55

 (119)

We provide a decomposition of this matrix:

R′ =


0.5 0.0
0.4 0.2
0.0 0.5
0.5 0.1


︸ ︷︷ ︸

G

[
4.0 0.0
0.0 2.0

]
︸ ︷︷ ︸

D

[
0.25 0.0 0.25 0.25
0.5 0.5 0.0 0.25

]
︸ ︷︷ ︸

S

(120)

where the ith row of the matrix G represents the goodness row vector g⃗⊤i of the movie i, the jth column of
the matrix S represents the sensitivity vector s⃗j of user j, and each diagonal entry of the matrix D shows
the weight each attribute has in determining the rating of a movie by a user.

NOTE: This decomposition in eq. (120) is not an SVD; G and S do not have orthonormal vectors.

Solution: This problem largely follows the modeling spirit of HW 11’s problem “Movie Ratings and PCA.”
The major shift is that instead of using the SVD to get the low-rank approximations, we are simply providing
those to you differently so that the orthogonality-properties of the SVD bases cannot be used. In that sense,
we are connecting to ideas you saw in Discussion 9B.

(a) (4pts) Suppose s⃗6 (the sensitivity vector of user 6) is:

s⃗6 =

[
0.5
1.0

]
(121)

Use this to estimate the rating of movie 2 as rated by user 6. (Show work that uses s⃗6. Unjustified
answers will get no credit.)

Solution: This rating is in R26. From the structure of R′, if we generalize the sensitivity model, then
this can be calculated with g⃗⊤2 Ds⃗6.

R26 = g⃗⊤2 Ds⃗6 = d1s61g21 + d2s62g22 (122)
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= 4 · 0.5 · 0.4 + 2 · 1.0 · 0.2 (123)

= 1.2 (124)

where di is ith diagonal element of matrix D.
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(b) (6pts) For the 5th movie, we have three ratings and want to find two parameters of goodness. Formu-
late a least squares problem Ag⃗5 ≈ b⃗ to estimate g⃗5 (goodness vector of movie 5). You need to tell

us A explicitly as a matrix with numerical entries. We give you that b⃗ =

1.000.40
0.60

 since those are the

three ratings we know for this movie.

Solution: Considering the R51, . . . , R54 in the 5th row of the ratings matrix R, we have

[
g51 g52

] [4.0 0.0
0.0 2.0

]
︸ ︷︷ ︸

D

[
0.25 0.0 0.25 0.25
0.5 0.5 0.0 0.25

]
︸ ︷︷ ︸

S

=
[
1.00 0.40 0.60 ?

]
(125)

Removing the 4th column of S (since there is no corresponding equation) and transposing each side,0.25 0.5
0.0 0.5
0.25 0.0


︸ ︷︷ ︸

S⊤
1:3

[
4.0 0.0
0.0 2.0

]
︸ ︷︷ ︸

D

[
g51
g52

]
=

1.000.40
0.60

 (126)

Setting A = S⊤
1:3D and b⃗ to be the ratings vector, we have a least squares problem

min
x⃗

∥Ax⃗− b⃗∥2 (127)

where

A =

1.0 1.0
0.0 1.0
1.0 0.0

 , x⃗ =

[
g51
g52

]
, b⃗ =

1.000.40
0.60

 (128)

(c) (3pts) We now consider a ratings matrix R without missing entries (that is different from the previous
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R) where the matrix is partitioned into four blocks R11, R12, R21, R22 as below.

R =

[
R11 R12

R21 R22

]
(129)

In order to find the optimal number of principal components, we compute a PCA model from the SVD
of R11 with k principal components, with k = 2, 3, 4, 5. We then use the chosen components and the
singular values of R11 together with the information in R12 and R21 to create an estimate R̂22 for the
held-out ratings in R22. We can also use the first k terms of the SVD of R11 to reconstruct R̂11 as the
best rank-k approximation to R11.

Solution: This part of the problem builds on the ideas you saw in both lecture and exercised for
yourself in HW 10’s problem “Orthonormalization for Speeding Up Model Order Selection.” Only the
context has changed, but the spirit of doing model order selection by minimizing the validation error
is the same.
The training errors ∥R11 − R̂11∥2F and validation errors ∥R22 − R̂22∥2F for each candidate choice for
k are given in the table below.

Select k Training error Validation error
⃝ 1 1.428 3.104
⃝ 2 0.414 2.494
⃝ 3 0.093 0.462
⃝ 4 0.017 0.090
⃝ 5 0.011 0.132
⃝ 6 0.006 0.161

Find the optimal number of principal components k we should use and fill in the appropriate
bubble. (No need to give any justification.)

Solution: As we increase the number of principal components k, we will observe training error
decreasing, while validation error first decreases but increases at some point. The optimal k can be
found by selecting k which gives minimum validation error, which is k = 4.
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(d) (10pts) Suppose that we want to approximate R with a rank-k matrix R̂ = CXL⊤ where C is known
(e.g. it has a specific k columns selected from R), and so is L⊤ (e.g. it has a specific k rows selected
from R). The only freedom is in choosing the k by k matrix X .
We want to find X that minimizes the Frobenius norm error between R and R̂:

argmin
X

∥R− CXL⊤︸ ︷︷ ︸
R̂

∥2F (130)

This is a least-squares problem since CXL⊤ is linear in the entries of the matrix X and minimizing
the Frobenius norm squared is just minimizing a sum of squared errors. Suppose we further know that
C has linearly independent columns and that L⊤ has linearly independent rows. It turns out that the
optimal X =

(
(C⊤C)−1C⊤

)
R
(
L(L⊤L)−1

)
.

Solution: This part of this problem has a direct spiritual lineage to HW 14’s problem “Minimum
Norm Variants” in its emphasis of understanding an optimization problem by looking at things in the
appropriate SVD bases. The underlying ideas on the nature of projections have been seen in multiple
discussions including 9B.
Suppose that we know the full SVDs of C and L⊤:

C =
[
UC UC,n

] [ΣC

0

]
V ⊤
C , L⊤ = UL

[
ΣL 0

] [ V ⊤
L

V ⊤
L,n

]
. (131)

Using these SVDs and remembering how they simplify projections, we notice that:

R̂ = CXL⊤ =
(
C(C⊤C)−1C⊤)R(

L(L⊤L)−1L⊤) = UCU
⊤
CRVLV

⊤
L . (132)

This suggests that the orthonormal bases U = [UC UC,n] and V = [VL VL,n] are interesting to
consider, so we notice that

R = UU⊤RV V ⊤ (133)

=
[
UC UC,n

] [ U⊤
C

U⊤
C,n

]
R
[
VL VL,n

] [ V ⊤
L

V ⊤
L,n

]
(134)

= (UCU
⊤
C + UC,nU

⊤
C,n)R(VLV

⊤
L + VL,nV

⊤
L,n) (135)

= UCU
⊤
CRVLV

⊤
L︸ ︷︷ ︸

R̂

+UCU
⊤
CRVL,nV

⊤
L,n + UC,nU

⊤
C,nRVLV

⊤
L + UC,nU

⊤
C,nRVL,nV

⊤
L,n. (136)

Use eq. (136) together with eq. (132) to establish that this X satisfies the key condition of least-
squares optimality: show that the residual R− R̂ is orthogonal to the estimate R̂ when you use the
inner product corresponding to the Frobenius norm — which basically treats a matrix as a big vector.
⟨A,B⟩F = trace(A⊤B) = trace(B⊤A) = trace(AB⊤) = trace(BA⊤).
(HINT 1: Given that the Frobenius inner-product between two matrices of the same size can be in-
terpreted as either the sum of the inner-products of all the rows in A with their B counterparts
(trace(AB⊤)) or all the columns in A with their B counterparts (trace(A⊤B)), why do you think
that the first term in eq. (136) must be orthogonal to each of the final three terms in eq. (136)?)
(HINT 2: What subspace do the rows of the second term in eq. (136) live in? What subspace do the
columns of the third term in eq. (136) live in? . . . . What subspaces do the rows and columns of R̂ live
in according to eq. (132)?)
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Solution:
We prove the orthogonality of residual R− CXL⊤ and the estimate CXL⊤.
Expanding each term, we have:

CXL⊤ = UCU
⊤
CRVLV

⊤
L (137)

R− CXL⊤ = UCU
⊤
CRVL,nV

⊤
L,n + UC,nU

⊤
C,nRVLV

⊤
L + UC,nU

⊤
C,nRVL,nV

⊤
L,n (138)

From Col(UC) ⊥ Col
(
UC,n

)
and Row

(
V ⊤
L

)
⊥ Row

(
V ⊤
L,n

)
, and the definition of matrix multipli-

cation (i.e. AB has columns that are linear combinations of the columns of A and has rows that are
linear combinations of the rows of B), we find

Row
(
(UCU

⊤
CRVL)V

⊤
L

)
⊥ Row

(
(UCU

⊤
CRVL,n)V

⊤
L,n

)
(139)

Col
(
UC(U

⊤
CRVLV

⊤
L )

)
⊥ Col

(
UC,n(U

⊤
C,nRVLV

⊤
L )

)
(140)

Row
(
(UCU

⊤
CRVL)V

⊤
L

)
⊥ Row

(
(UC,nU

⊤
C,nRVL,n)V

⊤
L,n

)
(141)

For any two matrix A,B which Row(A) ⊥ Row(B), the inner product ⟨A,B⟩F = trace(AB⊤) = 0
since A’s rows are orthogonal to B⊤’s columns. Because of this orthogonality, the entire matrix AB⊤

is filled with zeros, so clearly the trace is also zero.
Similarly, for any two matrix A,B which Col(A) ⊥ Col(B), the inner product ⟨A,B⟩F = trace(A⊤B) =
0 since A⊤’s rows are orthogonal to B’s columns.
Using this property, we find:

⟨UCU
⊤
CRVLV

⊤
L , UCU

⊤
CRVL,nV

⊤
L,n⟩F = 0 (142)

⟨UCU
⊤
CRVLV

⊤
L , UC,nU

⊤
C,nRVLV

⊤
L ⟩F = 0 (143)

⟨UCU
⊤
CRVLV

⊤
L , UC,nU

⊤
C,nRVL,nV

⊤
L,n⟩F = 0 (144)

Summing all three inner products yields ⟨CXL⊤, R− CXL⊤⟩F = 0.
This concludes that the estimate CXL⊤ and the residual R − CXL⊤ is orthogonal, proving the
optimitzer X of minX ∥R− CXL⊤∥2F is indeed

X =
(
(C⊤C)−1C⊤

)
R
(
L(L⊤L)−1

)
. (145)
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.

If needed, you can also use this space to work on problems. But if you want the work on this page to be
graded, make sure you tell us on the problem’s main page.]
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