
Midterm 1 @ 2022-03-11 13:13:44-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Midterm Exam Solutions Midterm 1

Section 0: Pre-exam questions (4 points)
1. Honor Code: Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules and do this exam on my own.

2. What’s your favorite thing about this semester? (2 pts)

3. Who is a movie, TV, or fiction character that inspires you? (2 pts)
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4. Complex Numbers (2 points)

(a) (1 pt) Express the complex number j in polar form j = Aejθ.
What is A? What is θ? Your θ should be between −πrad and +πrad.

Solution: j = 0 + j · 1 =
√
02 + 12ej atan2(1,0) = 1ej

π
2

(b) (1 pt) Express the complex number ej
π
3 in rectangular form ej

π
3 = a+ jb.

What is a? What is b?

The following table may be useful:

Angle θ (rad) sin(θ) cos(θ)

π
6

1
2

√
3
2

π
4

1√
2

1√
2

π
3

√
3
2

1
2

π
2 1 0

Solution: By Euler’s identity: ej
π
3 = cos

(
π
3

)
+ j sin

(
π
3

)
= 1

2 + j
√
3
2 .
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5. NMOS Transistor Inverter (4 points)

Consider the following schematic and NMOS model.

D

RL

1V

Vout

S

G
Vin

(a) An NMOS Transistor circuit

G
+

−

VGS

S

1kΩ

D{
on, VGS ≥ 0.2V

off, VGS < 0.2V

(b) Resistor and switch model for NMOS transistor.

Figure 1: NMOS figures.

What value of RL is required to produce Vout = 0.1V when Vin = 1V? Show your work.

Solution: First substitute in the transistor model, and examine VGS to see if we expect the NMOS to be on
or off. The circuit with the transistor model substituted is visible in figure 2b. Since VGS = 1V > 0.2V, the
switch is on and we have the following circuit in figure ??.

1V
G+

−

VGS

S

1kΩ

D

RL

1V

{
on, VGS > 0.2V

off, VGS < 0.2V

Vout

(a) NMOS circuit with transistor model substituted in.

1V
G+

−

VGS

S

1kΩ

D

RL

1V

Vout

(b) NMOS circuit with transistor model substituted in.

We have a voltage divider. Vout =
1kΩ

1kΩ+RL
1V = 0.1V.

1kΩ

1kΩ +RL
=

1

10
=⇒ RL = 9kΩ
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6. Transfer Function Matching (8 points)

Below, you have filter circuits A,B,C,D, each with specific component values. Fill in the bubbles to match
each filter to its corresponding magnitude Transfer Function Plot out of choices I, II, III, IV.

Note that each plot may be assigned to filters once, more than once, or not at all. Each filter has exactly one
corresponding plot. A table of SI Prefixes and some info. about common filters is on the next page (scratch).

−

vin(t)
+

10Ω

100 µH
+

vout(t)

−

(A) Filter A.

−

vin(t)
+

1MΩ

1nF

+
vout(t)

−

(B) Filter B.

−

vin(t)
+

0.1 nF

100 kΩ

+
vout(t)

−

(C) Filter C.

−

vin(t)
+

10H

1MΩ

+
vout(t)

−

(D) Filter D.

100 101 102 103 104 105 106 107
10−3

10−2

10−1

100
101
102

ω (rad/s)

∣ ∣ H I(
jω
)∣ ∣

∣∣HI(jω)
∣∣

(I) Plot I.

100 101 102 103 104 105 106 107
10−3

10−2

10−1

100
101
102

ω (rad/s)

∣ ∣ H II
(j
ω
)∣ ∣

∣∣HII(jω)
∣∣

(II) Plot II.

100 101 102 103 104 105 106 107
10−3

10−2

10−1

100
101
102

ω (rad/s)

∣ ∣ H II
I
(j
ω
)∣ ∣

∣∣HIII(jω)
∣∣

(III) Plot III.

100 101 102 103 104 105 106 107
10−3

10−2

10−1

100
101
102

ω (rad/s)

∣ ∣ H IV
(j
ω
)∣ ∣

∣∣HIV (jω)
∣∣

(IV) Plot IV.

Filter Letter Plot I Plot II Plot III Plot IV

A ⃝ ⃝ ⃝ ⃝
B ⃝ ⃝ ⃝ ⃝
C ⃝ ⃝ ⃝ ⃝
D ⃝ ⃝ ⃝ ⃝
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Solution:

Filter Letter Plot I Plot II Plot III Plot IV

A • ⃝ ⃝ ⃝
B ⃝ ⃝ ⃝ •
C • ⃝ ⃝ ⃝
D ⃝ • ⃝ ⃝

First, we can categorize each plot by whether it’s a first-order low-pass filter (LPF) or first-order high-pass
filter (HPF). We can then inspect each plot’s cutoff frequency (as the "knee" of the exact transfer function
plot, and the frequency where the Bode Plot linear approximations intersect.)

• Plot I: HPF, cutoff at ωc = 1× 105 rad
s .

• Plot II: LPF, cutoff at ωc = 1× 105 rad
s .

• Plot III: HPF, cutoff at ωc = 1× 103 rad
s .

• Plot IV: LPF, cutoff at ωc = 1× 103 rad
s .

As for the filters, we have the following cutoff frequencies and transfer functions:

Filter Letter ωc H(jω)

A R
L = 10Ω

100µH = 105 rads H(jω) = jωL
R+jωL =

jω
ωc

1+ jω
ωc

(HPF)

B 1
RC = 1

1MΩ·1nF = 103 rads H(jω) =
1

jωC
1

jωC
+R

= 1
1+ jω

ωc

(LPF)

C 1
RC = 1

100kΩ·0.1nF = 105 rads H(jω) = R
1

jωC
+R

=
jω
ωc

1+ jω
ωc

(HPF)

D R
L = 1MΩ

10H = 105 rads H(jω) = R
R+jωL = 1

1+ jω
ωc

(LPF)
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

SI Prefix Exponent Definition

nano (n) 10−9

micro (µ) 10−6

milli (m) 10−3

kilo (k) 103

mega (M) 106

giga (G) 109

• RC low-pass filter: H(jω) = 1
1+j ω

ωc

ωc =
1

RC

• RC high-pass filter: H(jω) =
j ω
ωc

1+j ω
ωc

ωc =
1

RC

• RL low-pass filter: H(jω) = 1
1+j ω

ωc

ωc =
R
L

• RL high-pass filter: H(jω) =
j ω
ωc

1+j ω
ωc

ωc =
R
L
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7. Magnitude, Phase, and Cascades (6 points)

Suppose you have the transfer function H(jω) for a system as given in eq. (1) below:

H(jω) =
10

1 + j ω
106

(1)

Answer the following questions.

(a) (2 pts) What is the transfer function’s approximate magnitude
∣∣H(jω)

∣∣ at ω = 1×104 rad
s ? Select

the closest option from the list below by filling in a bubble.

⃝ 100

⃝ 10
√
2

⃝ 10

⃝ 10√
2

⃝ 2

⃝
√
2

⃝ 1

⃝ 0.1

⃝ 0.01

⃝ 0.001

Solution: This is a low-pass filter with gain 10, and the given frequency is much smaller than cutoff.

So, the magnitude is about 10. Precisely, we can say
∣∣H(jω)

∣∣ = ∣∣∣∣∣ 10

1+j 10
4

106

∣∣∣∣∣ = 10√
12+

(
104

106

)2
= 10

1.00005 =

9.99950004 ≈ 10.

(b) (2 pts) What is the transfer function’s approximate phase ∡H(jω) at ω = 1× 109 rad
s ? Select the

closest option from the list below by filling in a bubble.

⃝ 90◦, π2 rad

⃝ 84◦

⃝ 45◦, π4 rad

⃝ 6◦

⃝ 0◦, 0 rad

⃝ −6◦

⃝ −45◦,−π
4 rad

⃝ −84◦

⃝ −90◦,−π
2 rad

Solution: Since this is a low-pass filter and the given frequency is much larger than cutoff frequency,

we have −90◦. To compute the phase we calculate: ∡H(j1× 109 rad
s ) = ∡

(
10

1+j 10
9

106

)
= ∡(10) −

∡(1 + j103) ≈ 0− ∡(j103) = −π
2 rad or −90◦.

(c) (2 pts) You cascade three of the systems as defined by the transfer function in eq. (1). You place one
after the other, with unity-gain buffers in between. Write the overall transfer function Hov(jω) in
terms of the given transfer function H(jω). You do not have to simplify your answer.

Solution: Cascading filters leads to the product of their transfer functions as the output of one filter

will become the input of the next. Thus we have: Hov(jω) = H(jω)3 =

(
10

1+j ω
106

)3
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8. Recurrence Stability (6 points)

Just as you have seen second-order vector differential equations, we can define similar second-order recur-
rence relations in discrete-time. Consider:

x[i+ 1] = x[i]− 3x[i− 1] + w[i] (2)

where x[0] = 0, x[1] = 0 and
∣∣w[i]∣∣ ≤ ε.

This can be written in vector form for i ≥ 1 as:[
x[i]

x[i+ 1]

]
=

[
0 1
−3 1

]
︸ ︷︷ ︸

Ad

[
x[i− 1]
x[i]

]
+

[
0
1

]
w[i], (3)

with initial condition

[
x[0]
x[1]

]
=

[
0
0

]
.

Is the discrete-time system above stable or unstable? Fill in the appropriate bubble and then explain
below.

⃝ Stable

⃝ Unstable

The following information about the matrix Ad may be useful. You may use as much or as little of the
following information as you find helpful. It is here to simplify calculations you may want to perform.

Eigenvalues of Ad : λ1 =
1

2

(
1 + j

√
11
)

λ2 =
1

2

(
1− j

√
11
)

Eigenvalue magnitudes: |λ1| ≈ 1.73 |λ2| ≈ 1.73

Eigenvectors for associated λi : v⃗1 =

[
1
λ1

]
v⃗2 =

[
1
λ2

]

Matrix inverse: A−1
d =

1

3

[
1 −1
3 0

]

If stable, explain why. If unstable, just give a sequence of bounded scalar disturbances w[i] that would
cause the states x[i] to grow unboundedly. You don’t need to justify your choice of w[i] sequence here.

Solution: This system is unstable; to see so from the given information, we notice that the magnitude of
the eigenvalues is larger than 1, which is the condition to check a discrete-time system’s stability. We only
needed one of these eigenvalues’ magnitudes to exceed 1.

If we use the input sequence w[i] = +ε, 0, 0, · · · we see that x[2] = +ε, x[3] = +ε, x[4] = −2ε, x[5] =
−5ε, x[6] = ε, x[7] = 16ε, · · · and this continues to grow in magnitude.
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9. Nonhomogeneous Solution (4 points)

Solve the following differential equation for t ≥ 0:

dx(t)

dt
= −3x(t) + 6 (4)

with initial condition x(0) = −2. What is x(t)?

You do not have to show any work for this problem.

Solution: From the nonhomogenous differential equation solution (which you could either apply directly
or derive):

x(t) = x0e
λt +

∫ t

0
eλ(t−θ)u(θ) dθ (5)

x(t) = −2e−3t +

∫ t

0
e−3(t−θ)6 dθ (6)

x(t) = −2e−3t + 6

∫ t

0
e−3(t−θ) dθ (7)

x(t) = −2e−3t + 6e−3t

∫ t

0
e3θ dθ (8)

x(t) = −2e−3t + 6e−3t

(
1

3

(
e3t − 1

))
(9)

x(t) = −2e−3t + 2e−3t
(
e3t − 1

)
(10)

x(t) = −2e−3t + 2
(
1− e−3t

)
(11)

x(t) = −2e−3t + 2− 2e−3t (12)

x(t) = 2− 4e−3t. (13)

Alternatively, we could use our substitution technique.

d

dt
x(t) = −3(x(t)− 2), x(0) = −2 (14)

y(t) := x(t)− 2 (15)

y(0) = −4 (16)
d

dt

(
y(t)− 2

)
= −3y(t) (17)

d

dt
y(t) = −3y(t) (18)

y(t) = −4e−3t (19)

x(t) = 2− 4e−3t (20)

There is yet another method; that of "guess-and-solve". From experience with this category of differential
equation, we know that the value will approach a constant after a long time t, and we know also that a term
of the form ce−3t will be present (capturing the exponential behavior in the meantime). Solving for the
long-term condition, we get a constant of 2. Then, solving for the initial condition yields −4 as the value of
c in the guess.
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Since you have seen this sort of equation many times in the course, it is also fine to directly write down the
solution by inspection.
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10. Get Real! (8 points)

(a) (2 pts) Suppose you have the input signal in eq. (21):

vin(t) = 4 cos

(
104t+

π

4

)
(21)

For the sinusoidal input voltage signal given in eq. (21), what is the angular frequency ω?
Solution: The angular frequency is the coefficient of t in the argument of the sinusoid. since we have
104t in the argument, our angular frequency is ω = 1× 104 rad

s .

(b) (4 pts) You now have a circuit given in fig. 5. We want to add an element ZE in series to the R and
C such that the equivalent impedance of the series combination is purely real. Notice the same input
signal eq. (21) is also labeled in the diagram fig. 5.

−
+4 cos

(
104t+ π

4

)
1 kΩ

10 µF

ZE

vin(t) =

Figure 5: A given circuit for which we want to make the equivalent series impedance purely real.

In order to make the equivalent impedance of the series interconnection of R,C and ZE purely real at
the input angular frequency ω you identified above, what should the impedance ZE(jω) be? Show
your work. Give a specific numerical value, and do not worry about either units or the dependence on
ω.

Solution: The total series equivalent impedance is given by: Zeq = ZR + ZC + ZE .

Zeq = R+
1

jωC
+ ZE

= 1kΩ− j
1

104 rads 10µF
+ ZE

= 1kΩ− j10Ω + ZE

To have Zeq be purely real, we must have the capacitive impedance −j10Ω and the unknown ZE cancel
out. So ZE = j10Ω.
Since this impedance is positive, we know to use an inductor, and as we were given a frequency
of operation ω = 1 × 104 rad

s , we can actually solve for the exact inductance needed to satisfy the
condition of real equivalent impedance. Setting jωL = j10, we solve: L = 10

ω = 10
1×104

= 1 ×
10−3 H = 1mH. This last step was not required by the problem as stated.
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(c) (2 pts) What single circuit element could you use to get the above ZE? Select one of the options
below by filling in a bubble.
⃝ Resistor
⃝ Capacitor
⃝ Inductor

Solution: To achieve a positive imaginary impedance, we can use an inductor, which will have
ZL(jω) = jωL.
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11. System ID (8 points)

Consider a scalar system we want to model by:

x[i+ 1] = a1x[i] + a2x[i− 1] + bu[i] + w[i], (22)

where w[i] is a hopefully small disturbance.

We collect a trace of values for x[i] and u[i] from time i = 0, 1, . . . , ℓ. Setup a least squares problem for the
unknown parameters a1, a2, b, in the form of solving an approximate system of equations Dp⃗ ≈ s⃗. What
are the matrix D, the vector of unknowns p⃗, and the vector s⃗? Solution: We can write the following
equations:

x[2] ≈ a1x[1] + a2x[0] + bu[1]

x[3] ≈ a1x[2] + a2x[1] + bu[2]

... ≈
...

x[ℓ− 1] ≈ a1x[ℓ− 2] + a2x[ℓ− 3] + bu[ℓ− 2]

x[ℓ] ≈ a1x[ℓ− 1] + a2x[ℓ− 2] + bu[ℓ− 1]

Grouping up terms on the left and the right as vectors, and factoring out our parameters we get the following
equation.

x[2]
x[3]
...

x[ℓ− 1]
x[ℓ]


︸ ︷︷ ︸

s⃗

≈


a1x[1] + a2x[0] + bu[1]
a1x[2] + a2x[1] + bu[2]

...
a1x[ℓ− 2] + a2x[ℓ− 3] + bu[ℓ− 2]
a1x[ℓ− 1] + a2x[ℓ− 2] + bu[ℓ− 3]

 =


x[1] x[0] u[1]
x[2] x[1] u[1]
...

...
...

x[ℓ− 2] x[ℓ− 3] u[ℓ− 2]
x[ℓ− 1] x[ℓ− 2] u[ℓ− 1]


︸ ︷︷ ︸

D

a1a2
b


︸ ︷︷ ︸

p⃗
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12. s-Impedance Derivation (8 points)

(a) (4 pts) You are given a component with the I-V relationship V (t) = p0
d2

dt2
I(t) − p1

d
dtI(t). Suppose

you apply I(t) = est. What is V (t)?
Solution: Consider I(t) = est.

V (t) = p0
d2

dt2

(
est
)
− p1

d

dt

(
est
)

= p0s
2est − p1se

st

= (p0s
2 − p1s)e

st

(b) (4 pts) In (a) you should have noticed the answer is proportional to est. The s-impedance is defined as
the ratio V (t)

I(t) when I(t) = est. What is the s-impedance for this component?

Solution: We have current I(t) = est and voltage V (t) = (p0s
2 − p1s)e

st. The s-impedance is the
ratio of the two which gives us:

Z(s) =
V (t)

I(t)
= p0s

2 − p1s
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13. Conceptual Transfer Functions and Bode Plot Analysis (10 points)
In fig. 6 are magnitude and phase Bode plots for some filter with transfer function H(jω).

5min− 8min

102 103 104 105 106 107 108 109
10−5

10−4

10−3

10−2

10−1

100

101

ω (rad/s)

∣ ∣ H(j
ω
)∣ ∣

∣∣H(jω)
∣∣

Bode Magnitude Plot

(i) Part a) Magnitude Plot

102 103 104 105 106 107 108 109
− 3π

4

−π
2

−π
4

0

π
4

π
2

3π
4

ω (rad/s)
∡
H
(j
ω
)

∡H(jω)

Bode Phase Plot

(ii) Part a) Phase Plot

Figure 6: Part a) Magnitude and Phase Bode Plots for a transfer function H(jω).

(a) (4 pts) Suppose vin,1(t) below is an input voltage signal to the above filter with transfer function H(jω).

vin,1(t) = 3 sin

(
103t+

π

3

)
(23)

Label the input angular frequency of vin,1(t) on both plots above, in fig. 6, using a vertical line.
Next, compute the output voltage vout,1(t) after this input signal passes through the filter defined by
H(jω).
Your answer for the output voltage should have the form A1 sin(ω1t+ ϕ1). What are A1, ω1, and
ϕ1?
Solution: The first step here is to identify the input angular frequency ω; we know that this is the
coefficient of t in the sin term. Here, this is ω = 1× 103 rad

s , and we would label this frequency with
vertical lines in the plots.
Next, we consider what a transfer function of a filter represents for magnitude; the magnitude of the
transfer function at a given frequency indicates how much gain (in our case, attenuation) the filter
applies to the magnitude of the input signal. Here, we find that the A1 terms of the output is 3 (input
magnitude) multiplied by the magnitude of H(jω) at ω = 1 × 103 rad

s , which is 0.1. That is, A1 =
3 · 0.1 = 0.3.
Similarly, the phase of the transfer function at a given frequency indicates how much phase the filter
adds to the phase of the input signal. From the plot, we see that this phase addition is π

2 rad. So,
ϕ1 =

π
3 + π

2 = 5π
6 rad.
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Finally, our filter will not change the input frequency, so ω1 = ωin,1 = 1× 103 rad
s .

Putting this all together, we find that vout,1(t) = 0.3 sin
(
103t+ 5π

6

)
. Equivalently, vout,1(t) =

−0.3 sin
(
103t− π

6

)
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(b) (4 pts) For convenience, we have copied the same plots from part (a) below.

102 103 104 105 106 107 108 109
10−5

10−4

10−3

10−2

10−1

100

101

ω (rad/s)

∣ ∣ H(j
ω
)∣ ∣

∣∣H(jω)
∣∣

Bode Magnitude Plot

(i) Part b) Magnitude Plot

102 103 104 105 106 107 108 109
− 3π

4

−π
2

−π
4

0

π
4

π
2

3π
4

ω (rad/s)

∡
H
(j
ω
)

∡H(jω)

Bode Phase Plot

(ii) Part b): Phase Plot

Figure 7: Part b): Magnitude and Phase Bode Plots for a transfer function H(jω).

Suppose vin,2(t) below is a second input voltage signal to the filter with transfer function H(jω) on
the previous page.

vin,2(t) = 6 cos

(
108t− π

6

)
(24)

Label the input angular frequency of vin,2(t) on both plots in fig. 7, using a vertical line.
Next, compute the output voltage vout,2(t) after this input signal passes through the filter defined by
H(jω).
Your answer for the output voltage should have the form A2 cos(ω2t+ ϕ2). What are A2, ω2, and
ϕ2?
Solution: As for the previous subpart, we identify ω as the coefficient of t in the cos term. Here, this
is ω = 1× 108 rad

s , and we would label this frequency with vertical lines in the plots.

A2 is equal to the input magnitude multiplied by the magnitude of H(jω) at ω = 1× 108 rad
s . That is,

A2 = 6 · 1× 10−4 = 6× 10−4 = 0.0006.
From the plot, the phase addition is 0, so ϕ2 = −π

6 rad.

Finally, our filter will not change the input frequency, so ω2 = ωin,2 = 1× 108 rad
s .

Putting this all together, we find that vout,2(t) = 0.0006 cos
(
108t− π

6

)
.
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(c) (2 pts) Based on your answers in parts (a) and (b), if vin(t) = vin,1(t) + vin,2(t), what is the
corresponding vout(t)?
You can leave your answer in terms of the Ai, ωi, ϕi from the previous two parts. You don’t have to
substitute in values.

Solution: The output is the sum of the two output signal components; symbolically, this i:

vout(t) = vout,1(t) + vout,2(t) (25)

vout(t) = A1 sin (ω1t+ ϕ1) +A2 cos (ω2t+ ϕ2) (26)

Leaving it in symbolic form as above sufficiently answers the question. Substituting in the numbers,
we have:

vout(t) = 0.3 sin

(
103t+

5π

6

)
+ 0.0006 cos

(
108t− π

6

)
. (27)
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14. Being able to control with feedback (22 points)

Consider the discrete-time dynamic system:

x⃗[i+ 1] = Ax⃗[i] + b⃗u[i] + w⃗[i], (28)

where the purely real matrix A =

[
α β
γ δ

]
and b⃗ =

[
0
1

]
.

(a) (3 pts) Show that if β = 0, then b⃗ is an eigenvector of A.
(HINT: What does it mean to be an eigenvector?)

Solution:
We just write stuff out:

Ab⃗ =

[
α β
γ δ

][
0
1

]
(29)

=

[
β
δ

]
. (30)

If β = 0, then Ab⃗ = δ⃗b so b⃗ is an eigenvector.

(b) (5 pts) Let η1 and η2 be a pair of complex numbers that are complex conjugates. (i.e. η1 = η2.)
Show that the polynomial (λ− η1)(λ− η2) = λ2 + c1λ+ c0 has purely real coefficients c1 and c0.
Solution:
It is convenient to write η1 = a+ bj and η2 = a− bj to capture their complex conjugate relationship.
We just multiply out the monomial terms:

(λ− η1)(λ− η2) = λ2 − (η1 + η2)λ+ η1η2 (31)

and then match coefficients to see that c1 = −(η1 + η2) = −(η2 + η2) = −2Re(η2) = −2a and
c0 = η1η2 = η2η2 = (a + bj)(a − bj) = a2 + b2 = |η2|2. We know that the magnitude squared of
a complex number is purely real as is the sum of a complex number with its own conjugate since the
imaginary parts cancel. This shows that c1 and c0 are both purely real numbers.
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(c) (14 pts) Suppose we knew that b⃗ =

[
0
1

]
is not an eigenvector of the real matrix A =

[
α β
γ δ

]
.

Choose real feedback gains f1, f2 so that u[i] =
[
f1 f2

]
x⃗[i] places the eigenvalues of the closed-

loop matrix Acl = (A + b⃗
[
f1 f2

]
) at the complex conjugate pair η1 and η2 from the previous

part. Show your work.
It is fine if you leave your answer in terms of c1 and c0 from the previous part.
(HINT: The final gains f1 and f2 are going to depend on the α, β, γ, δ that define A as well as η1 and
η2 through c1 and c0 from part (b).
At some point in the derivation, your life might become easier if you solve for f2 first before trying to
solve for f1.)
(Potentially heavier algebra warning for this part. Don’t get bogged down for too long.)

Solution:
Looking at the closed-loop dynamics, we get:

A+ b⃗
[
f1 f2

]
=

[
α β
γ δ

]
+

[
0
1

] [
f1 f2

]
(32)

=

[
α β

γ + f1 δ + f2

]
. (33)

Evaluating the characteristic polynomial:

det

(
λI − (A+ b⃗

[
f1 f2

]
)

)
= det

[
λ− α −β

−γ − f1 λ− δ − f2

]
(34)

= (λ− α)(λ− δ − f2)− (−β(−γ − f1)) (35)

= λ2 − (α+ δ + f2)λ+ (αδ + αf2 − βγ − βf1). (36)

To get the eigenvalues to be at η1 and η2, it is necessary and sufficient to have the characteristic
polynomial be λ2 + c1λ+ c0 for the c1 and c0 computed in the previous part.
Matching terms for the coefficient c1 of λ in the characteristic polynomial we see that we must set f2
to satisfy:

−2Re(η2) = −(α+ δ + f2) (37)

which we can solve immediately for

f2 = 2Re(η2)− α− δ. (38)

Matching terms for the constant term c0 in the characteristic polynomial we see that we must set f1 to
satisfy:

|η2|2 = αδ + αf2 − βγ − βf1 (39)

= αδ + α(2Re(η2)− α− δ)− βγ − βf1 (40)

= α(2Re(η2)− α)− βγ − βf1, (41)
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where we used eq. (38) to substitute in the known value for f2. Given that we know that β ̸= 0, we
can immediately solve for

f1 =
α(2Re(η2)− α)− βγ − |η2|2

β
(42)

Because α, β, γ, δ,Re(η2), |η2| are all real quantities, f1 and f2 are also real. Since the above choice
of f1 and f2 sets the characteristic polynomial to have roots η1 and η2, we have placed the eigenvalues
of A+ b⃗[f1 f2] at η1 and η2 by this choice of feedback control.
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15. Op-Amp Model Analysis (16 points)

(a) (10 pts) You are given the op-amp circuit model in fig. 8i. This circuit has a phasor-domain repre-
sentation as given in fig. 8ii. Find the transfer function from vin to vout. i.e. Find H(jω) = Ṽout

Ṽin

corresponding to fig. 8ii. Show your work.
You don’t have to fully simplify your answer but it has to be a valid transfer function.

V−

V+

+

−
vin(t) −

+
A(V+ − V−)

Rout

Cout

vout(t)

(i) Op-amp Model with feedback (in “Time-Domain”).

Ṽ−

Ṽ+

−
+

Ṽin(jω) −
+

A
(
Ṽ+ − Ṽ−

)
ZR,out

ZC,out

Ṽout(jω)

(ii) Op-amp Model with feedback to compute the Transfer
Function (in “Phasor-Domain”).

Figure 8: Op-amp Models in “Time-Domain” and “Phasor-Domain”.

Solution:

Ṽ− = Ṽout

Ṽ+ = Ṽin

Ṽout =
ZC

ZC + ZR
A(Ṽ+ − Ṽ−)

Ṽout =

1
jωCout

1
jωCout

+Rout
A(Ṽ+ − Ṽ−)

1 + jωRoutCout

A
Ṽout = Ṽ+ − Ṽ−

1 + jωRoutCout

A
Ṽout = Ṽin − Ṽout(

1 + jωRoutCout

A
+ 1

)
Ṽout = Ṽin

So we can conclude that H(jω) = 1
1+ 1

A
+ jω

ω0A

, where ω0 =
1

RoutCout
.
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(b) (6 pts) Now suppose that your A is large so that you can approximate your transfer function H(jω) as
Ĥ(jω) as in eq. (43).

Ĥ(jω) =
1

1 + jω
ω0A

(43)

For the transfer function Ĥ(jω), sketch a Bode Plot (straight-line approximations are fine) for
the magnitude on fig. 9 with w0 = 102 rads and A = 105.

10−1 100 101 102 103 104 105 106 107 108 109 1010
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

ω (rad/sec)

∣ ∣ ∣Ĥ(j
ω
)∣ ∣ ∣

∣∣∣Ĥ(jω)
∣∣∣

Figure 9: Magnitude Bode Plots: Template for part (b).

Solution: To generate a Bode Plot, we have to identify a few key features of the transfer function.
From the form, we know it’s a first-order filter, either low-pass or high-pass. To identify which kind,
we can either pattern-match to the known forms for each filter and inspect the type, or substitute in
low and high frequencies to get a sense of the behavior of the transfer function at various frequencies.
This is a low-pass filter, with magnitude of 1 in the pass-band.
Next, we identify the cutoff frequency. The general form of a first-order low-pass filter is as follows:

HLP(jω) =
1

1 + jω
ωc

(44)

Therefore, the cutoff frequency here is ωc = ω0A. For the specific values given (w0 = 102 rads and
A = 105), we find that ωc = 1× 107 rad

s . Now, we can sketch the plot.
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10−1 100 101 102 103 104 105 106 107 108 109 1010
10−6

10−5

10−4

10−3

10−2

10−1
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101
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103

104

105

106

ω (rad/sec)

∣ ∣ ∣Ĥ(j
ω
)∣ ∣ ∣
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Figure 10: Magnitude Bode Plot Solution for part (b).
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16. Parallel RLC with Current Source (28 points)

Consider the following circuit:

t = 0

Rt = 0 C

+

−

VC L

IL

S2

S1

Is = 1A

(a) (10 pts) At t = 0, switch S1 became open and switch S2 became closed. We first need to construct
our state space system for t ≥ 0. Our natural state variables are the current through the inductor
x1(t) = IL(t) and the voltage across the capacitor x2(t) = VC(t) since these are the quantities whose
derivatives show up in the system of equations governing our circuit.
Find the system of differential equations in terms of our state variables that describes this circuit
for t ≥ 0. Leave the system symbolic in terms of Is, R, L, and C. Write the system of differential
equations in vector/matrix form with the vector state variable:

x⃗(t) =

[
x1(t)
x2(t)

]
=

[
IL(t)
VC(t)

]
(45)

This should be in the form d
dt x⃗(t) = Ax⃗(t) with a 2× 2 matrix A.

Show your work.

Solution:
Let’s first find the relationship between dIL(t)

dt and VC(t):

VC(t) = VL(t) = L
dIL(t)

dt
→ dIL(t)

dt
=

1

L
VC(t) (46)

Using KCL, we can also find the relationship between dVC(t)
dt and IL(t):

IC(t) + IL(t) + IR(t) = 0, IC(t) = C
dVC(t)

dt
, IR =

VC(t)

R
(47)

C
dVC(t)

dt
+ IL(t) +

VC(t)

R
= 0 → dVC(t)

dt
= − 1

C
IL(t)−

1

RC
VC(t) (48)

Note that IC(t) + IL(t) + IR(t) = 0 because the current source (Is) is disconnected from the RLC
network at t = 0.
In summary, we have the following differential equations:

dIL(t)

dt
=

1

L
VC(t) (49)

dVC(t)

dt
= − 1

C
IL(t)−

1

RC
VC(t). (50)
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Finally, we can represent the above differential equations in the matrix/vector multiplication form as
follows:

d

dt

[
IL(t)
VC(t)

]
=

[
0 1

L
− 1

C − 1
RC

]
︸ ︷︷ ︸

A

[
IL(t)
VC(t)

]
. (51)
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t = 0

Rt = 0 C

+

−

VC L

IL

S2

S1

Is = 1A

(b) (3 pts) For a long time in the past t < 0, assume that the switch S1 had remained closed and S2 had
remained open. What is IL(0) and VC(0)? Give a brief justification as well.

Solution:
If something has been happening for a long time, we expect to see that things are no longer changing.
For the current in the inductor to no longer be changing, the voltage across it must be zero. Since the
current is connected in parallel with the capacitor, it must be that VC(0) = 0V . With a zero voltage
across it, the resistor must have zero current flowing through it. For the voltage across the capacitor to
not be changing, there must be zero current flowing through it as well. To satisfy, KCL, this means all
the current from the current source must be flowing through the inductor, setting IL(0) = 1A.
The above is a fuller solution than we expected. A shorter one could simply be: if a system has been
left as it is for a long time, it should be in steady state. In steady-state, an inductor is a short and a
capacitor is an open circuit. This means that all the current goes through the short, making IL(0) = 1A
and since it is a short, the voltage across it and hence the capacitor is 0V .

Writing the above in math, we’d get: The given RLC network reaches steady state (dVC(t)
dt = 0 and

dIL(t)
dt = 0) after we wait for long enough. This can be interpreted as IC = 0 and VL = 0 since

IC = C dVC(t)
dt and VL = LdIL(t)

dt . Therefore the capacitor and the inductor behave as an open and a
short circuit, respectively. Thus, all of the input current flows through the inductor (IL = Is = 1A).
A significantly longer answer would be to realize that the nonhomogeneous differential equation that
corresponds to the configuration for t < 0 is given by:

d

dt

[
IL(t)
VC(t)

]
=

[
0 1

L
− 1

C − 1
RC

]
︸ ︷︷ ︸

A

[
IL(t)
VC(t)

]
+

[
0
1
C

]
Is. (52)

This is stable because A′s eigenvalues all have real part less than 0 as long as R > 0 (as confirmed in
part (c)) and hence all transients will have long since decayed away. The only (because A is invertible)
steady-state solution (with the derivatives being zero since nothing is changing in steady-state) this has
for Is = 1A is IL = 1A and VC = 0V .

(c) (3 pts) For the rest of this problem, assume R = 1MΩ, L = 25 µH, C = 10nF. With these values, we
get the following eigenvalues and eigenvectors for A in the differential equation d

dt x⃗(t) = Ax⃗(t).

λ1 = −Z0 + jω0 λ2 = −Z0 − jω0, (53)

where Z0 =

√
L

C
= 50 and ω0 =

1√
LC

= 2× 106
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V =
[
v⃗λ1 v⃗λ2

]
=

[
1 1
a a

]
(54)

V −1 =

[
b −j0.01

b j0.01

]
(55)

Consider a nice coordinate system for which we can write x⃗(t) = V ⃗̃x(t).

What is the Ã so that d
dt
⃗̃x(t) = Ã⃗̃x(t)? You can leave the answer symbolic in terms of λ1, λ2.

Note that you do not need to find/evaluate a, b. You can still answer all the questions below without
knowing these values.

Solution:
A calculation is not required as the effect of multiplying A appropriately by V and V −1 yields a matrix
with the eigenvalues on its diagonal, in the order corresponding to the eigenvectors in the V matrix.

Ã = V −1AV =

[
λ1 0
0 λ2

]
=

[
−Z0 + jω0 0

0 −Z0 − jω0

]
(56)

However, a quick way to verify is the following calculation:

Ã = V −1AV (57)

= V −1

 | |
Av⃗λ1 · · · Av⃗λn

| |

 (58)

= V −1

 | |
λ1v⃗λ1 · · · λnv⃗λn

| |

 (59)

=

 | |
λ1V

−1v⃗λ1 · · · λnV
−1v⃗λn

| |

 (60)

=

 | |
λ1e⃗1 · · · λne⃗n
| |

 (61)

=


λ1

. . .

λn

 (62)

Note that e⃗i is the i-th column of the identity matrix I - this comes from setting the columns of
V −1V = I equal to each other after distributing V −1 on the columns of V .

Followings are for the verification of eigenvalues and eigenvectors:

det(A− λI) =

∣∣∣∣∣−λ 1
L

−1
C

−1
RC − λ

∣∣∣∣∣ = λ2 +
1

RC
λ+

1

LC
= 0 (63)
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λ = − 1

2RC
± 1

2

√(
1

RC

)2

− 4

LC
= −50± j

(
2× 106

)
(64)

Assuming the eigenvectors have the following form: v⃗ =

[
1
y

]
, then we have:

Av⃗ = λv⃗ =

[
0 1

L
− 1

C − 1
RC

][
1
y

]
=

[
λi

y × λi

]
(65)

From the above, we can easily find that y = Lλi. Based on this, we can calculate the eigenvectors:

v1 =

[
1

Lλ1

]
=

[
1

−0.00125 + j50

]
, v2 =

[
1

Lλ2

]
=

[
1

−0.00125− j50

]
(66)
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(d) (12 pts) Now, suppose that our initial conditions for IL(0) and VC(0) have changed to the following:[
IL(0)
VC(0)

]
=

[
0
1

]
(67)

Using the information from (c), find IL(t) for t ≥ 0 and write the answer in a form involving real
exponentials and sinusoids. Does IL(t) converge as t → ∞? If so, what does it converge to?
Show your work.

Solution:

⃗̃x(0) = V −1x⃗(0) =

[
b −j0.01

b j0.01

][
0
1

]
=

[
−j0.01
j0.01

]
(68)

d

dt

[
x̃1(t)
x̃2(t)

]
=

[
λ1 0
0 λ2

][
x̃1(t)
x̃2(t)

]
(69)

x̃1(t) = K1e
λ1t and x̃1(0) = −j0.01 (70)

x̃2(t) = K2e
λ2t and x̃1(0) = j0.01 (71)

Solving above yields follows:

x̃1(t) = (−j0.01) eλ1t (72)

x̃2(t) = (j0.01) eλ2t (73)

Finally, we can calculate x(t) by computing V ⃗̃x(t):[
IL(t)
VC(t)

]
= x⃗(t) = V ⃗̃x(t) =

[
1 1
a a

][
(−j0.01) eλ1t

(j0.01) eλ2t

]
=

[
1 1
a a

][
(−j0.01) e(−Z0+jω0)t

(j0.01) e(−Z0−jω0)t

]
(74)

IL(t) = −j0.01e−Z0t
(
ejω0t − e−jω0t

)
= 2j×−j0.01e−Z0t

(
ejω0t − e−jω0t

)
2j

(75)

∴ IL(t) = 0.02e−Z0t sin(ω0t) (76)

Regarding convergence, we have for the current lim
t→∞

IL(t) = 0 since the e−Z0t term goes to 0 as
t → ∞.

Verification:[
IL(t)
VC(t)

]
= V ⃗̃x(t) =

[
1 1

−0.00125 + j50 −0.00125− j50

][
(−j0.01) e(−Z0+jω0)t

(j0.01) e(−Z0−jω0)t

]
(77)

IL(t) = 0.02e−Z0t sin(ω0t) (78)

VC(t) = e−Z0t cos(ω0t)− (25× 10−6)e−Z0t sin(ω0t) (79)
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Let us check if above satisfies VC(t) = VL(t) = LdIL(t)
dt .

L
dIL(t)

dt
= (25× 10−6)(0.02)e−Z0t

(
ω0 cos(ω0t)− Z0 sin(ω0t)

)
(80)

= e−Z0t cos(ω0t)− (25× 10−6)e−Z0t sin(ω0t) (81)

Therefore, the pair (IL(t) and VC(t)) satisfies the differential equation.
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.

If needed, you can also use this space to work on problems. But if you want the work on this page to be
graded, make sure you tell us on the problem’s main page.]
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