Exam location: 145 Dwinelle (SIDs ending in 1 and 5)

PRINT your student ID: \qquad

PRINT AND SIGN your name: \qquad , \qquad
(first)
(signature)
PRINT your Unix account login: ee16b- \qquad

PRINT your discussion section and GSI (the one you attend): \qquad

Row Number (front row is 1): \qquad Seat Number (left most is 1): \qquad
Name and SID of the person to your left: \qquad

Name and SID of the person to your right: \qquad

Name and SID of the person in front of you: \qquad

Name and SID of the person behind you: \qquad

Section 0: Pre-exam questions (3 points)

1. What has been the most useful concept you learned from EE16A? (1 pt)
2. What TV show, book or movie has given you a good laugh? (Feel free to write the title in any language.) (2 pts)
[^0]PRINT your name and student ID:
[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem's main page.]

PRINT your name and student ID: \qquad

Section 1: Warm-up questions (48 points)

3. True or False (2 pts for each question) For each question below, circle \mathbf{T} on the left of each statement if you think the statement is true; else circle \mathbf{F} (for false).
(a) [T / F] An ideal capacitor dissipates energy from the circuit in the form of heat.
(b) [T / F] An ideal "golden rules" op-amp behaves as though it has infinite gain.
(c) [T / F] A series RLC circuit connected with a DC input voltage/current in a single loop cannot exhibit voltage or current oscillations in time.
(d) [T / F] Given an impedance Z connected across a voltage source $v(t)$, it is possible for $i(t)$ to be in-phase (no phase shift) with a sinusoidal $v(t)$.
(e) [T / F] Since the current across an open circuit must be zero, the voltage across the open circuit must also be zero by Ohm's law.
(f) [T / F] The voltage across a constant current source must be zero.
(g) [T / F] An electrical impedance across two terminals $Z=j \omega k$ (where ω is a positive angular frequency in rad/s and k is a positive real number) can be implemented using only capacitors.

PRINT your name and student ID:

4. Digital Circuits ($\mathbf{9} \mathbf{~ p t s) ~}$

Consider the circuit below:
(a) (3 pts) The circuit below is a legal CMOS gate. A, B and Y are the Boolean values of the voltages, V_{A}, V_{B} and V_{Y}, respectively. Write down Y as a Boolean formula involving A and B.

PRINT your name and student ID: \qquad

Operator	Meaning
\neg	NOT
\vee	OR
\wedge	AND
\oplus	XOR

Table 1: Reminder: Logical Operators
Implement each of the following Boolean functions with a single CMOS gate (i.e. implemented using a pull-up network consisting of PMOS transistors connected to a pull-down network consisting of NMOS transistors) by drawing it, or state why the function cannot be implemented as a single CMOS gate in 1-3 sentences. You only have available V_{A} and V_{B} as inputs.
(b) $(3 \mathrm{pts}) ~ \neg(A \wedge B)$.
(c) $(3 \mathrm{pts}) A \wedge B$.

PRINT your name and student ID: \qquad

5. Can you control me? (8pts)

We have a discrete time system that evolves according to $\vec{x}(t+1)=A \vec{x}(t)+B \vec{u}(t)$. For each part, answer whether there exists a sequence of control vectors $\vec{u}(t)$ that will bring the state to the origin $\overrightarrow{0}$ in a finite number of steps no matter where it starts.
(a) (4 pts) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(b) (4 pts) $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

PRINT your name and student ID: \qquad

6. Transfer Functions ($\mathbf{9} \mathbf{~ p t s}$)

Consider the circuit diagrams below. We define $H(\omega)=V_{\text {out }} / V_{\text {in }}$ as the voltage transfer function for each circuit. Here, assume that the input is connected to an ideal voltage source that applies a sinusoidal voltage. For each circuit, provide an expression for $H(\omega)$ where ω is the frequency of the applied sinusoidal voltage in radians per second. Here the transfer functions should be expressed as functions of j, ω, constants and the physical constants (R, C, L) of the systems.
(a) (3 pts) $H(\omega)=$?

(b) (3 pts) $H(\omega)=$?

(c) (3 pts) $H(\omega)=$?

PRINT your name and student ID: \qquad

7. RLC Transient Matching (8pts)

Throughout this problem, we assume $V_{i n}=1 V$ for $t<0$ and $0 V$ for $t \geq 0$.

For this problem you are asked to match the transient behavior for the current, i, of the RLC circuit for various values of R, L, and C .
Circle your answer. There is no need to give any justification. However, $\mathbf{0}$ points will be awarded for an incorrect answer, 0.5 point will be awarded for leaving it blank and 4 points will be awarded for the correct answer
(a) (4 pts) For $R=0 \Omega, L=1 H, C=1 F$ Which one is the correct transient response of the current in the circuit?

(A)

(B)

(C)

Print your name and student ID:
(b) (4 pts) For $R=0.5 \Omega, L=1 H, C=1 F$ Which one is the correct transient response of the current in the circuit?

(A)

(B)

(C)

PRINT your name and student ID: \qquad

Section 2: In The Zone(59 points)

8. RLC Problem ($\mathbf{2 6} \mathbf{~ p t s)}$

Consider the circuit below: let's try to analyze it with everything you know about circuits.

(a) (3 pts) Assume $v_{s}=V_{0}$ for $t<0$, and $v_{s}=0$ for $t \geq 0$. What is $v_{C}(0)$? What is $i_{L}(0)$?
(b) (3 pts) If $v_{s}=0$ (a constant) for any $t \geq 0$, what is the steady state value of v_{C} ? (i.e. $v_{C}(t \rightarrow \infty)$) What is the steady state value of i_{L} ?
(c) (3 pts) Write down the KCL equation on a node connecting the three passive components in terms of i_{L}, i_{C} and i_{R}.
(d) (3 pts) Write down a KVL equation for the loop containing the voltage source, inductor and the capacitor in terms of v_{s}, v_{L} and v_{C}.

PRINT your name and student ID:
(e) (6 pts) Write down differential equations for v_{C} and i_{L} using the relationships between the voltage across each component and the current through it, in addition to the equations obtained above. Convert them into the following matrix form (notice that $v_{s}=0$ for any $t \geq 0$):

$$
\binom{\frac{d i_{L}}{d t}}{\frac{d v_{C}}{d t}}=A\binom{i_{L}}{v_{C}}
$$

(f) (8 pts) For the differential equations above, we know the solution can be obtained from the general solutions $c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}$. What are the values of λ_{1} and λ_{2} ? Express them in terms of R, L, C and constants.

PRINT your name and student ID:
[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem's main page.]

PRINT your name and student ID: \qquad
9. Hold me and linearize me (13 pts)

Consider a non-linear two-dimensional system with states x_{0} and x_{1} and scalar input u that evolves according to the following coupled differential equations

$$
\begin{align*}
& \frac{d}{d t} x_{0}(t)=\dot{x}_{0}=x_{1}(t) \\
& \frac{d}{d t} x_{1}(t)=\dot{x}_{1}=4-\left(\frac{u(t)}{x_{0}(t)}\right)^{2} \tag{1}
\end{align*}
$$

(a) (5 pts) Find an input u_{e} so that if the system starts in state vector $\vec{x}_{e}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and we apply the input $u(t)=u_{e}$, the system will always stay in that same state.
(b) (8 pts) Write linearized state-space equations around \vec{x}_{e} and u_{e}. Convert them into the following form and find the matrices A and B.

$$
\frac{d}{d t} \vec{x}(t)=A\left(\vec{x}-\vec{x}_{e}\right)+B\left(u(t)-u_{e}\right)
$$

PRINT your name and student ID:
[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem's main page.]

PRINT your name and student ID: \qquad

10. Circuit Design (8 pts)

In this problem, you will find a circuit where several components have been left blank for you to fill in.
Assume the op-amp is ideal.
You have at your disposal only one of each of the following components:

Consider the circuit below. The voltage source $v_{i n}(t)$ has the form $v_{i n}(t)=v_{0} \cos (\omega t+\phi)$. The labeled voltages $V_{\text {in }}(\omega)$ and $V_{\text {out }}(\omega)$ are the phasor representation of $v_{\text {in }}(t)$ and $v_{\text {out }}(t)$. The transfer function $H(\omega)$ is defined as $H(\omega)=V_{\text {out }}(\omega) / V_{\text {in }}(\omega)$.

Let R_{1} be $1 k \Omega$. Fill in the boxes and determine the value of R_{2} so that

- It is a high-pass filter.
- $|H(\infty)|=2$.
- $\left|H\left(10^{3}\right)\right|=\sqrt{2}$.

PRINT your name and student ID:

11. Bode plot ($\mathbf{1 2} \mathbf{p t s}$)

Draw the Bode plot for the transfer function $H(\omega)=\frac{(j \omega \times 10)\left(10+j \omega \times 10^{-3}\right)}{(100+j \omega \times 10)}$ Remember you have the Bode plot table in the next page!

[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this page to report anything suspicious that you might have noticed.]

[^0]: Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.

