EE 16B Midterm 1 Spring 2018

Name:_____

SID #:_____

(after the exam begins add your SID# in the top right corner of each page)

Discussion Section and TA:_	
Discussion Section and TA:_	
Lab Section and TA:	

Name of left neighbor:	
Name of right neighbor:_	

Instructions:

Show your work. An answer without explanation is not acceptable and does not guarantee any credit.

Only the front pages will be scanned and graded. Back pages won't be scanned; you can use them as scratch paper.

Do not remove pages, as this disrupts the scanning. If needed, cross out any parts that you don't want us to grade.

PROBLEM	MAX
1	15
2	25
3	15
4	20
5	25

SID#____

Problem 1 *Warm up* (15 points) a) Consider the following circuit.

a) For t≥0, the following equation applies to $\mathbf{v}_{OUT}(\mathbf{t})$. In addition, $\mathbf{v}_{OUT}(0) = V_0$ and $\frac{dv_{OUT}}{dt} = 0$ at t=0.

$$\frac{d^2 v_{out}}{dt^2} + A \frac{d v_{out}}{dt} + B v_{out} = 0$$

If $A < 2\sqrt{B}$, provide an expression for $v_{out}(t) \ge 0$. (5 points)

Solution:

 $v_{out}(t) =$

b) Consider the circuit below.

What is
$$\widetilde{H}_{out}(\omega) = \frac{\widetilde{V}_{out}(\omega)}{\widetilde{V}_{in}(\omega)}$$
 for $\omega \rightarrow \infty$? (5 points)

Solution:

 $\widetilde{\mathbf{H}}_{out}(\omega \rightarrow \infty) =$

SID#_____

c) Consider the Bode plot below. (5 points)

This is a Bode magnitude plot of the transfer function $\widetilde{H}(\omega)$. The expression for $\widetilde{H}(\omega)$ is shown below.

$$\widetilde{\mathbf{H}}(\omega) = \frac{\widetilde{\mathbf{H}}_{\boldsymbol{\chi}}(\omega)}{1 + j\left(\frac{\omega}{\omega_c}\right)}$$

What is $\widetilde{\mathbf{H}}_{m{x}}(\omega)$?

Solution:

 $\widetilde{\mathbf{H}}_{\boldsymbol{\chi}}(\omega) =$

Problem 2 H's and Bodes... (25 points)

Consider the circuit below. There is nothing connected to the Vout terminal. (5 points)

a) Provide an expression for $\ \widetilde{H}_{out}(\omega) = rac{\widetilde{V}_{out}(\omega)}{\widetilde{V}_{in}(\omega)}$

Solution:

 $\widetilde{\mathbf{H}}_{out}(\omega) =$

b) For this part of the problem, assume you have ONE capacitor, ONE inductor and ONE resistor. If $Z_2 = 0$ for all ω , which components would you choose for Z_1 and Z_3 such that the filter response is a passive low pass filter with a slope of -20 dB/decade for frequencies beyond a single cutoff frequency? (5 points)

Solution:			
Circle ONE component to go into the Z ₁ box:	Capacitor	Inductor	Resistor
Circle ONE company to an interthe 7, how	Consisten	la duata a	Desister
Circle ONE component to go into the Z_3 box:	Capacitor	Inductor	Resistor

c) Consider the following circuit:

Solution:

 $\widetilde{\mathbf{H}}_{out}(\omega) =$

d) If L = 1 H and R₁ = R₂ = 1 Ω , provide below magnitude and phase Bode plots for $\widetilde{H}_{out}(\omega)$. (5 points)

SID#

Problem 3 *Transistors and RC's* (15 points) Consider the circuit below.

a) Fill in the truth table below for the circuit above. V_A , V_B and V_{out} are digital voltages that can only assume values of 0 or V_{DD} . (5 points)

VA	VB	V _{out}
0	0	
0	VDD	
VDD	0	
VDD	VDD	

SID#

For this part, assume that $V_A = V_B = V_{DD}$ for $-\infty < t < 0$. At t=0, V_A and V_B switch instantly from V_{DD} to 0. Assume all transistors behave as resistors with the same value, R, if in the ON state and that all capacitances are already accounted for in the circuit above.

b) Provide an expression for $V_{out}(t \ge 0)$. (10 points)

SID#

Problem 4 *Phasors!* **(20 points)** Consider the circuit below.

We are going to solve this circuit, which contains both a sinusoidal *and* a DC source using *superposition* and *phasors*.

a) Solve for $v_{OUT}(t)$ if $i_{IN}(t) = 0$ and $V_{DD} = a$ non-zero constant. (5 points)

SID#_____

b) Solve for $v_{OUT}(t)$ if $i_{IN}(t) = I_0 cos(\omega t)$ and $V_{DD} = 0$ V. (10 points)

c) Solve for $v_{OUT}(t)$ if $i_{IN}(t) = I_0 cos(\omega t)$ and $V_{DD} = a$ non-zero constant. (5 points)

Solution:			

Problem 5 (25 points)

a) Consider the following circuit. The switch is closed for t<0, then opens at t=0. Both of the independent sources have a DC value (i.e. they do not change with time).

a) What is ix(t<0)? (5 points)

Solution:

b) What is v_Y(t<0)? (5 points)

c) Provide an equation in the variable $i_x(t)$ that, when solved, would provide an expression for $i_x(t)$ for t≥0. DO NOT SOLVE THE EQUATION. (10 points)

Sol	uti	on:	
		•…	í

d) If Cx = Cy = C = 1 F and $Rx = R = 1 \Omega$ and Ly = L = 1 H, provide an expression for $i_x(t)$ for t ≥ 0 . (5 points)

Solution:

i_x(t) =

Extra Space

Contributors:

- Murat Arcak.
- Justin Yim.
- Kyoungtae Lee.
- Nikhil Shinde.