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page.]
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3. PCA (14 pts)

In this problem, we are going to think of our data points as being given in columns. You can imagine that
the data points are recordings from a microphone. We take many such recordings. Our goal is to identify
the principal components so that we could, in the future, project fresh recordings from the microphone onto
those principal components to help us better understand what was being said.

(a) (2 pts) Suppose for this part, that you have four observed data vectors (say corresponding to the same
spoken word, being repeated four times) and all of them just happened to be multiples of the following

6-dimensional vector~v =



3
−4
5
−5
4
−3


. (For your convenience, note that ‖~v‖= 10.)

You arrange the data vectors as the columns of a matrix A given by:

A =

−~v −2~v ~v 2~v

 (1)

You want to perform PCA to better understand your data. Find the first principal component vector
of A to explain the nature of your data points.
(HINT: You don’t need to compute any covariance matrices or compute any eigenvalue/eigenvectors
in this simple case. Also, be sure to think about what size vector you want as the answer. Don’t forget
to normalize!)

Solution:
Principal component analysis is in general about understanding how best to approximate our (poten-
tially) high-dimensional data (like recordings from a microphone) with its lower-dimensional essence.
The first principal component is about seeing which one-dimensional line best approximates the data
points — i.e. which is the line for which projecting the data points onto it results in “estimates” that
are as close as possible to the data points.
In the case of this problem, every point is explicitly given as a multiple of a single vector~v and so the
data already lies on a straight line going through the origin. So, the first principal component is just
along the direction of ~v. Because a principal component represents a direction, it is conventional to
normalize the vector to have unit length. In this case, we are told that the vector~v has length 10, and
so the answer is ~v

10 .

(Because the line is all that matters, you could also have used the negative of this − ~v
10 .)

A more methodical way to do PCA is to invoke the SVD. First, however, you need to make sure that
your data is zero-mean because the SVD will only give you directions relative to the origin. In this
problem, all the data is zero-mean by construction.
The singular value decomposition of a matrix A is a way of decomposing A into a sum of rank 1
matrices. In this sum the ith rank 1 matrix is formed from taking the outer product of normalized
column vectors~ui and normalized row vectors~vT

i , scaled by their respective singular values σi.
(Note that the~vT

i row vectors in the SVD decomposition A =UΣV T are completely unrelated to the~v
column vector that we have defined for our data matrix A above.)
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Looking at our given A, we can see that the matrix itself is rank 1 as the columns are all multiples of
the same vector: ~v. Seeing this we realize we can rewrite the matrix A as the following outer product:

A =

~v
[−1 −2 1 2

]
(2)

However the SVD requires we normalize the vectors ~u1 and ~vT
1 . In order to reconstruct A properly we

must scale back with the norms that we divided out to normalize.∥∥[−1,−2,1,2]
∥∥=√10 and‖~v‖= 10. Consequently, when we pull that out, we get σ0 = 10

√
10 as the

singular value that corresponds to the first (and only) principal component.
Thus we can write the SVD of A as:

A =

 ~v
10

10
√

10
[
−1√

10
−2√

10
1√
10

2√
10

]
(3)

Now we just have to pick which normalized vector to deem the principal component. Since our data
(the microphone recordings) are collected as columns we choose ~v

10 as the principal component.
How could you have remembered that you had to use columns here? The reason is that you were told
that you wanted to project fresh recordings from the microphone onto the principal component. You
have to project onto a vector of the same size. Only one of the vectors is the right size.

(b) (6 pts) Suppose that now, we have two more data points (say, corresponding to a different word being
spoken twice) that are multiples of a different vector ~p where:

~p =



36√
134

− 8√
134

− 28√
134

0
0
0


. (For your convenience, note that ‖~p‖= 4 and that ~pT~v = 0.)

We augment our data matrix with these two new data points to get:

A =

−~v −2~v ~v 2~v −4~p 4~p

 (4)

Find the principal components corresponding to the nonzero singular values of A. What is the first
principal component vector? What is the second principal component vector? Justify your
answer.
(Hint: Think about the inner product of~v and ~p and what that implies for being able to appropriately
decompose A. Again, very little computation is required here.)
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Solution: The solution to the previous part tells you what we need to do. We need to find the best
two-dimensional subspace that best represents our data.
We start by taking the SVD of A.
The columns of A are all multiples of two vectors: ~v and ~p. Each of these can be used to create a rank
1 matrix, and these can be summed together to form A.
Since ~v and ~p are orthogonal to one another, our life is easier. This problem’s A matrix is made
especially nice by seeing that a data point is either purely in the~v direction, or the ~p direction.
Using this knowledge we rewrite A as:

A =

~v
[−1 −2 1 2 0 0

]
+

~p
[0 0 0 0 −4 4

]
.

The orthogonality relationships demanded by the SVD are clearly satisfied since the row-vectors in-
volved above have disjoint support (i.e. when one is nonzero, the other is zero) and the columns are
orthogonal since we’ve been told so.
However for the SVD the vectors: ~u1, ~v1

T , ~u2 and ~v2
T must be normalized and each rank 1 matrix

must be scaled by the appropriate σi to allow the sum to properly reconstruct A. We also need to figure
out which σi is bigger so we can order them properly. In the previous part, we have already done the
calculations for ~v’s part in this story. So what remains is the ~p part. Clearly the norm of the relevant
row is 4

√
2 which the norm of the relevant column is 4. So the singular value in question is 16

√
2.

Using this we can rewrite A as:

=

 ~v
10

10
√

10
[
−1√

10
−2√

10
1√
10

2√
10

0 0
]
+

~p
4

16
√

2
[
0 0 0 0 −4

4
√

2
4

4
√

2

]
.

So, what is bigger 10
√

10 or 16
√

2? The easiest thing to do is just to square each of them and compare
103 = 1000 to 29 = 512.
From this we see that our singular values are σ1 = 10

√
10 and σ2 = 16

√
2 since 10

√
10 > 16

√
2. Thus

~v
10 which corresponds to σ1 is still the first principal component vector and ~p

4 which corresponds to σ2
is the second principal component vector.

(c) (6 pts) In the previous part, you had

A =

−~v −2~v ~v 2~v −4~p 4~p


with ‖~v‖= 10 and ‖~p‖= 4, satisfying ~pT~v = 0.
If we use ~ai to denote the i-th column of A, plot the data points ~ai projected onto the first and
second principal component vectors. The coordinate along the first principal component should be
represented by horizontal axis and the coordinate along the second principal component should be the
vertical axis. Label each point.
Solution:
Once we know what the principal components are, we know that the first four data points are just
multiples of the first principal component and the last two data points are just multiples of the second
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principal component. What multiples? For the first four, the multiples are clearly −10,−20,10,20
since the norm of~v is 10. For the final two, the multiples are clearly −16,+16 since the norm of ~p is
4. Plotting:

~v
10

~p
4

•

•

•• ••

~a6

~a5

~a1~a2 ~a3 ~a4

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32

−24

−20

−16

−12

−8

−4

0

4

8

12

16

20

24
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4. Identifying an Unknown Circuit Component (24 pts)

Suppose we have an unknown circuit component, which we’ll denote as X and represent with the symbol
X

. X could either be a resistor, a capacitor, or an inductor, but we don’t know which one it is, nor
do we know what its component value (that is, its resistance, capacitance, or inductance) could be. If you
needed to identify X , that is figure out what kind of component X is and figure out its value, you would use a
tool called an RLC meter. In this problem, you will examine how an RLC meter can identify unknown
circuit components with the help of transfer functions and the DFT.

In circuit form, an RLC meter looks like this:

+

−
vin(t)

X

R

+

−

vout(t)

RLC meter

Component being
identified

Here, vin(t) = Ain cos(2π f0t +θin) is a known sinusoidal test input of known frequency f0, known amplitude
Ain, and known phase θin; while R is also a known resistance. Under this setup, we know that vout(t) will
also be a sinusoid, which we’ll denote as vout(t) = Aout cos(2π f0t +θout).

When X is connected to the RLC meter, an on-board microcontroller takes samples from vin(t) and vout(t)
and uses these samples to compute ZX | f0 , the impedance of the unknown component at frequency f0. From
the value of ZX | f0 , it can figure out whether X is a resistor, a capacitor, or an inductor, as well as what
resistance, capacitance, or inductance it has.

(a) (4 pts) Find the transfer function H(ω) = Ṽout
Ṽin

when the unknown component is connected to the

RLC meter. Here, Ṽout and Ṽin denote the phasor representations of vout(t) and vin(t), respectively.
Answer in terms of R, the known resistance, and ZX(ω), the unknown impedance.

Solution: With component X in place, the portion of the RLC meter we’ve shown you is a voltage
divider, with impedances R and ZX . With that in mind, the transfer function is

H(ω) =
Ṽout

Ṽin
=

(
R

R+ZX
Ṽin

)
× 1

Ṽin
=

R
R+ZX

. (5)
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(b) (4 pts) Suppose that we know H(ω0), that is the (possibly complex) numerical value of H(ω) at
the angular frequency ω0 = 2π f0. Show how to use the value of H(ω0) to calculate ZX | f0 , the
impedance of the unknown component at the frequency f0. Your result should be an equation for
ZX | f0 in terms of quantities whose values we know.

Solution: From part (a) we have an expression for H(ω) in terms of ZX . If we take this expression
at the specific angular frequency ω0, we get

H(ω0) =
R

R+ZX | f0

. (6)

If we solve this expression for ZX | f0 , we get

ZX | f0 =
R

H(ω0)
−R = R

(
1

H(ω0)
−1
)
. (7)

Since we know the value of R, and we are given H(ω0) for this part, this equation is what we wanted
to find: an equation for ZX | f0 in terms of known quantities.

(c) (6 pts) Suppose that we knew ZX | f0 . Describe how to use ZX | f0 to determine both what kind of com-
ponent X is and the corresponding component value? (HINT: Physical resistances, capacitances,
and inductances are always positive. And 1

j =− j for j =
√
−1.)

Solution: To figure out if X is a resistor, capacitor, or inductor, it would suffice to look at the phase
of ZX | f0 . If the phase were positive, then X would have to be an inductor; if it were negative, X would
have to be a capacitor; and if it were zero, then X would have to be a resistor. Once we’ve decided
what kind of component X is this way, we can use the magnitude of ZX | f0 to determine the value:

CX =
1

2π f0|ZX | f0 |
, if X is a capacitor (8)

LX =
|ZX | f0 |
2π f0

, if X is an inductor (9)

RX = |ZX | f0 |, if X is a resistor (10)
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(d) (10 pts) Now we just need to calculate H(ω0) using the samples of vin(t) = Ain cos(2π f0t +θin) and
vout(t)=Aout cos(2π f0t +θout) that the on-board microcontroller collected. Suppose we have collected
N samples from vin(t) and vout(t) with sampling interval ∆ = 1

f0N , and we have arranged these samples
into N-dimensional vectors~vin and~vout . These sample vectors have the form

~vin =


Ain cos(θin)

Ain cos
(
2π f0(∆)+θin

)
Ain cos

(
2π f0(2∆)+θin

)
...

Ain cos
(
2π f0((N−1)∆)+θin

)

 , ~vout =


Aout cos(θout)

Aout cos
(
2π f0(∆)+θout

)
Aout cos

(
2π f0(2∆)+θout

)
...

Aout cos
(
2π f0((N−1)∆)+θout

)

 . (11)

Since Ṽout =
1
2 Aoute jθout and Ṽin = 1

2 Aine jθin , these samples contain information about the currently
unknown phasors Ṽout and Ṽin at the frequency f0. These phasors need to be recovered from the
samples using the DFT. Express the DFTs ~Vin = FN~vin and ~Vout = FN~vout symbolically in terms of
the phasors Ṽout and Ṽin, the standard basis vectors~ei, and the number of samples N.

Here, the DFT transformation matrix FN =


1 1 1 1 · · · 1
1 e− j 2π

N 1 e− j 2π

N 2 e− j 2π

N 3 · · · e− j 2π

N (N−1)1

1 e− j 2π

N 2 e− j 2π

N 4 e− j 2π

N 6 · · · e− j 2π

N (N−1)2

...
...

...
...

. . .
...

1 e− j 2π

N (N−1) e− j 2π

N 2(N−1) e− j 2π

N 3(N−1) · · · e− j 2π

N (N−1)(N−1)


and the inverse of this matrix is just 1

N F∗N .

Solution: We’ll show in great detail how to compute ~Vout here.
The exact same steps are applied to calculate ~Vin: basically, you can take all of the steps you’re about
to see, and just replace “out” with “in”.
We’ll start by simplifying the sample vectors a bit. If we apply the value ∆ = 1/( f0N) inside of the
cosine terms, we have

~vout =



Aout cos(θout)

Aout cos
(

2π

N 1+θout

)
Aout cos

(
2π

N 2+θout

)
...

Aout cos
(

2π

N (N−1)+θout

)


. (12)

Next, Euler’s formula gives us cos(x) = 1
2(e

jx + e− jx). If we apply this to all of the cosines in the
sample vector, we get

~vout =



Aout
2

(
e jθout + e− jθout

)
Aout

2

(
e j( 2π

N 1+θout) + e− j( 2π

N 2+θout)
)

Aout
2

(
e j( 2π

N 1+θout) + e− j( 2π

N 2+θout)
)

...
Aout

2

(
e j( 2π

N (N−1)+θout) + e− j( 2π

N (N−1)+θout)
)


. (13)
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Now, if we bring the common constants of each term outside of the vector, we get

~vout =
Aout

2
e jθout



1
e j( 2π

N 1)

e j( 2π

N 2)

...
e j( 2π

N (N−1))


+

Aout

2
e− jθout



1
e− j( 2π

N 1)

e− j( 2π

N 2)

...
e− j( 2π

N (N−1))


. (14)

We can recognize that the constants we just brought outside, namely 1
2 Aoute jθout and 1

2 Aoute− jθout , are

the phasor Ṽout and its complex conjugate Ṽ out . Furthermore, we can recognize that the vectors are
related to the columns of the DFT analysis matrix: spefically, we have

~vout = Ṽout~u1 +Ṽ out~uN−1, (15)

where ~ui denotes the ith column of the DFT analysis matrix FN . With the sample vector written in this
way, it’s possible to compute its DFT by hand:

~Vout = FN~vout =


~u>0
~u>1

...
~u>N−1


(

Ṽout~u1 +Ṽ out~uN−1

)
= Ṽout


~u>0~u1

~u>1~u1
...

~u>N−1~u1

+Ṽ out


~u>0~uN−1

~u>1~uN−1
...

~u>N−1~uN−1

 (16)

= Ṽout


0
N
0
...
0

+Ṽ out


0
0
...
0
N

= NṼout~e1 +NṼ out~eN−1. (17)

By an analogous approach, we can do the same thing to the other sample vector~vin. To summarize, we
can express the DFTs of the two sample vectors as follows:

~Vout = NṼout~e1 +NṼ out~eN−1 (18)

~Vin = NṼin~e1 +NṼ in~eN−1. (19)
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5. DFT and Circuit Filters (30 pts)

You have been introduced to low-pass and high-pass filter circuits that pass some range of input signal
frequencies while attenuating other ranges of signal frequency. You have also seen how we can break signals
down and view the frequency components of sampled signals using the DFT. In this problem, we will see
how we can combine these two bases of knowledge. Throughout this problem, if we have an N-dimensional
vector~x, its DFT coefficients are given by the vector ~X = FN~x where the DFT transformation matrix is

FN =


1 1 1 1 · · · 1
1 e− j 2π

N 1 e− j 2π

N 2 e− j 2π

N 3 · · · e− j 2π

N (N−1)1

1 e− j 2π

N 2 e− j 2π

N 4 e− j 2π

N 6 · · · e− j 2π

N (N−1)2

...
...

...
...

. . .
...

1 e− j 2π

N (N−1) e− j 2π

N 2(N−1) e− j 2π

N 3(N−1) · · · e− j 2π

N (N−1)(N−1)


and the inverse is F−1

N = 1
N F∗N .

(a) (6 pts) If you sample every ∆ seconds and you take N samples, the 0th DFT coefficient ~X [0] corresponds
to the DC (or constant) term. The 1st DFT coefficient ~X [1] corresponds to the fundamental frequency
f0 =

1
N∆

.

Say you have a signal vin(t) = cos
(

2π

3 t
)
+ cos

(
2π

9 t
)

. You take N = 9 samples of the function every
∆ = 1 second; i.e. at t = {0,1,2, . . . ,8}, forming a 9 element vector of samples~vin. What are the DFT
coefficients ~Vin of the sampled signal~vin?
Solution:
We can rewrite

vin(t) =
1
2

(
e− j 2π

3 t + e j 2π

3 t + e− j 2π

9 t + e j 2π

9 t
)
.

If we define the kth row of the DFT matrix F9 (with N = 9) to be

~uT
k =

[
e− j 2π

9 (k)(0) e− j 2π

9 (k)(1) · · · e− j 2π

9 (k)(8)
]
,

we can write the sampled version of vin(t) in vector notation as the column vector

~vin =
1
2

(
~u3 +~u3 +~u1 +~u1

)
.

One property of the rows of the DFT matrix is that~uk =~uN−k, where N is the number of samples. Thus
we can rewrite

~vin =
1
2
(~u3 +~u6 +~u1 +~u8) .

Since the rows of the DFT matrix are also orthogonal and have norm ‖~uk‖ =
√

N, the inner product
~u∗k~uk = N and~u∗i, i 6=k~uk = 0. Therefore when we calculate
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~Vin = F9~vin =
1
2



~uT
0

~uT
1

~uT
2

~uT
3

~uT
4

~uT
5

~uT
6

~uT
7

~uT
8


(~u3 +~u6 +~u1 +~u8) =

1
2



~u∗0
~u∗8
~u∗7
~u∗6
~u∗5
~u∗4
~u∗3
~u∗2
~u∗1


(~u3 +~u6 +~u1 +~u8) =

1
2



0
9
0
9
0
0
9
0
9


The coefficients are given by

Vout [k] =

{
9
2 k = 1,3,6,8
0 k = 0,2,4,5,7

(20)

and can be plotted

−1 1 2 3 4 5 6 7 8 9

4.5

k

|Vout [k]|

Frequency Domain Magnitude

−1 1 2 3 4 5 6 7 8 9

−3

−2

−1

1

2

3

k

∠Vout [k]

Frequency Domain Phase

(b) (12 pts) You are given the circuit below.

+

−
vin(t)

200Ω i(t)

100H

+

−

vout(t)

Figure 1: Filter circuit

Is this a high-pass or low-pass filter? What is its cutoff angular frequency, ωc? Sketch the
piecewise-linear approximations of the magnitude and phase Bode plots of the transfer function
H(ω) = Ṽout(ω)

Ṽin(ω)
below.
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Solution: Since the inductor will behave as a closed circuit for low-frequency and DC signals and as
an open circuit for high-frequency signals, this is a high-pass filter.
From KVL, we know:

Ṽin = ĨR+ Ĩ jωL

Ṽout = Ĩ jωL

H(ω) =
Ṽout

Ṽin
=

Ĩ jωL

ĨR+ Ĩ jωL
=

jωL
R+ jωL

=
jω/(R

L )

1+ jω/(R
L )

The cut-off frequency of the filter is ωc =
R
L = 2 rad/sec = 2×100 rad/sec.

We can draw the straight-line Bode plots by considering the behavior of the circuit for ω → 0 and
ω → ∞. For ω → 0, H(ω → 0)≈ j0

1 , giving |H(ω → 0)| ≈ 0 and ∠H(ω → 0)≈ π

2 rad. For ω → ∞,
H(ω → ∞)≈ j∞

j∞ ≈
∞

∞
, giving |H(ω → ∞)| ≈ 1 and ∠H(ω → ∞)≈ 0 rad.

The magnitude plot’s "corner" occurs at ωc. The angle plot’s two "corners" occur at 0.1ωc and 10ωc.
The plots are shown below.

10−3 10−2 10−1 100 101 102 103 10410−3

10−2

10−1

100

101

102

103

ω

|H
(ω

)|

Log-log plot of transfer function magnitude

10−3 10−2 10−1 100 101 102 103 104
−π

−π/2

0

π/2

π

ω

∠
H
(ω

)

Semi-log plot of transfer function phase

(c) (12 pts) The signal vin(t) = cos
(

2π

3 t
)
+ cos

(
2π

9 t
)

is input into the circuit in Figure 1, giving out-
put signal vout(t). You take N = 9 samples of the function vout(t) every ∆ = 1 seconds; i.e. at
t = {0,1,2, . . . ,8}, forming a 9 element vector of samples ~vout . We have given you several possible
plots below that may represent the DFT coefficients ~Vout of the sampled signal ~vout . For each of the
four candidate solutions, circle the statement which is true. Provide a one-sentence explanation
for your choice in the box provided. Reminder: ω = 2π f .
(HINT: Exactly one of the candidate solutions below is correct. Consequently, no precise numerical
calculations are required to get full credit.)
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−1 1 2 3 4 5 6 7 8 9

−1

1

2

3

4

5

k

|Vout [k]|

Frequency Domain Magnitude

−1 1 2 3 4 5 6 7 8 9

−π

−π/2

π/2

π

k

∠Vout [k]

Frequency Domain Phase

Solution: Incorrect. This is a low-pass filtered signal (not a high-pass filtered signal, as this circuit
would produce).

−1 1 2 3 4 5 6 7 8 9

−1

1

2

3

4

5

k

|Vout [k]|

Frequency Domain Magnitude

−1 1 2 3 4 5 6 7 8 9

−π

−π/2

π/2

π

k

∠Vout [k]

Frequency Domain Phase

Solution: Correct. This is a high-pass filtered signal with the correct nonzero frequency components
and correct phase. The signal is also conjugate-symmetric, as we would expect from a real signal.
Notice that here, we have phases that are not zero in the plot for magnitudes that are zero. There is
nothing wrong with that since a zero magnitude corresponds to zero, no matter what the phase is.

−1 1 2 3 4 5 6 7 8 9
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1
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|Vout [k]|

Frequency Domain Magnitude

−1 1 2 3 4 5 6 7 8 9

−π

−π/2

π/2

π

k

∠Vout [k]

Frequency Domain Phase

Solution: Incorrect. Frequency components that were zero in the input will not increase in magnitude
by being filtered.
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k

∠Vout [k]

Frequency Domain Phase

Solution: Incorrect. The high-pass filtered magnitude is correct, but there is no phase change from
the input, which is incorrect.
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6. Lagrange Polynomials (24 pts)

In this question, we consider the interpolation of a function f (x), at N points x0, . . . ,xN−1. The samples are
collected in vector ~fN = [ f (x0), f (x1), . . . , f (xN−1)]

>. The k-th component of ~fN is denoted by fN [k].

Figure 2: Plot of an example function f (x)

(a) (2 pts) For function f (x) given in Figure 2, give the vector ~f8 of samples for xk =−2+ k
2 , k= 0, . . . , 7.

Solution:
~f8 =

(
18 −15 −4 −29 −10 −27 0 −9

)>
We just read off the relevant 8 values from the plot.

(b) (6 pts) Recall the family of Lagrange polynomials {Li} of degree at most N−1 from discussion and
homework. For all i = 0, . . . ,N−1, the polynomial Li is of degree at most N−1 and is given by:

Li(x) =
N−1

∏
j=0
j 6=i

(
x− x j

xi− x j

)
(21)

Explicitly write out the vector ~̀i = [Li(x0),Li(x1), . . . ,Li(xN−1)]
> of samples for the i-th Lagrange

polynomial Li sampled at x0,x1, . . . ,xi, . . . ,xN−1, and argue why this family of vectors {~̀i} is or-
thonormal.
Solution: For i ∈ 0, . . . , N− 1, by definition of Li, we can see that Li(x j) = 0 for j 6= i since the
product will have a (x j− x j) term in the numerator. All that remains is to understand what happens

at Li(xi) = ∏
N−1
j=0
j 6=i

(
xi−x j
xi−x j

)
= 1 since every term in the product is 1. Putting this together, we have that

~̀i =~ei where ~ei is the standard i-th basis element with a 1 in the i-th position and zeros everywhere
else.
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The standard basis family is orthonormal since putting the {~̀i} together into a matrix just gives the
identity matrix, which is an orthonormal matrix.
Explicitly, ~̀T

i
~̀ j = 0 if i 6= j since they have nonzero elements in different positions. ~̀T

i
~̀i = 1 since

‖~ei‖= 1.

(c) (4 pts) For a sample vector ~fN , the polynomial H that interpolates it can be written H(x)=∑
N−1
i=0 b[i]Li(x).

Write b[i] in terms of ~fN , using the special properties of the Lagrange polynomials that you found in
the previous part.
(Hint: Interpolation means that H(x j) = fN [ j] for j = 0, . . . ,N−1.)

Solution:
The answer here can be seen immediately to be For i ∈ 0, . . . , N−1

bi = ~fN [i] (22)

But working this out, we see that we get a system of equations from ~fN [ j] = H(x j) = ∑
N−1
i=0 b[i]Li(x j).

But every Li(x j) term is zero except for Li(xi) and so this interpolation equation becomes ~fN [ j] =
b jL j(x j) = b j, giving us the answer above.

(d) (8 pts) The same polynomial H can also be written as follows: For all x, H(x) = ∑
N−1
j=0 a[ j]x j. For

j = 0, . . . ,N− 1, write a[ j] in terms of ~fN using the matrix form ~a = P~fN . What is the matrix P
here?
It is fine to leave your result for P in terms of other matrices and matrix operations, as long as it is
explicit and unambiguous.

Solution: There are lots of ways of getting this. The direct path is just to write out the interpolation
equations to get ~fN [i] = H(xi) = ∑

N−1
j=0 a[ j]x j

i which can be expressed in matrix form as ~fN =V~a where

V =


1 x0 x2

0 · · · xN−1
0

1 x1 x2
1 · · · xN−1

1
...

...
...

. . .
...

1 xN−1 x2
N−1 · · · xN−1

N−1

 is the Vandermonde matrix. (Each row corresponds to one of the

interpolation equations.) Then,~a =V−1~fN and so P =V−1.

(e) (4 pts) If the samples are taken at xk = ωk
N = e j 2π

N k, do you recognize the P matrix that gives us the
coefficients of the interpolating polynomial? What is it?
Solution: With samples taken at ωk

N for k = 0, . . . ,N−1, the Vandermonde matrix V would be:

V =


1 1 · · · 1
1 ωN · · · ω

N−1
N

1 ω2
N · · · ω

2(N−1)
N

...
...

. . .
...

1 ω
N−1
N · · · ω

(N−1)(N−1)
N

 (23)

This is because ω0
N = 1.

Then from the previous question, P = V−1. We recognize V as F∗N . But remember that NF−1
N = F∗N ,

so P = 1
N FN . It is the standard (unnormalized) DFT matrix normalized by dividing through by N.

This normalization makes sense if you think about it. This says that the estimate for the constant term
should be the average of samples instead of just their sum.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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7. Observability Lost (10 pts)

In this problem, we will be considering discrete-time systems with outputs, that is systems of the form

~xd(t +1) = A~xd(t)+B~ud(t) (24)

yd(t) =C~xd(t). (25)

As you know, the overwhelming majority of such systems are observable. Nevertheless, there are some
instances where systems that are not observable do arise.

Suppose that at least one of the eigenvectors of A is in the nullspace of C. That is, there exists at least
one vector ~v such that A~v = λ~v and C~v =~0. Prove that, under these conditions, the system cannot be
observable.

Here, feel free to assume that C = cT is a row vector and that yd(t) is a scalar valued function of time.

Solution: Since this is a proof-type question, there are multiple distinct approaches to the problem that are
valid. For the solution, we will show three such distinct approaches.

• Explicitly show that the observability matrix is rank-deficient by demonstrating that its nullspace con-
tains a nonzero vector.
Recall that a system with (A,C) is not observable if the matrix

O =


C

CA
...

CAn−1

 (26)

does not have full column rank, which we could prove is the case if we could find a vector~v such that
O~v =~0.
Since we know that at least one of the eigenvectors of A is in the nullspace of C, we know that there is
a vector~v (the eigenvector in question) such that A~v = λ~v and C~v =~0. This turns out to be exactly the
vector we need to prove that O doesn’t have full column rank, since

O~v =


C

CA
...

CAn−1

~v =


C~v
CA~v

...
CAn−1~v

=


C~v

λC~v
...

λ n−1C~v

=


~0
~0
...
~0

=~0. (27)

• Show that the observability matrix is rank-deficient by inspection in the eigenvector basis.
Suppose that A has a n distinct eigenvectors ~v1, . . . ,~vn, so that the eigenvectors of A for a basis Rn.
Then we can diagonalize A, that is write A = V ΛV−1, where V is the matrix of eigenvectors, and Λ

is the diagonal matrix containing the corresponding eigenvalues. Also, for convenience, let the given
eigenvector (the one we know is in the nullspace of C) be be~v1, since we can organize the eigenvectors
however we please.
Now, let us perform a change of coordinates by expressing A and C in the coordinates of the eigen-
vector basis. Let Ã and C̃ denote the representations of A and C matrices, respectively, under the new
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coordinates. Of course, we’ll have Ã = V−1AV = Λ. Similarly, in the new coordinates the C matrix
becomes C̃ =CV . We know that the first element of C̃ is zero, since

C̃ =CV =C
[
~v1 ~v2 . . . ~vn

]
=
[
C~v1 C~v2 . . . C~vn

]
=
[
~0 ~q2 . . . C~qn

]
where the qi vectors are arbitrary vectors whose exact value is not important for this argument.
Since Ã is diagonal in this bases, we also have

C̃Ãk = C̃Λ
k =

[
~0 ~q2 . . . C~qn

]


λ k
1

λ k
2

. . .
λ k

n

=
[
~0 λ k

2~q2 . . . λ k
n~qn

]
.

Using this expression, we can write the observability matrix in the eigenvector basis as

Õ =


C̃

C̃Ã
...

C̃Ãn−1

=


~0 ~q2 . . . ~qn
~0 λ2~q2 . . . λn~qn
...

...
...

...
~0 λ

n−1
2 ~q2 . . . λ n−1

n ~qn

 .

In the eigenvector coordinates, the observability matrix Õ does not have full column rank by inspec-
tion, since one of its columns is all zeros. This implies that the observability matrix in the original
coordinates also does not have full column rank, meaning that the system is not observable.
While this is a valid argument, it assumes that the matrix A is diagonalizable, which was not a given
assumption in the problem statement.

• Demonstrate that several initial conditions lead to the same sequence of outputs, meaning that observ-
ing a specific y(t) does not have “enough information” to conclude a unique initial condition.
This argument circumvents the usual rank test for observability, and shows directly that the definition
of observability can be violated under the conditions given in the problem.
Recall that for a system to be observable, it must be true that a given sequence of inputs ~u(t) and
outputs ~y(t) must uniquely specify an initial condition ~x0. In other words, if there are multiple initial
conditions that lead to the same outputs~y(t) for a fixed input~u(t), then the system is not observable.
Suppose that we choose~u(t) =~0. Then, the system output will be

~y(t) =CAt~x0.

Now, let~x0 = α~v, where α ∈ R is an arbitrary scaling factor. No matter what value we let α take, the
output will be

~y(t) =CAt(α~v) = αC(At~v) = αλ
tC~v =~0.

This means that an infinite number of initial conditions all lead to the output ~y(t) =~0 for the fixed
input~u(t) = 0. Therefore, the system is not observable.
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8. Real Eigenvalues (15 pts)

Suppose S is a complex matrix that can be written in the form S = B∗B, for some other complex matrix B.
Show that the eigenvalues of S are all real and non-negative.

(Hint: Remember that~v∗~v= ‖~v‖2≥ 0 for all~v and that the norm ‖·‖ is always real valued, even for complex
vectors.)

Solution: Consider an eigenvalue λ of S, with eigenvector ~p.

S~p = λ~p

=⇒ B∗B~p = λ~p

If we pre-multiply both sides of the above equation by ~p∗, then since ~p∗~p = ||~p||2, we get:

~p∗B∗B~p = λ ||~p||2

Now, ~p∗B∗ = (B~p)∗,

=⇒ (B~p)∗(B~p) = λ ||~p||2

Further, (B~p)∗(B~p) = ||B~p||2,

=⇒ ||B~p||2 = λ ||~p||2

∴ λ =
||B~p||2

||~p||2

Now, since the right hand side of this equation is always real and non-negative, so is λ (where λ could be
any eigenvalue of S).
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9. Weighted minimum norm (25 pts)

You saw in lecture in the context of open-loop control, how we consider problems in which we have a wide
matrix A and solve A~x =~y such that~x is a minimum norm solution:

‖~x‖ ≤‖~z‖

for all~z such that A~z =~y. You then saw this idea again in the homeworks in the context of MIMO commu-
nication and also worked out how to compute the appropriate “pseudo-inverse” for such wide matrices.

But what if you weren’t interested in just the norm of ~x? What if you instead cared about minimizing the
norm of a linear transformation C~x? For example, suppose that controls were more or less costly at different
times.

The problem can be written out mathematically as:

Given a wide matrix A and a matrix C find~x such that A~x =~y and‖C~x‖ ≤‖C~z‖ for all~z such that A~z =~y.

(a) (10 pts) Let’s start with the case of C being invertible. Solve this problem (i.e. find the optimal ~x
with the minimum ‖C~x‖) for the specific matrices and~y given below. Show your work.
It is fine to leave your answer as an explicit product of matrices and vectors.
(HINT: You might want to change variables to solve this problem. Don’t forget to change back!)

A =

[
1 0 0
0 1 1

]
, C =

0 0 2
0 1 0
2 0 0

 , ~y =

[
2
1

]

For convenience, C−1 =

 0 0 0.5
0 1 0

0.5 0 0

 and you are also given some SVDs on the following page.

A = (UA =

[
0 1
1 0

]
)(ΣA =

[√
2 0 0

0 1 0

]
)(V T

A =

0 1√
2

1√
2

1 0 0
0 − 1√

2
1√
2

) (28)

C = (UC =

−1 0 0
0 0 1
0 −1 0

)(ΣC =

2 0 0
0 2 0
0 0 1

)(V T
C =

 0 0 −1
−1 0 0
0 1 0

) (29)

AC = (UAC =

[
0 1
1 0

]
(ΣAC =

[√
5 0 0

0 2 0

]
)(V T

AC =


2√
5

1√
5

0
0 0 1
− 1√

5
2√
5

0

) (30)

AC−1 = (UAC−1 =

[
0 1
1 0

]
)(ΣAC−1 =

[√
5

2 0 0
0 0.5 0

]
)(V T

AC−1 =


1√
5

2√
5

0
0 0 1
− 2√

5
1√
5

0

) (31)

Solution: In homework and lecture, you solved a similar problem A~x =~y such that~x is a minimum
norm solution: ‖~x‖ ≤‖~z‖ for any~z that satisfies A~z =~y.
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When you solved this problem, you computed the appropriate psuedoinverse to solve for~x. This was
the Moore Penrose psuedo inverse — sometimes depicted as A†.

Seeing that we already know how to solve such problems, we can first try to reformulate the current
problem: A~x =~y such that ‖C~x‖ ≤‖C~z‖, into the problem that we already know how to solve. To do
this we can do a change of variables (as the hint told us to do). Using the change of variables x̃ =C~x
and ~p =C~z we get the new constraint: ‖x̃‖ ≤‖~p‖ for any vector ~p that satisfies something. What is this
something?
Originally, we had A~x =~y and so in the changed variables, we have~x =C−1x̃ and so the constraint that
needs to be satisfied is AC−1x̃ =~y.
So our new problem is to solve AC−1x̃ =~y such that x̃ is a minimum norm solution: ‖x̃‖ ≤‖~p‖ for all
~p that satisfy AC−1~p =~y.

This is exactly like the minimum norm question on the homework except now the matrix multiplying
the vector is AC−1.
To solve this we proceed exactly like we did in the homework and find the Moore Penrose psuedo
inverse of AC−1:

x̃ =Vcompact,AC−1Σ
−1
compact,AC−1UT

AC−1~y (32)

where here, we need to be using the compact form of the SVD vis-a-vis AC−1. Why compact? We
need the Σ matrix to be square so we can invert it. This just means that we drop the parts of V T that
are just a basis for the nullspace of AC−1 — the last row. To be explicit, the compact SVD is:

AC−1 = (UAC−1 =

[
0 1
1 0

]
)(Σcompact,AC−1 =

[√
5

2 0
0 0.5

]
)(V T

compact,AC−1 =

[
1√
5

2√
5

0
0 0 1

]
). (33)

Calculating this out, we get that x̃ =

2
5
4
5
4

.

However since the original question was to find~x we have one more substitution to arrive at our final
answer:

~x =C−1x̃ =C−1Vcompact,AC−1Σ
−1
compact,AC−1UT

AC−1~y (34)

=

 2
0.8
0.2

 . (35)

This could also have been solved (for full credit) by brute-force using calculus in this particular case
since the first coordinate is forced to be 2 in order to get the desired first coordinate of~y. So we have
only two variables left, with one linear constraint, which means that we could reduce the problem to
one of minization of a quadratic function in one variable. However, this brute force calculus-based
approach doesn’t help us deal with the next part of this problem.

(b) (15 pts) What if C were a tall matrix with linearly independent columns? Explicitly describe how
you would solve this problem in that case, step by step.
For convenience, we have copied the problem statement again here: Given a wide matrix A and a
matrix C find~x such that A~x =~y and‖C~x‖ ≤‖C~z‖ for all~z such that A~z =~y.
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Here, you can assume that the wide matrix A has linearly-independent rows but is otherwise generic.
Similarly,~y is a generic vector.
(HINT: Does C have a nullspace? Does CTC have a nullspace? Does the SVD of C suggest any
(invertible) change of coordinates from~x to~̃x such that ‖~̃x‖= ‖C~x‖?)

Solution:
Now we have the condition where C is a tall matrix with linearly independent columns. This means
that C itself is no longer invertible and we cannot just repeat the procedure done in the previous part of
the problem. We don’t have access to a C−1 and so need to stop and think. What we want is a square
matrix C̃ that is invertible, and gives us the same norm to minimize. That is, we need ‖C̃~x‖= ‖C~x‖.
Writing this out, we see that since ‖C~x‖2 =~xTCTC~x, what we want is that CTC = C̃TC̃. Following the
hint and using the compact-form SVD of C =Ucompact,CΣcompact,CV T

C in which Σcompact,C is square. So,
CTC = VCΣ2

compact,CV T
C since Ucompact,C has orthonormal columns. This immediately suggests using

C̃ = Σcompact,CV T
C . Clearly CTC = C̃TC̃ by construction.

The only question now is whether C̃ is invertible. Because C has linearly independent columns, it
cannot have a nullspace. But we know from lecture that if CTC~v =~0, that indeed C~v =~0 and so CTC
also does not have a nullspace. So CTC is invertible, and since VCΣ2

compact,CV T
C is the diagonalization

of CTC by the basis VC of eigenvectors, Σcompact,C is also invertible. The product of invertible matrices
is invertible, and so indeed C̃ is invertible.
At this point, we have reduced this problem to what we did in the previous part. We just want to
minimize ‖C̃~x‖ over all ~x that satisfy A~x = ~y. This is equivalent to minimizing ‖x̃‖ over all x̃ that
satisfy AC̃−1x̃ =~y.
So in terms of an explicit procedure:

i. Compute the compact SVD of C =Ucompact,CΣcompact,CV T
C .

ii. Compute the matrix C̃ = Σcompact,CV T
C .

iii. Compute the compact form SVD of the matrix AC̃−1 =UΣV T .
iv. Compute the solution~x = C̃−1V Σ−1UT~y.

This comes from changing variables to~x = C̃−1x̃ and finding the minimum norm x̃ that works.
An alternative solution (that amounts to the same thing, effectively) exists where we use the pseudo-
inverse of C (i.e. the least-squares solution) and build our solution around that instead. Arguing why
that works is a bit more involved.
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page.]
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10. Circuit Discretization (18 pts)

Let’s consider the following RLC circuit that you have encountered before.

−
+ u(t)

C

+ −
VC

IL
R

+ −
VR

L

+ −VL

(a) (6 pts) Find the matrix differential equation for the above system using the state-vector~x =

[
VC(t)
IL(t)

]
as

d
dt
~x(t) = A~x(t)+~bu(t).

What is A? What is~b?
Your answers should be in terms of R,L,C.

Solution: Writing the circuit equations, we get:

u(t) =VC +VR +VL

VL = L
d
dt

IL

VR = ILR

IL =C
d
dt

VC

Substituting the defintions, we get:

u(t) =VC + ILR+L
d
dt

IL

⇒ d
dt

IL =−1
L

VC−
R
L

IL +
1
L

u(t)

d
dt

VC =
1
C

IL

Hence, we can write the matrix differential equation as

d
dt
~x(t) =

[
0 1

C
− 1

L −R
L

]
~x(t)+

[
0
1
L

]
u(t)

Final Exam ©UCB EECS 16B, Spring 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 26



(b) (12 pts) Now, assume for some specific component values we get the following differential equation:

d
dt
~x(t) =

[
0 1
−2 −3

]
~x(t)+

[
0
2

]
u(t). (36)

Unfortunately, we are unable to measure our state vector continuously. Suppose that we sample the
system with some sampling interval ∆. Let us discretize the above system. Assume that we use
piecewise constant voltage inputs u(t) = ud(k) for t ∈ [k∆,(k+1)∆).
Recall from the homework that for a hypothetical scalar differential equation d

dt x(t) = λx(t)+ bu(t),
we can discretize it as long as λ 6= 0 as follows:

xd(k+1) = eλ∆xd(k)+
eλ∆−1

λ
bud(k). (37)

Here xd(k) = x(k∆).
Using equation (37), calculate the discrete-time system for Equation (36)’s continuous-time vector
system in the form:

~xd(k+1) = Ad~xd(k)+~bdud(k).

More concretely, find Ad and~bd .
You do not need to multiply out any matrices. It is fine if you give your answers as explicit
products of matrices/vectors/etc.

Hint: We have provided information regarding the matrix A =

[
0 1
−2 −3

]
in (36) for your conve-

nience (not all of this is needed) on the opposite page.

i. The determinant of A: det(A) = 2.
ii. The trace of A: tr(A) =−3.

iii. A−1 = 1
2

[
−3 −1
2 0

]
.

iv. We can diagonalize the matrix as A =V ΛV−1, where, Λ is a diagonal matrix with the eigenvalues
in its diagonal and the columns of V are the eigenvectors of the corresponding eigenvalues

v. The eigenvalues/eigenvectors for A are:

For λ1 =−2 : ~v1 =

[
1
−2

]
For λ2 =−1 : ~v2 =

[
−1
1

]
.

vi. For V = [~v1,~v2], we have V−1 =

[
−1 −1
−2 −1

]
.

Solution:
We want to change coordinates to the eigenbasis, so that the system of differential equations looks like
scalar equations. Having done so, we can discretize the problem, and then change coordinates back.
We can write A =V ΛV−1, hence substituting this into our differential equation, we get:

d
dt
~x =V ΛV−1~x+~bu(t)

d
dt

V−1~x = ΛV−1~x+V−1~bu(t)
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Writing,~z =V−1~x, we can diagonlize the system. Hence, we can discretize the system in this diagonal
space, giving us

~zd(k+1) = eΛ∆~zd(k)+Λ∆V−1~bu(t).

Here, ~zd(k) =~z(k∆) and Λ∆ = diag( eλ j∆−1
λ j

) – for the j-th entry of the diagonal. Fortunately, in our
case, all the eigenvalues λ j 6= 0 and so this applies. This is just applying the scalar solution we were
given in the problem to each of the components of~z in the discretization.
Hence, substituting back for~xd(k) gives

V−1xd(k+1) = eΛ∆V−1~xd(k)+Λ∆V−1~bu(t)

xd(k+1) =VeΛ∆V−1~xd(k)+V Λ∆V−1~bu(t).

This gives:

Ad =VeΛ∆V−1

~bd =V Λ∆V−1~b

Hence we have,

Ad =

[
1 −1
−2 1

][
e−2∆ 0

0 e−∆

][
−1 −1
−2 −1

]

~bd =

[
1 −1
−2 1

][
− e−2∆−1

2 0
0 −(e−∆−1)

][
−1 −1
−2 −1

][
0
2

]

Multiplying out the matrices, we get:

Ad =

[
2e−∆− e−2∆ e−∆− e−2∆

2e−2∆−2e−∆ 2e−2∆− e−∆

]

~bd =

[
e−2∆−2e−∆ +1

2e−∆−2e−2∆

]

Note: You were not asked to multiply out the matrices in the exam.
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11. Discretization With Piecewise Linear Controls (18 pts)

In most of this course, when discretizing a continuous-time control system, we forced the input to be con-
stant between time steps, i.e., between some k∆ and (k+1)∆, (this is alternatively called a zero-order hold)
and then changed it instantly and discontinuously to its new value. However, applying such a discontin-
uous control might be physically impossible for a real-world system. Suppose we decided instead to use
something piecewise-linear (see Figure 3) for our continuous-time input.

Figure 3: Piecewise constant vs. piecewise linear control inputs and a pure affine control input.

Consider a scalar differential-equation with scalar input u(t):

d
dt

x(t) = λx(t)+bu(t) (38)

with an initial condition x(t0). If we use a pure affine input (see the third panel in the figure above) for u(t),
we get the following continuous-time scalar differential equation:

d
dt

x(t) = λx(t)+b
(
m(t− t0)+u0

)
(39)

where m =
(

u1−u0
t1−t0

)
is the slope of the input u(t) and u0 is where the input u(t) starts at time t0, with u1

being where the input u(t) ends at time t1 > t0. Assuming λ 6= 0, solving this differential equation (39) for
an arbitrary initial condition x(t0), we get the following solution for all t0 ≤ t ≤ t1:

x(t) = x(t0)eλ (t−t0)− b
λ

m(t− t0)+
b
λ

(
m
λ
+u0

)
(eλ (t−t0)−1). (40)

The goal in this problem is to extend (40) to let us discretize the continuous-time differential equation (38)
under piecewise-linear inputs. The twist comes from the fact that each linear segment is defined by two
numbers — “slope” and “intercept.”

(a) (6 pts) The first step in discretizing Equation (38) is to consider each discrete time step (between

t = k∆ and t = (k+1)∆) as virtually giving us not one, but two discrete-time inputs

[
sd(k)
md(k)

]
. Namely:

sd(k) = u(k∆), the “intercept” where the input u(t) starts for this interval and md(k) =
u((k+1)∆)−u(k∆)

∆

as the “slope” of the u(t) input in the interval between t = k∆ and t = (k+1)∆.
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We can write the behavior of the discrete-time state xd(k) = x(k∆) as obeying a scalar discrete-time
controlled recurrence relation:

xd(k+1) = λdxd(k)+bd,mmd(k)+bd,ssd(k). (41)

What are λd , bd,m, bd,s in terms of the given λ ,∆,b?
(Hint: use Equation (40) as appropriate.)

Solution: Since we are trying to discretize this system with a linearly interpolated input, we only care
about the values of x at every ∆ interval of time. Similar to the case of piecewise constant interpolation
seen in HW8, the value at the previous time-step acts as the inital condition for the differential equation
at the current time step. Hence, we have t0 = k∆ and t = (k + 1)∆. Furthermore, we have u1 =
u((k+1)∆) and u0 = u(k∆).
Hence we have ∆ = t− t0. Appropriately substituting the variables and grouping together terms, we
get

xd(k+1) = eλ∆xd(k)+
(

b
λ 2 (e

λ∆−1)− b∆

λ

)
md(k)+

b
λ
(eλ∆−1)sd(k).

Hence, we can see that

λd = eλ∆.

bd,m =

(
b

λ 2 (e
λ∆−1)− b∆

λ

)
.

bd,s =
b
λ
(eλ∆−1).

(b) (4 pts) We want to understand how this system behaves in discrete-time as a function of the sequence
of endpoints ud(k) = u((k+1)∆) of the piecewise constant input u(t).
In reality, both the md(k) input and the sd(k) input depend on ud(k) and ud(k−1). Find bd,1 and bd,2
(in terms of the ∆,λd ,bd,m,bd,s from above) so that Equation (41) can be rewritten as:

xd(k+1) = λdxd(k)+bd,1ud(k)+bd,2ud(k−1). (42)

(HINT: remember how md(k) was defined. And that ud(k) is the u(t) at the end of the interval and
ud(k−1) is the u(t) at the beginning of the interval from [k∆,(k+1)∆].)

Solution: This question is just asking to rewrite the discrete time equation in terms of ud(k) and
ud(k−1). Substituting for md(k) =

ud(k)−ud(k−1)
∆

and grouping terms, we get

xd(k+1) = λdxd(k)+
(

bd,m

∆

)
ud(k)−

(
bd,m

∆
−bd,s

)
ud(k−1)

= λdxd(k)+
b

λ∆

(
1
λ
(eλ∆−1)−∆

)
ud(k)−

b
λ

[(
1

λ∆
−1
)
(eλ∆−1)−1

]
ud(k−1)
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Hence, we can write

λd = eλ∆

bd,1 =

(
bd,m

∆

)
=

b
λ∆

(
1
λ
(eλ∆−1)−∆

)
(OR)

=
1
∆

(
−b∆

λ
+

b
λ 2 (e

λ∆−1)
)

bd,2 =−
(

bd,m

∆
−bd,s

)
=− b

λ

[(
1

λ∆
−1
)
(eλ∆−1)−1

]
(OR)

=
b
λ

[
1+(eλ∆−1)

(
1− 1

λ∆

)]

(c) (8 pts) To get this into standard vector/matrix form, we realize that we need to remember ud(k− 1)
for the next time step. Everything that needs to be remembered has be a part of the state, and so let’s
augment our state vector as

~̃xd(k) =

[
xd(k)

ud(k−1)

]
.

Starting with Equation (42), write a matrix time-evolution equation using ~̃xd as

~̃xd(k+1) = Ad~̃xd(k)+~bdud(k).

More concretely, find Ad and~bd , in terms of λd , bd,1 and bd,2.
Solution: From the previous part, we have

xd(k+1) = λdxd(k)+bd,1ud(k)+bd,2ud(k−1)

By using the given definitions, we can rewrite the above scalar equation as a matrix equation as follows:

~̃x(k+1) =

[
xd(k+1)

ud(k)

]

=

[
λd bd,2
0 0

]
~̃x(k)+

[
bd,1

1

]
ud(k)

Hence, Ã =

[
λd bd,2
0 0

]
and~̃b =

[
bd,1

1

]
.

What this shows is that we can, in general, incorporate piecewise-linear controls into our discretization
procedure, just at the cost of adding one more discrete-time state for every dimension of control input.
This new extra state reflects state within our own controller — namely the memory within the system
that piecewise-linearly interpolates the continuous-time control inputs between discrete-time setpoints.
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.]
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