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EECS 16B Designing Information Devices and Systems II
Summer 2020 UC Berkeley Circuits Review

1. Circuits State Space (X pts)
Consider the following series RLC circuit from homework.

−
+ Vs

t = 0

t = 0

C

+ −
vc(t)

iL(t) R

+ −
vR(t)

L

+ −
vL(t)

We used the state vector~x(t) =

[
iL(t)
vc(t)

]
to derive the following state equation for the circuit:

d
dt
~x(t) = A~x(t) =

[
−R

L − 1
L

1
C 0

]
~x(t)

The eigenvalues of A are

λ =− R
2L
±

√(
R
2L

)2

− 1
LC

(a) Let’s define a new state vector ~̃x(t) =

[
iL(t)+ vc(t)

vL(t)

]
.

Find an invertible matrix T , such that x̃(t) = T~x(t). Assume that R 6= 1Ω.
Solution:
We can write out the states x̃1 and x̃2 to realize that

x̃1 = iL + vc = x1 + x2

x̃2 = vL =−vc− vr =−vc− iL ·R
=−Rx1− x2

Therefore we conclude by saying that

T =

[
1 1
−R −1

]
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(b) Find the matrix Ã, such that d
dt
~̃x(t) = Ã~̃x(t).

Solution:

d
dt
~x(t) = A~x(t)

d
dt

T−1T~x(t) = AT−1T~x(t)

d
dt

T~x(t) = TAT−1T~x(t)

d
dt
~̃x(t) = TAT−1︸ ︷︷ ︸

Ã

~̃x(t)

(c) What are the eigenvalues of Ã?
Solution:
The eigenvalues of Ã are identical to the eigenvalues of A since

det(Ã−λ I) = det(TAT−1−λT T−1) = det(T (A−λ I)T−1) = det(A−λ I)

(d) Now let ~̃x(t) =

 iL(t)
vC(t)
vL(t)

 .
Find a 3×3 matrix Ã such that d

dt
~̃x(t) = Ã~̃x(t). Also, what are the eigenvalues of Ã?

Solution:
States x̃1 and x̃2 are identical to x1 and x2 in the original RLC example given above. Therefore, it
remains to compute d

dt x̃3 in terms of the other state variables.

x̃3 =−Rx1(t)− x2(t) =⇒ dx̃3

dt
=−R

dx̃1

dt
− dx̃2

dt
dx̃3

dt
=−R

(
−R

L
x1(t)−

1
L

x2(t)
)
− 1

C
x1(t) =

(
R2

L
− 1

C

)
x1(t)+

R
L

x2(t)

We can therefore write out our state equations as

d
dt
~̂x(t) =

 −R
L − 1

L 0
1
C 0 0

R2

L −
1
C

R
L 0

~̂x(t)
λ = 0,− R

2L
±

√(
R
2L

)2

− 1
LC

Intuitively, we can think of x̃3 as a redundant state that gives no extra information to the system.

(e) Assume that we measure vc(t). Which of the following are possible graphs of vc(t)?
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Solution: The general solution must be of the form αeλ1t +βeλ2t .

A: Not possible, since λ ≤ 0 and there are no inputs into the system.
B: Possible if R = 0.
C: Possible if λ is real and less than 0.
D: Possible if λ is complex.
E: Not possible, since the steady of vc(t) must be zero.
F: Possible if vc(0) = 0.
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G: Not possible, since the response blows up and is parabolic.
H: Not possible, since the convexity of vc(t) cannot change.
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2. Derive the Integrator (X pts)

Consider the following circuit:

−

+

Ṽin

ṼoutR

C

(a) Find the transfer function of this circuit H(ω) = Ṽout
Ṽin

.
Solution:

H(ω) =− 1
jωRC

(b) Draw the Bode magnitude and phase plots of the transfer function. Assume that RC = 10−2.
Hint: Try plotting the magnitude and phase for ω = 1,10,100, . . . and look for a pattern.

Solution: ∣∣H(ω)
∣∣= 1

ωRC
∠H(ω) =

π

2

100 101 102 103 10410−3

10−2

10−1

100

101

102

103

ω

|H
(ω

)|

Magnitude Plot

100 101 102 103 104 105
0

10
20
30
40
50
60
70
80
90

100

ω

∠
H
(ω

)

Phase Plot

(c) Find vout(t) for the following inputs vin(t). You can assume that any transients have died out.

i. vin(t) = 10sin(100t)

ii. vin(t) =−5cos
(

103t + π

2

)
Solution:
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i.

ω = 102,
∣∣∣H(102)

∣∣∣= 1, ∠H(102) =
π

2
=⇒ vout(t) = 10sin

(
100t +

π

2

)
ii.

ω = 103,
∣∣∣H(103)

∣∣∣= 0.1, ∠H(103) =
π

2
=⇒ vout(t) = 0.5cos

(
103t

)
(d) Find vout(t→ ∞) if vin(t) = 5V. Hint: What is ω?

Solution:
Since ω = 0, H(0)→−∞. Therefore, vout(t→ ∞)→−∞.

(e) Assume that vout(0) = 0V and that vin(t) = 5V. Find an expression for vout(t) for t ≥ 0.
Solution:

vin

R
=−C

dvout

dt

vout(t) =−
1

RC

t∫
0

vin dτ =− 1
RC

t∫
0

5dτ =− 5t
RC
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3. The Old Switcheroo (X pts)

Consider the following circuit that implements a switch using transistors.

Venable

Venable

Vin vout

Venable and Vin are digital signals that can be either at 0 V or 1 V. If Venable = 1V, the switch is closed and Vin
is connected to Vout. Otherwise, if Venable = 0V, the switch is open.

The threshold voltage of the NMOS is Vt,n = 0.3V, and the threshold voltage of the PMOS is Vt,p =−0.3V.
You may approximate 0.3≈ e−1.

Assume that at time t = 0, Vin = 1V, vout(0) = 0V, and Venable = 1V. We want to know how vout(t) behaves
over time for t ≥ 0.

(a) Draw the equivalent circuit of the switch for t ≥ 0 using the resistor-capacitor model of the
transistor. Determine which transistors are on and off.
Solution: After labelling the Gate, Source, and Drain, we realize both PMOS and NMOS transistors
are on.

1V

0V

1V 0V

G

SD

G

DS

An equivalent circuit model is
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Cp Rp

Rn
Cn

1V

Vin

Vout

(b) Write down a differential equation for Vout(t) that describes the behavior for some time after
t ≥ 0. Assume that both the NMOS and PMOS transistors have an on-resistance of Ron and a gate-
source capacitance of Cgs.

Solution: We can redraw the circuit as

−
+ 1V

Cgs

vout

Ron

Ron

Vin

This yields the differential equation

dvout

dt
=− 2

RonCgs
(Vout −Vin)

(c) Solve for Vout(t). Assume that RonCgs = 1×10−9 s.
Solution: This is a first-order differential equation with a constant input which has solution

Vout(t) = 1− e−
2

RonCgs
t
= 1− e−2×109t

(d) Until what time T ≥ 0 is your differential equation valid?
Solution: The differential equation will only be valid when both transistors are on. When Vout

reaches 0.7V, the NMOS turns off.

1− e−2×109T = 0.7V

e−2×109T = 0.3V≈ e−1

−2×109T =−1

T =
1

2×109 s
= 0.5ns
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4. Simulated Inductor - Gyrator (X pts)
Resistors, capacitors, inductors, and transistors make up the basic building blocks for many interesting
and useful circuits. However, for certain applications, the size of the inductance would require very large
inductors which may not feasibly fit on a small chip.

One way to work around this constraint is to simulate an inductor using a circuit called a gyrator. A simulated
inductor can be implemented using a capacitor, two resistors, and one op-amp connected as in Fig. 1.

−

+

Iin

I2
RL

I1

C

RC

Vin

Zin

Z2

Z1

Figure 1: Gyrator

We will show that at low frequencies the simulated inductor in Fig. 1 behaves the same as the equivalent RL
circuit in Fig 2.

RL

L=RCRLC

Zin

Figure 2: Gyrator - Equivalent RL circuit

The input impedance for the RL circuit in Fig. 2 is given by

Zin = RL + jωRCRLC = RL + jωLeq (1)

where Leq = RCRLC is the desired effective inductance of the gyrator circuit.

We will work through the steps to see that these two circuits are equivalent by showing that, under certain
conditions, their impedances are the same. In addition, we will show some cases where the gyrator fails.

We can determine the total input impedance Zin in Fig. 1 by solving for the impedance of each branch (Z1
and Z2) separately. We then will find Zin by recognizing that the two branches appear in parallel, and thus
the input impedance is the parallel of the two branch impedances.
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(a) First, determine the impedance Z1, which is the impedance of the lower branch.

Solution: By the op-amp ‘golden rules’, the input impedance into the + terminal is infinite, so no
current will flow into the + terminal of the op-amp. As such, C and RC appear in series, and we can
write

I1 =
Vin

1
jωC +RC

and we get

Z1 =
Vin

I1
= RC +

1
jωC

(b) Determine the impedance Z2. Hint: Use the properties of an op-amp you have learned. You should
find that your answer is of the form Z2 = a + b · Leq (recall Leq = RCRLC is the desired effective
inductance).

Solution: To find Z2, we need to find the current I2, and then use Z2 =
Vin
I2

. To determine I2, we need
to find the voltage across RL.
Because the op-amp is in negative feedback, by the ‘golden rules’, we know V− =V+.
We can find V+ (and thus V−) by recognizing that the lower branch (C and RC) forms a voltage divider.
Hence,

V+ =V− =Vin
RC

Z1

Now we can solve for the current I2

I2 =
∆V
RL

=
Vin−V−

RL
=

(
Vin−Vin

RC

Z1

)
1

RL
=Vin

Z1−RC

Z1RL

Now that we know I2, we get that

Z2 =
Vin

I2
=

Z1RL

Z1−RC
=

(
RC + 1

jωC

)
RL(

RC + 1
jωC

)
−RC

= (RC +
1

jωC
) ·RL · jωC

= RL + jωCRLRC

Hence,
Z2 = RL + jωCRLRC = RL + jωLeq

(c) For the impedance
Zin = Z1||Z2

what is the approximate effective impedance of Zin if Z1 � Z2? Keep the answer in terms of the
variables Z1 and Z2.
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Solution:

Zin = Z1||Z2 =
Z1Z2

Z1 +Z2

= Z2
Z1

Z1

(
1+ Z2

Z1

)
≈ Z2

Z1

Z1 ·1
= Z2

(d) We would ideally like to design the gyrator circuit so that its impedance is given by equation:

Zin,desired = RL + jωLeq (2)

However, we note that Zin is the parallel of Z1 and Z2. Using the intuition above, what design choices
can we make for components C, RC, and/or RL to ensure that Zin ≈ RL+ jωLeq? What component
values can we still freely choose to set the desired Leq?
Solution: We note that Z2 is our desired input impedance. We would thus like to have that Zin ≈ Z2.
Because Zin = (Z1||Z2), we would like to make Z1 large, so that its impedance is negligible in the
overall parallel expression.
How do we make Z1 large? Note that

Z1 = RC +
1

jωC
Z2 = RL + jωLeq

We see that RC and C appear only in Z1. Thus, if we make RC very large or C small (or both) we can
guarantee that Z1� Z2, and thus Zin ≈ Z2 = RL + jωLeq.
We then note that Leq = RCRLC. Even though we must choose RC to be large or C to be small, we still
have the freedom of choosing RL to set our desired value for Leq.

(e) Now, let us check under which conditions the two circuits are equivalent (i.e. under which conditions
the approximation that Zin ≈ Z2 holds). Let Vin be a DC voltage, i.e. its frequency is 0. Are the input
impedances for the two circuits equivalent? If not, what is the input impedance for each circuit?
Solution: The input impedance are the same.
We find that Z1 = RC + 1

jωC = RC + 1
0 = ∞, and that Z2 = RL + jωLeq = RL + 0 = RL. Thus, Zin =

(Z1||Z2) = (∞||RL) = RL, which is the value of the desired Zin,desired at ω = 0.
(f) Let Vin be an oscillating cosine with an infinitely large frequency. Are the input impedances for the

two circuits equivalent? If not, what is the input impedance for each circuit?
Solution: The impedances are different.
We find that Z1 = RC + 1

jωC = RC + 1
∞
= RC, and that Z2 = RL + jωLeq = RL +∞ = ∞. Thus, Zin =

(Z1||Z2) = (RC||∞) = RC.
However, the desired Zin is Zin = RL + jωLeq = RL + j∞Leq = ∞.
Thus the impedances are not the same. This is one of the restrictions of using a gyrator to simulate
an inductor. It only works if the frequency is ‘low enough’ that the approximation we made
above is valid.
Another more ‘intuitive’ way of finding the impedance for the gyrator circuit is to note that at very
high frequencies, the capacitor acts as a short. Thus, V+ = V− = Vin so no current flows through RL.
All the current will flow through RC

Hence, the impedance for the first circuit would be RC.
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5. Biomedical Filter Design (X pts)

Maxwell has been hired to design a biomedical sensor that can detect and output recordings of Alpha brain-
waves in the frequency range 8Hz to 12Hz. Unfortunately, our sensor is faulty: it is also picking up Gamma
brainwaves in the frequency range 40Hz to 100Hz, interfering with our ability to get clean recordings of al-
pha brainwaves. Therefore, he wants to create a new design for our sensor that can remove this interference,
giving us a clearer signal.

(a) Assuming Max only has access to resistors and capacitors, let us design a filter to remove the Gamma
brainwave interference. Sketch the corresponding circuit and write out its transfer function.
Solution: We should use a low-pass filter. The interference is at a higher frequency than our desired
signal, so we filter out the higher frequencies and keep the lower frequencies.

vin

R

C

+

-

vout

H(ω) =
Z̃out

Z̃in
=

1
jωC

R+ 1
jωC

=
1

1+ jωRC
=

1
1+ j ω

ωc

.

(b) Max can set the cutoff frequency to 10Hz, 20Hz, 32Hz, 100Hz, or 120Hz. Which is the best cutoff
frequency, and why?

Solution: We should minimize the cutoff frequency. The transfer function will start filtering fre-
quencies sooner, meaning that we maximize the amount by which higher frequencies are attenuated.
We however, do not want to risk cutting off the desired signal.
Therefore, 20Hz is the best cutoff-frequency we can choose; the Gamma brainwaves will be attenuated
more if we choose 20Hz than 32Hz because the transfer function will start filtering at a lower frequency.
10Hz is too low and risks cutting off Alpha brainwaves.

(c) There is only a 3.3 kΩ resistor in our workstation. What capacitor value should Max use for our
filter?
Solution: If we want a cutoff frquency of 20Hz, then f = ωc

2π
= 1

2πRC = 20Hz. As a result,

C =
1

2π ·33 ·103Ω ·20Hz
= 2.41µF
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(d) Plot the magnitude and phase response of this filter. How much have we attenuated the Gamma
waves at f = 40Hz?

Solution: Note that we are not plotting on a log-log scale due to how close the frequencies are.

Magnitude plot:

0 10 20 30 40 50 60 70 80 90 100

0.5

1

f

|H
(ω

)|
Alpha Waves

Gamma Waves

Phase plot:

0 10 20 30 40 50 60 70 80 90 100
−π

2

−π

4

0

π

4

π

2

f

∠
H
(ω

)

Alpha Waves
Gamma Waves

At f = 40Hz, the Gamma waves have been attenuated by a factor of around 0.5. Note that the filter’s
performance is quite poor since the cutoff frequency is spaced so close to the frequencies we need to
attenuate. We also cannot lower the cutoff frequency since we would be attenuating our desired Alpha
brainwaves from 8 to 12 hertz.
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(e) Max consults his friend Taejin for some advice and he suggests to cascade two low-pass filters with
the same resistor and capacitor values, with a buffer as shown below:

vin

R

C −

+ R

C

+

-

vout

What is the magnitude of the transfer function H(ω)? In addition, what would happen if we
cascaded a large number of filters together?
Solution: The transfer function of this circuit would be the product of two low-pass transfer func-
tions.

H(ω) =
1

1+ jωRC
· 1

1+ jωRC
=

1
(1+ jωRC)2

Its magnitude will be ∣∣H(ω)
∣∣= 1

1+(ωRC)2

This will also have low-pass behavior, and will have a faster rate of cutoff after the cutoff frequency
since there is a double pole at ω = 1

RC .

Magnitude Plot (One Buffer):

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

f

|H
(ω

)|

Alpha Waves
Gamma Waves

In fact we can cascade, a series of filters, to get an even better rate of dropoff. The plots for 5 and 10
cascaded filters are shown below. However, notice that as n gets larger,

∣∣H(ω)
∣∣ drops off, and we may

have to use an amplifier to restore the gain:
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Magnitude Plot (Five Buffers):

0 10 20 30 40 50 60 70 80 90 100
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f

|H
(ω

)|

n = 5
Alpha Waves

Gamma Waves

Magnitude Plot (Ten Buffers):
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(ω

)|
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Gamma Waves

Magnitude Plot (Ten Buffers G = 5):

0 10 20 30 40 50 60 70 80 90 100
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f

|H
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)|

n = 10, G = 5
Alpha Waves

Gamma Waves
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6. Attack of the Deltas

Maxwell successfully designed his Biomedical sensor to capture the Alpha brainwaves while filtering out the
Gamma waves. However, he now notices that there is a another source of interference–Delta brainwaves–in
the frequency range 0.5Hz to 4Hz. To combat this, he decides to use a resonance filter.

Vs

C
L

R

+

-

Ṽout

(a) What is the transfer function of this filter?
Solution: Using previous phasor analysis techniques, we can see this as a voltage divider by taking
the capacitor and inductor as one impedance in series.

H(ω) =
R

R+ jωL+ 1
jωC

=
jωRC

1+ jωRC+( jω)2LC

(b) Where should Max set the cutoff frequencies?
Solution: We currently want to capture Alpha brainwaves running at 8 to 12 Hz, while filtering out
Gamma brainwaves at 40 to 100 Hz, and Delta brainwaves at 0.5 to 4 Hz. We want to space our cutoff
frequences as far apart as possible, but also try to put the center frequency as the average of the desired
frequency range. Therefore, to space away the Deltas while keeping the Alphas, the low frequency
should be set to 6Hz. The high frequency can vary, You can pick a high cutoff of 14Hz, to put 10Hz
in the center, or you can also choose 26Hz in between 12 and 40 to create a much larger bandwith.

(c) What are the cutoff frequencies of this filter in terms of R,L, and C?

Solution: Remember that in order to find the cutoff frequencies, we find the frequencies at which∣∣H(ω)
∣∣= 1√

2
. ∣∣H(ω)

∣∣= ωRC√
(1−ω2LC)2 +(ωRC)2

=
1√
2

Squaring both sides, we get:(
ωRC√

(1−ω2LC)2 +(ωRC)2

)2

=
(ωRC)2

(1−ω2LC)2 +(ωRC)2 =
1
2

Cross multiplying, we get:

(1−ω
2LC)2 +(ωRC)2 = 2(ωRC)2 or (1−ω

2LC)2 = (ωRC)2

We take the square root of both sides, and taking the negative case into account,

(1−ω
2LC) =±ωRC
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Now, we can use the quadratic formula twice, and note that we’ll have four solutions, but we will only
consider the positive valued ones.

ω =± R
2L

+

√( R
2L

)2
+

1
LC

(d) Let’s pick values of R,L, and C to set our cutoff frequencies to those picked in part (b) Suppose you
have a 500Ω resistor. What values should you pick for your capacitior and inductor?
Solution: From the previous part, our cutoff frequencies are:

ωh =
R
2L

+

√( R
2L

)2
+

1
LC

, and ωl =−
R
2L

+

√( R
2L

)2
+

1
LC

.

This means that our bandwith is ∆ω = ωh−ωl =
R
L .

From here onward, there are multiple ways to design our resonance bandpass filter all of which have
bandwidth ∆ω = 2π∆ f . We can start by picking a low cutoff-frequency, f` = 6Hz since that will give
us the most bandwith possible and is equidistant from the Alpha and Delta waves.

(1) Option 1: Pick a high frequency fh = 14Hz, to put the center frequency at 10Hz. meaning our
bandwith will be 8Hz or 16π

rad
s .

(2) Option 2: Pick the resonance frequency at 10Hz so that the magnitude of H(ω) peaks at 10Hz.
The choice of fh isn’t quite arbitrary but we’ll pick fh = 16Hz to simplify our calculations.

(3) Option 3: Give ourselves a wider bandwidth by picking a high cutoff of fh = 26Hz. The bandwith
will be 20Hz or 40π

rad
s .

In each option, we can can compute our inductor through the formula L = R
∆ω

.

(1) L = 500
16π

= 9.95H

(2) L = 500
20π

= 7.95H

(3) L = 500
40π

= 3.98H

We pick our capacitor values around either the center frequency ωcenter =
1
2(ωl +ωh) =

√(
R
2L

)2
+ 1

LC

or the resonance frequency ω0 =
1√
LC
.

(1) ( R
2L

)2
+

1
LC

= 400π
2 so C =

1
L(400π2− ( R

2L)
2)

= 30.3µF

(2)
1√
LC

= 2π ·10 so C =
1

ω2
0 L

= 31.8µF

(3) ( R
2L

)2
+

1
LC

= 1024π
2 so C =

1
L(1024π2− ( R

2L)
2)

= 40.8µF

(e) Plot the frequency response of the filter designed above using the resistor, capacitor and inductor
values picked in the previous part.
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Solution: We can plot this on a computer by plugging in our values for R,L,C into the magnitude
equation: ∣∣H(ω)

∣∣= ωRC√
(1−ω2LC)2 +(ωRC)2

(3)

Notice that our signal is attenuated for values of f between 0.5 and 4, and it is also attenuated for
values of f above 40. Lastly, for values of f between 8 and 12Hz, the transfer function is close to 1.

The plot of |H(ω)| is below for both choices of R,L,C :

Magnitude Plot:
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Magnitude Plot:
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(f) Max notices again that while the filter is attenuating the necessary frequencies, it isn’t doing that good
of a job. Try plotting the responses using Taejin’s idea from the previous question of cascading
multiple filters with buffers in between.
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Solution: We first plot the response with one buffer. Notice however, that if we increase the number
of buffers, while we attenuate the Delta and Gamma waves, since we are taking the gain to the nth

power, we lose a significant amount of gain. Therefore, a tradeoff of attenuating the noise vs getting a
stronger gain must be made.

Magnitude Plot (One Buffer):
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Magnitude Plot (Two Buffers):
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Magnitude Plot (Four Buffers):
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Magnitude Plot (One Buffer):
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Magnitude Plot (Two Buffers):

10 20 30 40 50 60 70 80 90 100

0

0.5

1

f

|H
(ω

)|

f0 = 10Hz,n = 5
Alpha Waves
Delta Waves

Gamma Waves

Magnitude Plot (Four Buffers):
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Magnitude Plot (One Buffer):
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Magnitude Plot (Two Buffers):
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Magnitude Plot (Four Buffers):
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7. Powering a Clock

Taejin is trying to design a clock using a series of inverters made up of transistors. He is currently thinking
of two the approaches for a single inverter.

Vin

Vout

VDD

CwRw

Figure 3: Single PMOS Model

Vout

VDD

Vin

Cw

Figure 4: CMOS Inverter Model

Unfortunately both models contain parasitic wire resistance and capacitance Rw = 500Ω and Cw = 3µF.
Both PMOS and NMOS transistors have voltage threshold of |Vth|= 0.7 and VDD = 1V.

To test both models, Taejin decides to give the following square wave input.

1 2 3 4

0.5

1

Time (s)

Vo
lta

ge
(V

)
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(a) Suppose Model A has switch resistance Rp = 1kΩ and gate capacitance Cp = 5µF.
Assuming vout(0) =VDD, solve for vout(t) for T ∈ [0,2] and plot the response.
Solution: We can break up the input into two segments in which vin = 1V and vin = 0V. Looking at
the first window, the PMOS transistor will be off since VSG = 0V < |Vth| .
The equivalent circuit can be drawn as follows

vout

CwRw

Figure 5: PMOS "Off" State

This is a simple RC circuit with the following differential equation for t ∈ [0,1).

dvout

dt
=− vout

RwCw

The solution to this differential equation is of the form

vout(t) =VDDe−t/τ for τ = RwCw.

Now let us look at the second window where the PMOS transistor is on since VSG = 1V > |Vth| .

Rp

VDD

vout

CwRw

Cp

vin

Figure 6: PMOS "On" State

Since τ = 6ms, we can assume the capacitor fully discharges and vout(1) = 0V.

The differential equation for t ∈ [1,2) will be

VDD− vout

Rp
=Cw

dvout

dt
+

vout

Rw

dvout

dt
=−

vout(Rw +Rp)

RpRwCw
+

VDD

RwCw

The solution to this differential equation is

vout =
Rw

Rp +Rw
VDD(1− e−(t−1)/τ) for τ =

RwRp

Rw +Rp
Cw.

The response for t ∈ [0,2] is plotted below. Note how the output is unable to reach VDD and will only
reach 1

3VDD.
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1 2

VDD
2

VDD

Time (s)

Vo
lta

ge
(V

)
(b) Now suppose Model B has the same PMOS switch resistances and gate capacitances as model A. The

NMOS transistor has switch resistance Rn = 1kΩ and gate capacitance Cn = 2µF.
Assuming vout(0) =VDD, solve for vout(t) for T ∈ [0,2] and plot the response.
Solution: Looking at the first window for t ∈ [0,1) the PMOS is OFF and the NMOS is ON.
The equivalent circuit will look identical to the single PMOS inverter

vout

CwRn

Figure 7: PMOS "Off" / NMOS "On" State

As a result, the solution for t ∈ [0,1) should be

vout(t) =VDDe−t/τ for τ = RnCw.

Now let us look at the second window where the PMOS is ON and the NMOS is OFF.

Rp

VDD

vout

Cw

Cp

vin

Figure 8: PMOS "On" / NMOS "Off" State

Since τ = 6ms, we can assume the capacitor fully discharges and vout(1) = 0V.

The differential equation for t ∈ [1,2) will be

dvout

dt
=− vout

RpCw
+

VDD

RpCw
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The solution to this differential equation is

vout(t) =VDD(e−(t−1)/τ) for τ = RpCw.

The response for t ∈ [0,2] is plotted below

1 2

VDD
2

VDD

Time (s)

Vo
lta

ge
(V

)

(c) Compare the energy dissipation of both models for t ∈ [0,2). Which model dissipates more energy?
Solution: For the first phase when t ∈ [0,1), the energy dissipation for both models is the same

Uc,1 =
1
2

CwV 2
DD = 1.5×10−6V 2

DD

In the second phase, Model B will dissipate the same energy

Uc,2 =
1
2

CwV 2
DD = 1.5×10−6V 2

DD

Model A in the second phase however will dissipate approximately

Uc,2 =
V 2

DD

Rp +Rw
·1s = 0.33×10−3V 2

DD

Therefore, we conclude by saying Model A dissipates more energy.

(d) Compare the individual delays of each inverter over one cycle (t ∈ [0,2).)
Solution:
(i) Model A:

• In the first window, it takes the output τ = RwCw = 1.5ms to switch from high to low.
• In the second window, it takes the output τ =

RwRp
Rw+Rp

Cw = 1ms to switch from low to high.

(ii) Model B:
• In the first window, it takes the output τ = RnCw = 3ms to switch from high to low.
• In the second window, it takes the output τ = RpCw = 3ms to switch from low to high.

Overall, Model A switches faster than B but Model A is dissipating more power and is unable to reach
VDD.

(e) Taejin now builds his clock by implementing a ring oscillator for both models. He starts both clocks
by setting VDD = 1V and Vin(0) = 0V. For Model A however, he notices that his clock is stuck at a
certain value. Explain why this is the case and how he can fix his clock.
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Vin

Figure 9: Ring oscillator with 3 inverters

Solution: If Vin(0) = 0, then the output of the first inverter will switch to 1
3VDD. However, this means

VSG for the second inverter is VSG = 2
3VDD <Vth.

As a result, every PMOS transistor in the oscillator will be on and the clock will be stuck at 1
3VDD.

Taejin can fix his clock by increasing VDD so that VSG = 2
3VDD ≥Vth = 0.7V. However, this will come

at the cost of more power dissipation.
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