EECS 16B Designing Information Devices and Systems II Summer 2020 UC Berkeley Signals Review

1. DFT Properties

(a) Show that the k^{th} frequency component of a length N signal x[n] can be written as

$$X[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

Solution: The DFT of a signal x[n] can be written as X[k] = Fx[n]. If we look at the k^{th} entry of X, this is equivalent to taking the inner product of the k^{th} row of F and \vec{x} .

$$X[k] = \langle \vec{f}_k, \vec{x} \rangle \qquad \vec{f}_k = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & e^{-j\frac{2\pi}{N}k} & e^{-j\frac{2\pi}{N}k\cdot 2} & \cdots & e^{-j\frac{2\pi}{N}k\cdot (N-1)} \end{bmatrix}^T$$
(1)

Therefore, it follows that

$$X[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

(b) Given the DFT X[k] of a time domain signal x[n], show that

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

Solution: The inverse DFT of X[k] can be written as $x[n] = F^*X[k] = UX[k]$. If we look at the n^{th} entry of *x*, this is equivalent to taking the inner product of the n^{th} row of *U* and \vec{x} .

$$x[n] = \langle \vec{u}_n, \vec{X} \rangle \qquad \vec{u}_n = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & e^{j\frac{2\pi}{N}n} & e^{j\frac{2\pi}{N}n\cdot 2} & \cdots & e^{j\frac{2\pi}{N}n\cdot (N-1)} \end{bmatrix}^T$$
(2)

Therefore, it follows that

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

(c) Prove that if x[n] is a real valued signal, X[k] = X[N-k].
 Solution: We now know from part (a) that

$$X[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

This means that X[-k] = X[N-k] will be

$$X[N-k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}(N-k)\cdot n}$$
$$= \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{j\frac{2\pi}{N}k\cdot n}$$

Therefore the complex conjugate of X[N-k] will be

$$\overline{X[N-k]} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn} = X[k]$$

(d) Prove that if x[n] is real and x[n] = x[N-n], then all of the DFT coefficients X[k] are real. **Solution:** Let start with the definition of the DFT and look at the conjugate $\overline{X[k]}$.

$$\overline{X}[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \overline{x[n]} e^{j\frac{2\pi}{N}kn}$$

Since x[n] is real and x[n] = x[N-n] we shall substitute $\overline{x[n]} = x[N-n]$.

$$= \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[N-n] e^{j\frac{2\pi}{N}kn}$$

Defining the variable m = N - n, we change variables in our summation to

$$= \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} x[m] e^{j\frac{2\pi}{N}k(N-m)}$$

Since $e^{j2\pi} = 1$, it follows that

$$= \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} x[m] e^{-j\frac{2\pi}{N}m} = X[k]$$

2. DFT Basics

Compute the 5 point DFT of the following signals

(a)
$$x_1[n] = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$
.

Solution: We can compute the frequency components by multiplying by the matrix $F = U^*$. Since $x_1[n]$ is zero for $\neq 1$, the frequency components will be the second column of *F*.

$$X_1[k] = Fx_1[n] = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & e^{-j\frac{2\pi}{5}} & e^{-j\frac{2\pi}{5}\cdot 2} & e^{-j\frac{2\pi}{5}\cdot 3} & e^{-j\frac{2\pi}{5}\cdot 4} \end{bmatrix}$$

The magnitude and phase of X_1 as plotted below

(b)
$$x_2[n] = \begin{bmatrix} 2 & 2 & 2 & 2 \end{bmatrix}$$

Solution: Since $x_2[n] = 2\sqrt{5}u_0[n]$ where u_0 is the DC component DFT basis vector, the frequency components must be

$$X_2[k] = \begin{cases} 2\sqrt{5} & k = 0.\\ 0 & k \neq 0. \end{cases}$$

The magnitude and phase of X_2 as plotted below

(c)
$$x_3[n] = \sin\left(\frac{2\pi}{5}n\right)$$
.

Solution:

$$\sin\left(\frac{2\pi}{5}n\right) = \frac{1}{2j}e^{j\frac{2\pi}{5}n} - \frac{1}{2j}e^{-j\frac{2\pi}{5}n}$$
$$u_k[n] = \frac{1}{\sqrt{5}}e^{j\frac{2\pi}{5}kn}$$
$$\vec{x}_3 = \frac{\sqrt{5}}{2j}(\vec{u}_1 - \vec{u}_4)$$

$$X_{3}[k] = \begin{cases} \frac{-\sqrt{5}j}{2} & k = 1\\ \frac{\sqrt{5}j}{2} & k = 4\\ 0 & k \neq 1, 4 \end{cases}$$

The magnitude and phase of X_3 as plotted below

Now compute the 5 point inverse DFT given the following frequency components

(d)
$$X_4[k] = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
.
Frequency Components $X_4[k]$
 $0.8^{-1.0}_{-0.8^{-1.0}_{-0.4^{-1.0}_$

Solution: We can compute the time domain signal by multiplying by the matrix $F^* = U$. Since $x_4[n]$ is zero for $\neq 1$, the time components will be the second column of U.

$$x_4[n] = UX_4[k] = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & e^{j\frac{2\pi}{5}} & e^{j\frac{2\pi}{5}\cdot 2} & e^{j\frac{2\pi}{5}\cdot 3} & e^{j\frac{2\pi}{5}\cdot 4} \end{bmatrix}$$

The magnitude and phase of $x_4[n]$ are plotted below

(e)
$$X_5[k] = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$$
.

Solution: One way finding $x_5[n]$ is to realize that $X_5[n]$ is real and even meaning $x_5[n]$ is real and even. We'll show the derivation of its DFT in the next part.

Alternatively, we can compute the IDFT using the summation formula

$$x[n] = \frac{1}{\sqrt{5}} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{5}kn}$$

$$= \frac{1}{\sqrt{5}} \left(e^{j\frac{2\pi}{5}n} + e^{j\frac{4\pi}{5}n} + e^{j\frac{6\pi}{5}n} + e^{j\frac{8\pi}{5}n} \right) = \frac{1}{\sqrt{5}} e^{j\frac{2\pi}{5}n} \frac{1 - e^{j\frac{8\pi}{5}n}}{1 - e^{j\frac{2\pi}{5}n}} \qquad \text{Geometric Sum Formula}$$

$$= \frac{1}{\sqrt{5}} e^{j\frac{2\pi}{5}n} \frac{e^{j\frac{4\pi}{5}n}}{e^{j\frac{\pi}{5}n}} \frac{e^{-j\frac{4\pi}{5}} - e^{j\frac{4\pi}{5}}}{e^{-j\frac{\pi}{5}n} - e^{j\frac{\pi}{5}n}} = \frac{1}{\sqrt{5}} e^{j\pi n} \frac{\sin\left(\frac{4\pi}{5}n\right)}{\sin\left(\frac{\pi}{5}n\right)} \qquad \text{Factor to pull out a sin}$$

$$= \frac{(-1)^n}{\sqrt{5}} \frac{\sin\left(\frac{4\pi}{5}n\right)}{\sin\left(\frac{\pi}{5}n\right)}$$

This is valid for all $n \neq 0$. When n = 0,

$$x[0] = \frac{1}{\sqrt{5}} \sum_{k=0}^{N-1} X[k] = \frac{4}{\sqrt{5}}$$

The real signal $x_5[n]$ is plotted below

(f)
$$X_6[k] = \cos\left(\frac{2\pi}{5}k\right)$$

Solution: We can try to compute this using the IDFT matrix $F^* = U$. However, since X_6 is real and even, x_6 will be real and even. This implies that

$x_6[n] = F^* X_6[k]$	IDFT Formula
$x_6[n] = \bar{F}X_6[k]$	F is symmetric
$\overline{x_6[n]} = FX_6[k]$	Conjugating both sides
$x_6[n] = FX_6[k]$	x[n] is real

Therefore, the IDFT of $X_6[k]$ is equal to its DFT.

$$x_6[n] = \begin{cases} \frac{\sqrt{5}}{2} & k = 1, 4\\ 0 & k \neq 1, 4 \end{cases}$$

The real signal $x_6[n]$ is plotted below

3. DFT and Finite Sequences (X points)

Consider a system $A \{\vec{x}\}$ which operates on length-8 sequences.

This system:

- 1) computes the DFT_8 of the sequence,
- 2) multiplies the first 4 elements (k = 0, 1, 2, 3) by -j and the next 4 elements (k = 4, 5, 6, 7) by j, and
- 3) computes the $IDFT_8$ of the result.

(a) Is the system linear?

Solution: This system is linear since it can be modeled as matrix multiplications

We will refer to this diagonal matrix as *D* in the later parts.

(b) The system is applied on an input sequence x[n] = sin (^π/₄n), 0 ≤ n < 8. What is y[n], the output of the system? Full credit will only be given to the simplest expression.</p>

Solution: Since $x[n] = \frac{1}{2j}e^{j\frac{2\pi}{8}} - \frac{1}{2j}e^{-j\frac{2\pi}{8}}$, its DFT is

$$X[k] = \begin{bmatrix} 0 & \frac{\sqrt{8}}{2j} & 0 & 0 & 0 & 0 & -\frac{\sqrt{8}}{2j} \end{bmatrix}$$

Applying the matrix multiplication, get

$$D[k] = \begin{bmatrix} 0 & -\frac{\sqrt{8}}{2} & 0 & 0 & 0 & 0 & \frac{\sqrt{8}}{2} \end{bmatrix}$$

Lastly, taking the IDFT, we see that

$$x[n] = F^*D[k] = -\cos\left(\frac{\pi}{4}n\right)$$

(c) We apply two such systems in series to an *arbitrary sequence* $x[n], 0 \le n < 8$:

Express y[n] in terms of x[n]. Full credit will only be given to the simplest expression. Solution:

$$\vec{y} = A^2 \vec{x} = F^* DF F^* DF \vec{x}$$
$$= F^* D^2 F \vec{x} = -F^* F \vec{x}$$
$$= -\vec{x}$$

Note that D^2 is a diagonal matrix of entries -1. Therefore we conclude that y[n] = -x[n].

4. Integration by Convolution

Consider the following system that acts as a discrete-time integrator.

$$y[n] - y[n-1] = x[n]$$
(3)

We will assume that y[n] = 0 for n < 0.

(a) Show that this system is LTI.

Solution:

(i) Linearity:

• Scaling:

Let x[n] be an input with output y[n]. Then if we input $\hat{x}[n] = \alpha x[n]$,

$$\hat{x}[n] = \alpha x[n] = \alpha (y[n] - y[n-1]) = \alpha y[n] - \alpha y[n-1]$$

This implies that $\hat{y}[n] = \alpha y[n]$.

• Additivity:

Let $x_1[n]$ and $x_2[n]$ be inputs with outputs $y_1[n]$ and $y_2[n]$. Then if we input $\hat{x}[n] = (x_1 + x_2)[n]$,

$$\hat{x}[n] = x_1[n] + x_2[n] = y_1[n] - y_1[n-1] + y_2[n] - y_2[n-1]$$

= $y_1[n] + y_2[n] - y_1[n-1] - y_2[n-1]$

This shows that $\hat{y}[n] = y_1[n] + y_2[n]$ is the output.

(ii) Time-Invariance

Let $\hat{x}[n] = x[n - n_0]$ be a delayed input signal. We see that

$$\hat{x}[n] = x[n - n_0] = y[n - n_0] - y[n - n_0 - 1]$$

As a result, the output $\hat{y}[n]$ must be $\hat{y}[n] = y[n-n_0]$.

(b) What is the system's imuplse response? Solution:

$$h[0] - h[-1] = \delta[0]$$

$$h[n] - h[n-1] = \delta[n] \quad \text{for } n > 0$$

$$\implies h[0] = 1 \qquad h[n] = h[n-1] \quad \text{for } n > 0$$

We conclude by saying that h[n] is the unit step function u[n].

(c) Suppose we input the unit step
$$x[n] = u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
. What is the output $y[n]$?

Solution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k]$$
Convolution is commutative
$$= \sum_{k=0}^{\infty} x[n-k]$$

$$h[k] = 1 \text{ for } k \ge 0.$$

$$x[n-k] = 0 \text{ for } k > n.$$

$$= \sum_{k=0}^{n} 1 = n+1$$

(d) Now let's create a new system of the following model

where each H_{int} represents one integrator system. How can we express the input-output relationship of x[n] and y[n]?

Solution: The output of the first system is $y_1[n] = (x * h)[n]$. This is the output to the second system which will have output $y[n] = (y_1 * h_{int})[n] = ((x * h_{int}) * h_{int})[n]$.

Since convolution is associative, we can write out the input-output relation as

$$y[n] = x[n] * (h_{int} * h_{int})[n]$$

(e) What is the impulse response of this new system?

Solution: $\delta[n]$ is the convolution identity. Therefore, $h[n] = (\delta * (h_{int} * h_{int}))[n] = (h_{int} * h_{int})[n]$. We know that $h_{int}[n] = u[n]$ so from part (c), h[n] = n + 1.

(f) If we input x[n] = u[n] to this new system, what would the output y[n] be?
 Hint: What is the integrator system doing? If you aren't sure, look back at part (c).

Solution: The integrator system sums all of the values of x[n] for $0 \le k \le n$. Therefore, the output to this system can be represented as

$$y[n] = \sum_{i=1}^{n} (n+1) = \sum_{i=1}^{n} n + \sum_{i=1}^{n} 1$$
$$= \frac{(n+1)(n)}{2} + n + 1 = \frac{(n+2)(n+1)}{2}$$

13

5. Stability of State Space Systems (X points)

Consider a discrete time state space system

$$\vec{x}[n+1] = \mathbf{A}\vec{x}[n].$$

For which of the following possible matrices A is the system stable? Explain your answers.

(a) **(X pts)**

$$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 Stable? Yes / No Explanation:

Solution: $\lambda = 0, \frac{1}{2} \implies$ system is stable.

(b) **(X pts)**

$$\mathbf{A} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$
 Stable? Yes / No
Explanation:

Solution: This is a circulant matrix of the signal $x[n] = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0 \end{bmatrix}$. Therefore, its eigenvalues will the \sqrt{N} times the DFT coefficients X[k].

$$x[n] = \frac{1}{2} \cos\left(\frac{2\pi}{4}n\right) \implies X[k] = \begin{bmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
$$\lambda_1 = 0 \quad \lambda_2 = 1 \quad \lambda_3 = 0 \quad \lambda_4 = 1$$

Since $|\lambda_2| = 1$, the system is unstable.

For parts (c) and (d), consider a continuous time system

$$\frac{\mathrm{d}\vec{x}(t)}{\mathrm{d}t} = \mathbf{A}\vec{x}(t).$$

(c) (X pts)

$$\mathbf{A} = \begin{vmatrix} -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \end{vmatrix}$$
Stable? Yes / No
Explanation:

Solution: The matrix A has rank 1 meaning it has eigenvalues of 0. Therefore, the system is unstable.

(d) (X pts) Recall that we are still considering the continuous time system.

$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 0 & -1 \\ -1 & -2 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 1 & 0 & -1 & -2 \end{bmatrix}$$
 Stable? Yes / No
Explanation:

Solution: This is a circulant matrix of the signal $x[n] = \begin{bmatrix} -2 & -1 & 0 & 1 \end{bmatrix}$. Therefore, its eigenvalues will the \sqrt{N} times the DFT coefficients X[k].

$$X[0] = \frac{1}{2} \sum_{n=0}^{3} x[n] = -1$$

$$X[1] = \frac{1}{2} \sum_{n=0}^{3} x[n] e^{-j\frac{\pi}{2}n} = -1 - j$$

$$X[2] = \frac{1}{2} \sum_{n=0}^{3} (-1)^{n} x[n] = -1$$

$$X[3] = \overline{X[1]} = -1 + j$$

$$\lambda_{1} = -2 \quad \lambda_{2} = -2 - 2j \quad \lambda_{3} = -2 \quad \lambda_{4} = -2 + 2j$$

Since all eigenvalues have real part less than 0, the system is stable.

6. Signals and Systems (X points)

Consider a discrete time observable system

$$\vec{x}[n+1] = \mathbf{A}\vec{x}[n] + \mathbf{B}u[n]$$
$$y[n] = \mathbf{C}\vec{x}[n],$$

where $\mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{B} \in \mathbb{R}^{N \times 1}$, and $\mathbf{C} \in \mathbb{R}^{1 \times N}$ are *unknown*. The system is in the state $\vec{x} = \vec{0}$ before any input is applied and is therefore LTI.

(a) (X pts) Given the following input-output pairs u[n] and y[n], what is the impulse response h[n] of the system? Assume that the signals are 0 everywhere else.

Solution: Since the system is LTI and $\delta[n] = \frac{1}{2}(u_1[n] + u_2[n]), h[n] = \frac{1}{2}(y_1[n] + y_2[n]).$ $h[n] = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

(b) (X pts) Is the system BIBO stable?

Solution: An LTI System is BIBO Stable iff

$$\sum_{n=-\infty}^{\infty} \left| h[n] \right| < \infty$$

In our case, the sum is equal to 5 so the system must be stable.

(c) (X pts) Given the unit step input $u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$, the system's output eventually reaches a steady state value. At what time step does the output reach the steady state value and what is the steady state value of the output?

Solution: If we compute the convolution (u * h)[n], we get the following result

The steady state is y = 5 and the output reaches it at time n = 5.

7. Sampling and Interpolation

Consider a frequency source that produces a signal

$$x(t) = \cos\left(2\pi f_0 t\right).$$

This signal is sampled with a sampling interval of T_s [sec] and reconstructed as $\tilde{x}(t)$ using sinc interpolation.

(a) What are the sampling intervals that will result in a constant $\tilde{x}(t)$ for all t?

Solution: Aliasing of a pure frequency onto DC occurs when $f_s = \frac{f_0}{n}$ for n = 1, 2, ... Therfore, $T_s = \frac{n}{f_0}$ for n = 1, 2, ... and

 $x[n] = \cos\left(2\pi f_0 n T_s\right) = \cos(2\pi n) = 1$

which will be interpolated to a constant.

(b) How quickly must we sample x(t) in order to get a perfect reconstruction?

Solution: $\omega_{max} = 2\pi f_0$. From the Sampling Theorem, we know that if $\omega_{max} < \frac{\pi}{T_s}$, then the reconstruction will be perfect. This is equivalent to saying $T_s < \frac{1}{2f_0}$.

Contributors:

- Taejin Hwang.
- Miki Lustig.
- Aditya Arun.
- Titan Yuan.