EECS 16B Designing Information Devices and Systems II Summer 2020 UC Berkeley

1. DFT Properties

(a) Show that the $k^{\text {th }}$ frequency component of a length N signal $x[n]$ can be written as

$$
X[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

Solution: The DFT of a signal $x[n]$ can be written as $X[k]=F x[n]$. If we look at the $k^{\text {th }}$ entry of X, this is equivalent to taking the inner product of the $k^{t h}$ row of F and \vec{x}.

$$
X[k]=\left\langle\vec{f}_{k}, \vec{x}\right\rangle \quad \vec{f}_{k}=\frac{1}{\sqrt{N}}\left[\begin{array}{lllll}
1 & e^{-j \frac{2 \pi}{N} k} & e^{-j \frac{2 \pi}{N} k \cdot 2} & \cdots & e^{-j \frac{2 \pi}{N} k \cdot(N-1)} \tag{1}
\end{array}\right]^{T}
$$

Therefore, it follows that

$$
X[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

(b) Given the DFT $X[k]$ of a time domain signal $x[n]$, show that

$$
x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
$$

Solution: The inverse DFT of $X[k]$ can be written as $x[n]=F^{*} X[k]=U X[k]$. If we look at the $n^{\text {th }}$ entry of x, this is equivalent to taking the inner product of the $n^{t h}$ row of U and \vec{x}.

$$
x[n]=\left\langle\vec{u}_{n}, \vec{X}\right\rangle \quad \vec{u}_{n}=\frac{1}{\sqrt{N}}\left[\begin{array}{lllll}
1 & e^{j \frac{2 \pi}{N} n} & e^{j \frac{2 \pi}{N} n \cdot 2} & \cdots & e^{j \frac{2 \pi}{N} n \cdot(N-1)} \tag{2}
\end{array}\right]^{T}
$$

Therefore, it follows that

$$
x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
$$

(c) Prove that if $x[n]$ is a real valued signal, $X[k]=\overline{X[N-k]}$.

Solution: We now know from part (a) that

$$
X[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

This means that $X[-k]=X[N-k]$ will be

$$
\begin{aligned}
X[N-k] & =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N}(N-k) \cdot n} \\
& =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi}{N} k \cdot n}
\end{aligned}
$$

Therefore the complex conjugate of $X[N-k]$ will be

$$
\overline{X[N-k]}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}=X[k]
$$

(d) Prove that if $x[n]$ is real and $x[n]=x[N-n]$, then all of the DFT coefficients $X[k]$ are real.

Solution: Let start with the defintion of the DFT and look at the conjugate $\overline{X[k]}$.

$$
\bar{X}[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \overline{x[n]} e^{j \frac{2 \pi}{N} k n}
$$

Since $x[n]$ is real and $x[n]=x[N-n]$ we shall substitute $\overline{x[n]}=x[N-n]$.

$$
=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[N-n] e^{j \frac{2 \pi}{N} k n}
$$

Defining the variable $m=N-n$, we change variables in our summation to

$$
=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} x[m] e^{j \frac{2 \pi}{N} k(N-m)}
$$

Since $e^{j 2 \pi}=1$, it follows that

$$
=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi}{N} m}=X[k]
$$

2. DFT Basics

Compute the 5 point DFT of the following signals
(a) $x_{1}[n]=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$.

Solution: We can compute the frequency components by multiplying by the matrix $F=U^{*}$. Since $x_{1}[n]$ is zero for $\neq 1$, the frequency components will be the second column of F.

$$
X_{1}[k]=F x_{1}[n]=\frac{1}{\sqrt{5}}\left[\begin{array}{lllll}
1 & e^{-j \frac{2 \pi}{5}} & e^{-j \frac{2 \pi}{5} \cdot 2} & e^{-j \frac{2 \pi}{5} \cdot 3} & e^{-j \frac{2 \pi}{5} \cdot 4}
\end{array}\right]
$$

The magnitude and phase of X_{1} as plotted below

(b) $x_{2}[n]=\left[\begin{array}{lllll}2 & 2 & 2 & 2 & 2\end{array}\right]$.

Solution: Since $x_{2}[n]=2 \sqrt{5} u_{0}[n]$ where u_{0} is the DC component DFT basis vector, the frequency components must be

$$
X_{2}[k]= \begin{cases}2 \sqrt{5} & k=0 \\ 0 & k \neq 0\end{cases}
$$

The magnitude and phase of X_{2} as plotted below

(c) $x_{3}[n]=\sin \left(\frac{2 \pi}{5} n\right)$.

Solution:

$$
\begin{aligned}
& \sin \left(\frac{2 \pi}{5} n\right)=\frac{1}{2 j} e^{j \frac{2 \pi}{5} n}-\frac{1}{2 j} e^{-j \frac{2 \pi}{5} n} \\
& u_{k}[n]=\frac{1}{\sqrt{5}} e^{j \frac{2 \pi}{5} k n} \\
& \vec{x}_{3}=\frac{\sqrt{5}}{2 j}\left(\vec{u}_{1}-\overrightarrow{u_{4}}\right) \\
& X_{3}[k]= \begin{cases}\frac{-\sqrt{5} j}{2} & k=1 \\
\frac{\sqrt{5} j}{2} & k=4 \\
0 & k \neq 1,4 .\end{cases}
\end{aligned}
$$

The magnitude and phase of X_{3} as plotted below

Now compute the 5 point inverse DFT given the following frequency components
(d) $X_{4}[k]=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$.

Solution: We can compute the time domain signal by multiplying by the matrix $F^{*}=U$. Since $x_{4}[n]$ is zero for $\neq 1$, the time components will be the second column of U.

$$
x_{4}[n]=U X_{4}[k]=\frac{1}{\sqrt{5}}\left[\begin{array}{lllll}
1 & e^{j \frac{2 \pi}{5}} & e^{j \frac{2 \pi}{5} \cdot 2} & e^{j \frac{2 \pi}{5} \cdot 3} & e^{j \frac{2 \pi}{5} \cdot 4}
\end{array}\right]
$$

The magnitude and phase of $x_{4}[n]$ are plotted below

(e) $X_{5}[k]=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}\right]$.

Solution: One way finding $x_{5}[n]$ is to realize that $X_{5}[n]$ is real and even meaning $x_{5}[n]$ is real and even. We'll show the derivation of its DFT in the next part.
Alternatively, we can compute the IDFT using the summation formula

$$
\begin{aligned}
x[n] & =\frac{1}{\sqrt{5}} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{5} k n} \\
& =\frac{1}{\sqrt{5}}\left(e^{j \frac{2 \pi}{5} n}+e^{j \frac{4 \pi}{5} n}+e^{j \frac{6 \pi}{5} n}+e^{j \frac{8 \pi}{5} n}\right)=\frac{1}{\sqrt{5}} e^{j \frac{2 \pi}{5} n} \frac{1-e^{j \frac{8 \pi}{5} n}}{1-e^{j \frac{2 \pi}{5} n}} \quad \text { Geometric Sum Formula } \\
& =\frac{1}{\sqrt{5}} e^{j \frac{2 \pi}{5} n} \frac{e^{j \frac{4 \pi}{5} n}}{e^{j \frac{\pi}{5} n}} \frac{e^{-j \frac{4 \pi}{5}}-e^{j \frac{4 \pi}{5}}}{e^{-j \frac{\pi}{5} n}-e^{j \frac{\pi}{5} n}}=\frac{1}{\sqrt{5}} e^{j \pi n} \frac{\sin \left(\frac{4 \pi}{5} n\right)}{\sin \left(\frac{\pi}{5} n\right)} \quad \text { Factor to pull out a sin } \\
& =\frac{(-1)^{n}}{\sqrt{5}} \frac{\sin \left(\frac{4 \pi}{5} n\right)}{\sin \left(\frac{\pi}{5} n\right)}
\end{aligned}
$$

This is valid for all $n \neq 0$. When $n=0$,

$$
x[0]=\frac{1}{\sqrt{5}} \sum_{k=0}^{N-1} X[k]=\frac{4}{\sqrt{5}}
$$

The real signal $x_{5}[n]$ is plotted below

(f) $X_{6}[k]=\cos \left(\frac{2 \pi}{5} k\right)$.

Solution: We can try to compute this using the IDFT matrix $F^{*}=U$. However, since X_{6} is real and even, x_{6} will be real and even. This implies that

$$
\begin{array}{ll}
x_{6}[n]=F^{*} X_{6}[k] & \text { IDFT Formula } \\
x_{6}[n]=\bar{F} X_{6}[k] & F \text { is symmetric } \\
\overline{x_{6}[n]}=F X_{6}[k] & \\
x_{6}[n]=F X_{6}[k] & \\
\text { Conjugating both sides } \\
x[n] \text { is real }
\end{array}
$$

Therefore, the IDFT of $X_{6}[k]$ is equal to its DFT.

$$
x_{6}[n]= \begin{cases}\frac{\sqrt{5}}{2} & k=1,4 \\ 0 & k \neq 1,4 .\end{cases}
$$

The real signal $x_{6}[n]$ is plotted below

3. DFT and Finite Sequences (X points)

Consider a system $A\{\vec{x}\}$ which operates on length- 8 sequences.

This system:

1) computes the DFT_{8} of the sequence,
2) multiplies the first 4 elements ($k=0,1,2,3$) by $-j$ and the next 4 elements $(k=4,5,6,7)$ by j, and
3) computes the IDFT_{8} of the result.

(a) Is the system linear?

Solution: This system is linear since it can be modeled as matrix multiplications

$$
\vec{y}=F^{*}\left[\begin{array}{ccccccc}
-j & & & & & & \\
& -j & & & & & \\
& & -j & & & & \\
& & & -j & & & \\
& & & & j & & \\
& & & & & j & \\
& & & & & & \\
& & & & & & \\
&
\end{array}\right] F \vec{x}
$$

We will refer to this diagonal matrix as D in the later parts.
(b) The system is applied on an input sequence $x[n]=\sin \left(\frac{\pi}{4} n\right), 0 \leq n<8$. What is $y[n]$, the output of the system? Full credit will only be given to the simplest expression.
Solution: Since $x[n]=\frac{1}{2 j} e^{j \frac{2 \pi}{8}}-\frac{1}{2 j} e^{-j \frac{2 \pi}{8}}$, its DFT is

$$
X[k]=\left[\begin{array}{llllllll}
0 & \frac{\sqrt{8}}{2 j} & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{8}}{2 j}
\end{array}\right]
$$

Applying the matrix multiplication, get

$$
D[k]=\left[\begin{array}{llllllll}
0 & -\frac{\sqrt{8}}{2} & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{8}}{2}
\end{array}\right]
$$

Lastly, taking the IDFT, we see that

$$
x[n]=F^{*} D[k]=-\cos \left(\frac{\pi}{4} n\right)
$$

(c) We apply two such systems in series to an arbitrary sequence $x[n], 0 \leq n<8$:

Express $y[n]$ in terms of $x[n]$. Full credit will only be given to the simplest expression.

Solution:

$$
\begin{aligned}
\vec{y} & =A^{2} \vec{x}=F^{*} D F F^{*} D F \vec{x} \\
& =F^{*} D^{2} F \vec{x}=-F^{*} F \vec{x} \\
& =-\vec{x}
\end{aligned}
$$

Note that D^{2} is a diagonal matrix of entries -1 . Therefore we conclude that $y[n]=-x[n]$.

4. Integration by Convolution

Consider the following system that acts as a discrete-time integrator.

$$
\begin{equation*}
y[n]-y[n-1]=x[n] \tag{3}
\end{equation*}
$$

We will assume that $y[n]=0$ for $n<0$.

(a) Show that this system is LTI.

Solution:

(i) Linearity:

- Scaling:

Let $x[n]$ be an input with output $y[n]$. Then if we input $\hat{x}[n]=\alpha x[n]$,

$$
\hat{x}[n]=\alpha x[n]=\alpha(y[n]-y[n-1])=\alpha y[n]-\alpha y[n-1]
$$

This implies that $\hat{y}[n]=\alpha y[n]$.

- Additivity:

Let $x_{1}[n]$ and $x_{2}[n]$ be inputs with outputs $y_{1}[n]$ and $y_{2}[n]$. Then if we input $\hat{x}[n]=\left(x_{1}+x_{2}\right)[n]$,

$$
\begin{aligned}
\hat{x}[n] & =x_{1}[n]+x_{2}[n]=y_{1}[n]-y_{1}[n-1]+y_{2}[n]-y_{2}[n-1] \\
& =y_{1}[n]+y_{2}[n]-y_{1}[n-1]-y_{2}[n-1]
\end{aligned}
$$

This shows that $\hat{y}[n]=y_{1}[n]+y_{2}[n]$ is the output.
(ii) Time-Invariance

Let $\hat{x}[n]=x\left[n-n_{0}\right]$ be a delayed input signal. We see that

$$
\hat{x}[n]=x\left[n-n_{0}\right]=y\left[n-n_{0}\right]-y\left[n-n_{0}-1\right]
$$

As a result, the output $\hat{y}[n]$ must be $\hat{y}[n]=y\left[n-n_{0}\right]$.
(b) What is the system's imuplse response?

Solution:

$$
\begin{array}{rlrl}
h[0]-h[-1] & =\delta[0] \\
h[n]-h[n-1] & =\delta[n] \quad \text { for } n>0 \\
\Longrightarrow h[0]=1 & h[n] & =h[n-1] \quad \text { for } n>0
\end{array}
$$

We conclude by saying that $h[n]$ is the unit step function $u[n]$.
(c) Suppose we input the unit step $x[n]=u[n]=\left\{\begin{array}{ll}1 & n \geq 0 \\ 0 & n<0\end{array}\right.$. What is the output $y[n]$?

Solution:

$$
\begin{array}{rlrl}
y[n] & =\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=0}^{\infty} h[k] x[n-k] & & \text { Convolution is commutative } \\
& =\sum_{k=0}^{\infty} x[n-k] & & h[k]=1 \text { for } k \geq 0 . \\
& =\sum_{k=0}^{n} x[k] & & x[n-k]=0 \text { for } k>n . \\
& =\sum_{k=0}^{n} 1=n+1 &
\end{array}
$$

(d) Now let's create a new system of the following model

where each $H_{\text {int }}$ represents one integrator system. How can we express the input-output relationship of $x[n]$ and $y[n]$?
Solution: The output of the first system is $y_{1}[n]=(x * h)[n]$. This is the output to the second system which will have output $y[n]=\left(y_{1} * h_{\text {int }}\right)[n]=\left(\left(x * h_{\text {int }}\right) * h_{\text {int }}\right)[n]$.
Since convolution is associative, we can write out the input-output relation as

$$
y[n]=x[n] *\left(h_{\text {int }} * h_{\text {int }}\right)[n]
$$

(e) What is the impulse response of this new system?

Solution: $\delta[n]$ is the convolution identity. Therefore, $h[n]=\left(\delta *\left(h_{\text {int }} * h_{\text {int }}\right)\right)[n]=\left(h_{\text {int }} * h_{\text {int }}\right)[n]$. We know that $h_{i n t}[n]=u[n]$ so from part (c), $h[n]=n+1$.
(f) If we input $x[n]=u[n]$ to this new system, what would the output $y[n]$ be?

Hint: What is the integrator system doing? If you aren't sure, look back at part (c).
Solution: The integrator system sums all of the values of $x[n]$ for $0 \leq k \leq n$. Therefore, the output to this system can be represented as

$$
\begin{aligned}
y[n] & =\sum_{i=1}^{n}(n+1)=\sum_{i=1}^{n} n+\sum_{i=1}^{n} 1 \\
& =\frac{(n+1)(n)}{2}+n+1=\frac{(n+2)(n+1)}{2}
\end{aligned}
$$

5. Stability of State Space Systems (X points)

Consider a discrete time state space system

$$
\vec{x}[n+1]=\mathbf{A} \vec{x}[n] .
$$

For which of the following possible matrices \mathbf{A} is the system stable? Explain your answers.
(a) (X pts)

$$
\mathbf{A}=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \begin{aligned}
& \text { Stable? Yes / No } \\
& \text { Explanation: }
\end{aligned}
$$

Solution: $\lambda=0, \frac{1}{2} \Longrightarrow$ system is stable.
(b) ($\mathbf{X} \mathbf{~ p t s}$)

$$
\mathbf{A}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& \text { Stable? Yes / No } \\
& \text { Explanation: }
\end{aligned}
$$

Solution: This is a circulant matrix of the signal $x[n]=\left[\begin{array}{llll}\frac{1}{2} & 0 & -\frac{1}{2} & 0\end{array}\right]$. Therefore, its eigenvalues will the \sqrt{N} times the DFT coefficients $X[k]$.

$$
\begin{aligned}
x[n] & =\frac{1}{2} \cos \left(\frac{2 \pi}{4} n\right) \Longrightarrow X[k]=\left[\begin{array}{llll}
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right] \\
\lambda_{1} & =0 \quad \lambda_{2}=1 \quad \lambda_{3}=0 \quad \lambda_{4}=1
\end{aligned}
$$

Since $\left|\lambda_{2}\right|=1$, the system is unstable.

For parts (c) and (d), consider a continuous time system

$$
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=\mathbf{A} \vec{x}(t)
$$

(c) ($\mathbf{X} \mathbf{~ p t s}$)

$$
\mathbf{A}=\left[\begin{array}{cccccc}
-1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right]
$$

Stable? Yes / No Explanation:

Solution: The matrix A has rank 1 meaning it has eigenvalues of 0 . Therefore, the system is unstable.
(d) ($\mathbf{X} \mathbf{~ p t s}$) Recall that we are still considering the continuous time system.

$$
\mathbf{A}=\left[\begin{array}{cccc}
-2 & 1 & 0 & -1 \\
-1 & -2 & 1 & 0 \\
0 & -1 & -2 & 1 \\
1 & 0 & -1 & -2
\end{array}\right] \quad \begin{aligned}
& \text { Stable? Yes / No } \\
& \text { Explanation: }
\end{aligned}
$$

Solution: This is a circulant matrix of the signal $x[n]=\left[\begin{array}{llll}-2 & -1 & 0 & 1\end{array}\right]$.
Therefore, its eigenvalues will the \sqrt{N} times the DFT coefficients $X[k]$.

$$
\begin{aligned}
X[0] & =\frac{1}{2} \sum_{n=0}^{3} x[n]=-1 \\
X[1] & =\frac{1}{2} \sum_{n=0}^{3} x[n] e^{-j \frac{\pi}{2} n}=-1-j \\
X[2] & =\frac{1}{2} \sum_{n=0}^{3}(-1)^{n} x[n]=-1 \\
X[3] & =X[1]=-1+j \\
\lambda_{1} & =-2 \quad \lambda_{2}=-2-2 j \quad \lambda_{3}=-2 \quad \lambda_{4}=-2+2 j
\end{aligned}
$$

Since all eigenvalues have real part less than 0 , the system is stable.

6. Signals and Systems (X points)

Consider a discrete time observable system

$$
\begin{aligned}
\vec{x}[n+1] & =\mathbf{A} \vec{x}[n]+\mathbf{B} u[n] \\
y[n] & =\mathbf{C} \vec{x}[n],
\end{aligned}
$$

where $\mathbf{A} \in \mathbb{R}^{N \times N}, \mathbf{B} \in \mathbb{R}^{N \times 1}$, and $\mathbf{C} \in \mathbb{R}^{1 \times N}$ are unknown. The system is in the state $\vec{x}=\overrightarrow{0}$ before any input is applied and is therefore LTI.
(a) (X pts) Given the following input-output pairs $u[n]$ and $y[n]$, what is the impulse response $h[n]$ of the system? Assume that the signals are 0 everywhere else.

Solution: Since the system is LTI and $\delta[n]=\frac{1}{2}\left(u_{1}[n]+u_{2}[n]\right), h[n]=\frac{1}{2}\left(y_{1}[n]+y_{2}[n]\right)$.

$$
h[n]=\left[\begin{array}{lllllllll}
1 & 2 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(b) (X pts) Is the system BIBO stable?

Solution: An LTI System is BIBO Stable iff

$$
\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

In our case, the sum is equal to 5 so the system must be stable.
(c) (X pts) Given the unit step input $u[n]=\left\{\begin{array}{ll}1, & n \geq 0 \\ 0, & n<0\end{array}\right.$, the system's output eventually reaches a steady state value. At what time step does the output reach the steady state value and what is the steady state value of the output?
Solution: If we compute the convolution $(u * h)[n]$, we get the following result

The steady state is $y=5$ and the output reaches it at time $n=5$.

7. Sampling and Interpolation

Consider a frequency source that produces a signal

$$
x(t)=\cos \left(2 \pi f_{0} t\right) .
$$

This signal is sampled with a sampling interval of $T_{s}[\sec]$ and reconstructed as $\tilde{x}(t)$ using sinc interpolation.
(a) What are the sampling intervals that will result in a constant $\tilde{x}(t)$ for all t ?

Solution: Aliasing of a pure frequency onto DC occurs when $f_{s}=\frac{f_{0}}{n}$ for $n=1,2, \ldots$. Therfore, $T_{s}=\frac{n}{f_{0}}$ for $n=1,2, \ldots$ and

$$
x[n]=\cos \left(2 \pi f_{0} n T_{s}\right)=\cos (2 \pi n)=1
$$

which will be interpolated to a constant.
(b) How quickly must we sample $x(t)$ in order to get a perfect reconstruction?

Solution: $\quad \omega_{\max }=2 \pi f_{0}$. From the Sampling Theorem, we know that if $\omega_{\max }<\frac{\pi}{T_{s}}$, then the reconstruction will be perfect. This is equivalent to saying $T_{s}<\frac{1}{2 f_{0}}$.

Contributors:

- Taejin Hwang.
- Miki Lustig.
- Aditya Arun.
- Titan Yuan.

