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EECS 16B Designing Information Devices and Systems II
Summer 2020 UC Berkeley SVD Review

1. Pick a Matrix
Given an example of a square matrix that satisfies the following conditions or prove that no such example
can exist.

(a) (i) Can be diagonalized and is invertible.
(ii) Cannot be diagonalized but is invertible.

(iii) Can be diagonalized but is non-invertible.
(iv) Cannot be diagonalized and is non-invertible.

Solution: All of these matrices exist!
(i)

A =

[
2 0
0 −3

]
(ii)

A =

[
2 1
0 2

]
(iii)

A =

[
0 0
0 0

]
(iv)

A =

[
0 1
0 0

]
(b) (i) Has orthogonal columns and is invertible.

(ii) Has orthogonal columns but is non-invertible.
(iii) Has orthonormal columns and is diagonalizble.

Solution:
(i)

A =

[
1 1
1 −1

]
(ii) Remember that the zero vector is orthogonal to every vector.

A =

[
1 0
1 0

]
(iii)

A =

[
1 0
0 1

]
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2. Orthonormal T/F

(a) T If U is a matrix with orthonormal columns, then U∗U = I.

Solution: True, since~u∗i~u j = 1 if i = j and = 0 for i 6= j.

(b) F If U is a matrix with orthornomal columns, then UU∗ = I.

Solution: If U is not square then UU∗ cannot have rank n so UU∗ 6= I.

(c) T If U is matrix with orthonormal columns then‖U~x‖=‖~x‖ for all~x ∈ Cn.

Solution: True, since U∗U = I.

(d) F A matrix U with orthonormal columns has real eigenvalues.

Solution: False, take U =

[
0 1
−1 0

]
.

(e) T The singular values of a unitary matrix are all equal to 1.

Solution: True, since U∗U = I.

(f) F The eigenvalues of a unitary matrix are all equal to 1.

Solution: False, take the example from part (d)

3. Spectral T/F

(a) T The matrix A∗A is Hermitian.

Solution: True, since (A∗A)∗ = (A∗)(A∗)∗ = A∗A.

(b) F A symmetric matrix can have complex eigenvalues.

Solution: False, from the Spectral Theorem.

(c) F The matrix A∗A has positive eigenvalues.

Solution: False, A∗A may have an eigenvalue of zero. Only if A is full rank does A∗A have positive
eigenvalues.

(d) T For a Hermitian matrix, the eigenvectors of distinct eigenvalue are orthogonal.

Solution: True, from the Spectral Theorem.

(e) F Linearly independent eigenvectors of the same eigenvalue of a Hermitian matrix are orthogonal.

Solution: False, take A = I. Then any nonzero vector~x is an eigenvector.

(f) F The U and V matrices of the SVD of a Hermitian matrix are identical.

Solution: False, if the matrix has negative eigenvalues, then the vectors in the U and V matrix will
have opposite signs.
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4. SVD Stuff (X pts)

(a) Compute the SVD of the following matrix. Express your answer in the the form of ∑i σi~ui~v>i

A =
[
~a −~a

]
Here,~a is some arbitrary vector in Rn

Solution:
A = σ1~u1~v>1

where~u1 =
~a
‖a‖

,~v1 =

[
1√
2

− 1√
2

]
, and σ1 =‖a‖∗

√
2

(b) Compute the compact form SVD of

A =

[
1 1 1 1 1 0
0 1 1 1 1 1

]

Solution:

AA> =

[
5 4
4 5

]

So the eigenvalues/eigenvectors of AA> are λ1 = 9,~u1 =
1√
2

[
1
1

]
λ2 = 1,~u2 =

1√
2

[
1
−1

]
.

This means that σ1 = 3,σ2 = 1. To calculate~vi, we can apply the formula~vi =
1
σi

A>~ui. Thus,

~v>1 =
1

3
√

2

[
1 2 2 2 2 1

]
~v>2 =

1√
2

[
1 0 0 0 0 −1

]
(c) Consider an A matrix where each row is a vector in R2 that corresponds to one point in the plot below:
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On the plot above, draw your best estimate for~v1 and~v2.

Solution:
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~v1

~v2
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5. Spectral Norm Proof

How can we measure the size of a matrix? One way to think about this is to look at the ratio ‖A~x‖‖~x‖ over all
vectors~x. In fact, the Spectral Norm of a matrix‖A‖2 can be defined as

‖A‖2 = max
~x 6=~0

‖A~x‖
‖~x‖

In this problem we will try to find what the value of ‖A‖2 is and show that it in fact is related to the SVD.
Let’s start by noting that AT A is symmetric and has eigenvalue decomposition V ΛV T .

(a) For~x ∈ Rn, decompose~x as a linear combination of the set of orthonormal eigenvectors of AT A.
Solution: In order to write~x as a linear combination of the vectors~v1, . . . ,~vn, we must find scalars αi

where
~x = α1~v1 + . . .αn~vn

If we take the inner product of~x with~vi, since the eigenvectors are orthonormal, we will get:

〈~x,~vi〉= αi〈~vi,~vi〉= αi

Therefore we can write out~x as:

~x = 〈~x,~v1〉~v1 + . . .〈~x,~vn〉~vn

=
n

∑
i=1
〈~x,~vi〉~vi

(b) Express ‖A~x‖2 in terms of~vi,~x, and σi, for i ∈ {1,2, ...,n}.
Solution:

‖A~x‖2 = (A~x)T A~x =~xT AT A~x

=
( n

∑
i=1
〈~x,~vi〉~vT

i

)
AT A

( n

∑
i=1
〈~x,~vi〉~vi

)
=
( n

∑
i=1
〈~x,~vi〉~vT

i

)( n

∑
i=1

λi〈~x,~vi〉~vi

)
=

n

∑
i=1

λi〈~x,~vi〉2

We know that λi = σ2
i so we finish up by expressing‖A~x‖2 as

‖A~x‖2 =
n

∑
i=1

σ
2
i 〈~x,~vi〉2

(c) Find a unit vector~x that maximizes ‖A~x‖2.
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Solution: Since ~x is a unit vector, we know ‖~x‖ = 1. Using our expression for ~x in part (a), we can
write out its norm as:

‖~x‖2 =~xT~x

=

( n

∑
i=1
〈~x,~vi〉~vi

)T( n

∑
i=1
〈~x,~vi〉~vi

)
=

n

∑
i=1
〈~x,~vi〉2 = 1

If we let αi = 〈~x,~vi〉2, we see that αi > 0,

n

∑
i=1

αi = 1 and ‖A~x‖2 =
n

∑
i=1

αiσ
2
i

meaning‖A~x‖2 is a linear combination of σ2
i with αi as the scalars summing up to 1.

Since σ1 ≥ σ2 ≥ . . . ≥ σn, the ‖A~x‖2 is maximized when α1 = 1 and all the other αi = 0. Note that
α1 = 1 is equivalent to saying that 〈~x,~v1〉2 = 1 so~x =±~v1.

(d) Show that ‖A~x‖ ≤ σ1‖x‖ for any x ∈ Rn. Thus,‖A‖2 = σ1.

Solution: From previous parts, we know

‖A~x‖2 =
n

∑
i=1

σ
2
i 〈x,vi〉2

≤ σ
2
1

n

∑
i=1
〈x,vi〉2

= σ
2
1 ‖x‖2.

Thus,
‖A~x‖ ≤ σ1‖x‖.

And when~x =±‖x‖~v1, the maximum of ‖A~x‖‖x‖ is reached:

max
‖A~x‖
‖x‖

= σ1.

(e) Show that ‖A~x‖ ≥ σn‖x‖ for any x ∈ Rn. Thus, min ‖A~x‖‖x‖ = σn.

Solution: We can set up the same problem we did in part (b) and realize that

‖A~x‖2 =
n

∑
i=1

σ
2
i 〈x,vi〉2

≥ σ
2
n

n

∑
i=1
〈x,vi〉2

= σ
2
n ‖x‖2.

The norm‖A~x‖ is minimized when~x =±‖x‖~vn. Thus min ‖A~x‖‖x‖ = σn.
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6. SVD (X points)

(a) Let A ∈ R2×2 and~x =

[
sin(θ)
cos(θ)

]
, ||~x||= 1. Now let~y = A~x. Below is the plot of ||~y|| vs θ .

A has the SVD UΣV>. Either specify what the matrices U , Σ, and V are; or state they they cannot be
determined from the information given.

Solution: We know that σ2 ≤ ||A~x|| ≤ σ1, so from the above graph we can see that σ1 = 5 and
σ2 = 1.

These occur for ~x =

[
1√
2

1√
2

]
= ~v1 and ~x =

[
1√
2
−1√

2

]
= ~v2 respectively. Since we observe ||~y||, ~y can be

arbitrarily rotated by U, so we cannot deduce a unique U.

(b) Let A ∈ RN×N ,B ∈ RN×N be full rank matrices and let~x ∈ RN have ||~x||= 1. Let~y = AB~x.
Find a upper bound for ||~y|| in terms of the singular values of A and B. Explain your answer.
Solution:

||B~x|| ≤ σmax{A}∥∥∥∥∥A
~̃x
||~̃x||

∥∥∥∥∥≤ σmax{A}

Where σmax{M}, for some matrix M, is the largest singular value of M.
If~x = ~v1{B} and B~x = ~v1{A}, then the output is maximal, with

||AB~x||= σmax{A} ·σmax{B}
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7. Low Rank Approximation

Given a m× n matrix A, of high rank, we want to see how we can best approximate this matrix A using a
lower rank matrix Ak of rank k << n.

To measure this Low-Rank approximation, we will look at the following norm: ‖A−Bk‖2 where Bk is a
matrix of rank k. In this problem, we will are interested in the following optimization problem

min
Bk
‖A−Bk‖2

subject to Rank(Bk)≤ k

and show that the optimal Bk is in fact Ak or the rank k SVD approximation of A:

Ak =
k

∑
i=1

σi~ui~vT
i (1)

(a) What is the spectral norm of‖A−Ak‖2?

Solution: We know from the SVD that A =UΣV T =
n
∑

i=1
σi~ui~vT

i . Therefore, A−Ak =
n
∑

i=k+1
σi~ui~vT

i . As

a result, the spectral norm of A−Ak will be its largest singular value, which in this case will be σk+1.

To show Ak is optimal, we must show that‖A−Bk‖2 ≥‖A−Ak‖2 = σk+1 for any matrix Bk of rank k.

To do this, we will first consider a vector~y = α1~v1 + · · ·+αk+1~vk+1 that is a linear combination of the first
k+ 1 vectors of the V matrix of the SVD of A. We will also define a subspace S = span{~v1, . . . ,~vk+1} and
show that there must exist a vector~y in both S and Nul(Bk).

(b) What are the dimensions of the Nul(Bk) and S?

Solution: By the Rank-Nullity Theorem, we know that Rank(Bk)+dim Nul(Bk) = n.
Since Rank(Bk) = k, we see that dim Nul(Bk) = n− k.
Since S = span{~v1, . . . ,~vk+1}, and all of the vectors ~vi are linearly independent, R = {~v1, . . . ,~vk+1}
forms a basis for S meaning S has dimension k+1.

(c) Show that there must exist a~y = α1~v1 + . . .+αk+1~vk+1 that is in both subspaces Nul(Bk) and S.
Hint: Let R be a basis for S. Then create a basis B for the Nul(Bk) and look at the union of the two
bases.

Solution: We know that R = {~v1, . . . ,~vk+1} is a basis for S. Since Nul(Bk) has dimension n− k, we
can pick a basis B = {~w1, . . . ,~wn−k} for Nul(Bk). Now if we look at R∪B, this is a set of n+1 vectors
that are in Rn, so this set must be linearly dependent. This means that we can write ~wn−k as a linear
combination of the remaining vectors:

~wn−k = α1~v1 + . . .+αk+1~vk+1 +β1~w1 + . . .+βn−k−1~wn−k−1.

Subtracting over the ~wi vectors, we see that

α1~v1 + . . .+αk+1~vk+1 =−β1~w1− . . .−βn−k−1~wn−k−1 +~wn−k.

As a result,~y = α1~v1 + . . .+αk+1~vk+1 is a linear combination of the vectors in R so it must be in S. It
is also however, a linear combination of the vectors in B so it must also be in Nul(Bk).
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(d) Let‖~y‖= 1 and show that‖A−Bk‖2 ≥
∥∥(A−Bk)~y

∥∥.

Solution: Using the definition of the spectral norm, we see that

‖A−Bk‖2 = max
~x 6=0

∥∥(A−Bk)~x
∥∥

‖~x‖

If we put the constraint that‖~x‖= 1, then

‖A−Bk‖2 = max
‖~x‖=1

∥∥(A−Bk)~x
∥∥ .

which implies that
‖A−Bk‖2 ≥

∥∥(A−Bk)~y
∥∥

(e) Express‖~y‖2 and‖A~vi‖2 in terms of α1, . . . ,αk+1.

Solution: Using the definition of a norm with respect to the inner product we get:

‖~y‖2 = 〈~y,~y〉= 〈α1~v1 + . . .+αk+1~vk+1,α1~v1 + . . .+αk+1~vk+1〉

Then we can use the distributive properties of norms, and the fact that~vi are orthonormal to cancel the
cross-terms.

‖~y‖2 =
k+1

∑
i=1
〈αi~vi,αi~vi〉=

k+1

∑
i=1

α
2
i 〈~vi,~vi〉=

k+1

∑
i=1

α
2
i

For the‖A~vi‖ , we again apply the definition of a norm with respect to the inner product to get:

‖A~vi‖2 = 〈A~vi,A~vi〉= (A~vi)
T (A~vi)

=~vT
i AT A~vi =~vT

i (λi~vi) = λi~vT
i ~vi

= λi = σ
2
i

Therefore‖A~vi‖= σi.

(f) Simplify
∥∥(A−Bk)~y

∥∥ and conclude that‖A−Bk‖2 ≥ σk+1.

Solution: Since~y is in Nul(Bk), we can simplify
∥∥(A−Bk)~y

∥∥ as:∥∥(A−Bk)~y
∥∥=‖A~y−Bk~y‖=‖A~y‖

Plugging in for~y = α1~v1 + . . .+αk+1~vk+1 and looking at‖A~y‖2 , we get:

‖A~y‖2 = 〈α1A~v1 + . . .+αk+1A~vk+1,α1A~v1 + . . .+αk+1A~vk+1〉
= α

2
1 〈A~v1,A~v1〉+ . . .+α

2
k+1〈A~vk+1,A~vk+1〉

= α
2
1 σ

2
1 + . . .+α

2
k+1σ

2
k+1

However, since σ1 ≥ σ2 ≥ . . .≥ σk+1 and α2
1 + . . .+α2

k+1 = 1,‖A~y‖2 ≥ σ2
k+1.

Therefore, we conclude by saying that ‖A~y‖ ≥ σk+1 which implies ‖A−Bk‖2 ≥ σk+1 proving the
optimality of Ak.
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8. PCA Midterm question
This question comes from fa17 midterm 2.

Consider a matrix A ∈ R2500×4 which represents the EE16B Sp’2020 midterm 1, midterm 2, final and lab
grades for all 2500 students taking the class.

To perform PCA, you subtract the mean of each column and store the results in Ã. Your analysis includes:

(a) Computing the SVD: Ã = σ1~u1~vT
1 +σ2~u2~vT

2 +σ3~u3~vT
3 +σ4~u4~vT

4 and plot the singular values.
(b) Computing the graph~uT

1 Ã and~uT
2 Ã

The analysis data are plotted below:

Based on the analysis, answer the following true or false questions. Briefly explain your answer.

(a) T The data can be approximated well by two principle components.

Solution:
True. From graph (i), there are two significant singular values, the rest are small.

(b) T The students’ exam scores have significant correlation between the exams.

Solution: True. ~uT
i ãi gives the correlation between the ith principle component and the variable

stored in the ith column of Ã. From graph (ii), both midterms as well as final grades are highly
correlated with the first principle component while all three also have little to no correlation to the
second principle component. This means the exam scores are highly correlated with each other.
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(c) F The middle plot (ii) shows that students who did well on the exam did not do well in the labs and
vice versa.

Solution: False. Graph (ii) shows that the exam scores and lab scores are not correlated at all. i.e.
we cannot determine a student’s lab score from their exam scores and vice versa.

(d) T One of the principle components attributes is solely associated with lab scores and not with exam
scores.

Solution: True. From graph (ii), the second principle component is only highly correlated with the
lab scores.

(e) Circle all the scatter plots that could describe the data projected on the largest two principle compo-
nents.

Solution: Plots (i) and (iv) are possible projections. Plot (ii) has more variance along the diagonal
axis of~v1 and~v2 which contradicts the choice of~v1 as the direction of maximal variance. Plot (iii) is
not centered around the origin.
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