1 Differentiator Circuit

Consider the following circuit

![Differentiator Circuit Diagram]

1. What is the transfer function $H(j\omega)$?

2 Parallel RLC

Consider the circuit shown below.

![Parallel RLC Diagram]

At $t < 0$, S_1 is on (short-circuited), and S_2 is off (open-circuited).
At $t \geq 0$, S_1 is off (open-circuited), and S_2 is on (short-circuited).

1. Right after the switches change state (i.e., at $t = 0$), what is the value of i_L?
2. Choosing the state variables as \(\tilde{x}(t) = \begin{bmatrix} V_{\text{out}}(t) \\ i_L(t) \end{bmatrix} \), derive the \(A \) matrix that captures the behavior of this circuit for \(t \geq 0 \) with the matrix differential equation \(\frac{d\tilde{x}(t)}{dt} = A\tilde{x}(t) + \tilde{b} \), where \(\tilde{b} \) is a vector of constants.

3. Assuming that \(V_{\text{out}}(0) = 0 \) V, derive an expression for \(V_{\text{out}}(t) \) for \(t \geq 0 \).
3 Diagonalizability and Invertibility

1. Given an example of a matrix A, or prove that no such example can exist.
 - Can be diagonalized and is invertible.
 - Cannot be diagonalized but is invertible.
 - Can be diagonalized but is non-invertible.
 - Cannot be diagonalized and is non-invertible.

4 Eigenvalue Decomposition and Singular Value Decomposition

We define Eigenvalue Decomposition as follows:

If a matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\vec{p}_1, \ldots, \vec{p}_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then we can write:

$$A = P \Lambda P^{-1}$$

Where columns of P consist of $\vec{p}_1, \ldots, \vec{p}_n$, and Λ is a diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$.

Consider a matrix $A \in \mathbb{S}^n$, that is, $A = A^T \in \mathbb{R}^{n \times n}$. This is a symmetric matrix and has orthogonal eigenvectors. Therefore its eigenvalue decomposition can be written as,

$$A = P \Lambda P^T$$

1. First, assume $\lambda_i \geq 0, \forall i$. Find the SVD of A.

2. Let one particular eigenvalue λ_j be negative, with the associated eigenvector being p_j. Succinctly,

 $$Ap_j = \lambda_j p_j$$

 with $\lambda_j < 0$

 We are still assuming that,

 $$A = P \Lambda P^T$$

 a) What is the singular value σ_j associated to λ_j?

 b) What is the relationship between the left singular vector u_j, the right singular vector v_j and the eigenvector p_j?