Lecture 3

Adjoint and self-adjoint operators and matrices

An inner product structure on a \mathbb{C}-vector spaces induces a "mirrored" twin for every linear transformation, called the adjoint. Linear operators equal their own adjoints have many important properties.

3.1 Adjoint of an operator or matrix

Definition 15 (Adjoint of a linear map). Let $f: U \rightarrow V$ be a linear map between two inner product spaces. The adjoint of f, denoted by $f^{*}: V \rightarrow U$, is the unique linear map such that $\langle f(u), v\rangle=\left\langle u, f^{*}(v)\right\rangle$ for all $u \in U$ and $v \in V$.
Theorem 13 (Technical facts about adjoints). Let f and g be two linear operators on V.

1. $(\alpha f+g)^{*}=\bar{\alpha} f^{*}+g^{*}$ (conjugate linear)
2. $(f g)^{*}=g^{*} f^{*}$ (reverses composition)
3. $\left(f^{*}\right)^{*}$ (involutive)
4. $I^{*}=I$ (identity operator is its own adjoint)

Proof. 1. Let $x, y \in V$. We need to show that $\langle(\alpha f+g) x, y\rangle=\left\langle x,\left(\bar{\alpha} f^{*}+g^{*}\right) y\right\rangle$.

$$
\begin{align*}
\langle(\alpha f+g) x, y\rangle & =\alpha\langle f x, y\rangle+\langle g x, y\rangle \tag{3.1}\\
& =\alpha\left\langle x, f^{*} y\right\rangle+\left\langle x, g^{*} y\right\rangle \tag{3.2}\\
& =\left\langle x,\left(\bar{\alpha} f^{*}+g^{*}\right) y\right\rangle \tag{3.3}\\
& =\left\langle x, \bar{\alpha} f^{*}\right\rangle+\left\langle x, g^{*} y\right\rangle \tag{3.4}
\end{align*}
$$

2. Same setup as before. $\langle f g x, y\rangle=\left\langle g x, f^{*} y\right\rangle=\left\langle x, g^{*} f^{*} y\right\rangle$.
3. Same setup as before. $\left\langle f^{*} x, y\right\rangle=\overline{\left\langle y, f^{*} x\right\rangle}=\overline{\langle f y, x\rangle}=\langle x, f y\rangle$.
4. Same setup as before. $\langle I x, y\rangle=\langle x, I y\rangle$.

Definition 16 (Adjoint of a matrix). Let $A \in \mathbb{C}^{m \times n}$. The adjoint or conjugate transpose of A is the matrix A^{*} such that $A_{i j}^{*}=\overline{A_{j i}}$.
Theorem 14. Over an inner product space of finite dimension, adjoints exist. In \mathbb{C}^{n} with the standard inner product, an adjoint matrix is the matrix of the adjoint of the linear operator it represents.

3.2 Self-adjoint operators

In this section we'll prove a condition for matrices to be orthogonally (-normally) diagonalizable.

Definition 17 (Self-adjoint). A linear operator or matrix is called self-adjoint or Hermitian if it is equal to its own adjoint.

Lemma 1 (Real eigenvalues). Let $f: V \rightarrow V$ be a Hermitian operator and λ an eigenvalue of f. Then λ is real.

Proof. Let v be a unit eigenvector of f satisfying $f(v)=\lambda v$. Then

$$
\begin{align*}
\lambda & =\langle f v, v\rangle \tag{3.6}\\
& =\langle v, f v\rangle \tag{3.7}\\
& =\overline{\langle f v, v\rangle} \tag{3.8}\\
& =\bar{\lambda} . \tag{3.9}
\end{align*}
$$

A large class of complex matrices with complex eigenvectors, but real eigenvalues. Wow! Wow!

Definition 18 (Restriction). Let W be a subspace of V and f a linear operator on V. If $f(W) \subseteq W$, then W is called f-invariant or f-stable. The linear operator $\left.f\right|_{W}: W \rightarrow W$ defined by $\left.f\right|_{W}(w)=f(w)$ is called the restriction of f to W.

Theorem 15 (Spectral $\underline{1}^{1}$ theorem). A linear operator $f: V \rightarrow V$ is self-adjoint if and only if it is diagonal and real in an orthonormal basis of V.

Proof. First we show that (diagonal and real in an orthonormal basis) \Longrightarrow (self-adjoint). Suppose that the matrix of f is diagonal and real in an orthonormal basis. A diagonal real matrix is equal to its conjugate transpose. Therefore, as orthonormal bases faithfully represent inner product spaces and maps between them, f is self-adjoint.

Next we show that (self-adjoint) \Longrightarrow (diagonal and real in an orthonormal basis). We will use induction on n, the dimension of V. If $n=1$ then f is already diagonal in any basis.

Next we need to show that if the Spectral Theorem holds on vector spaces of dimension $n-1$, then it holds on vector spaces of dimension n.

By the Fundamental Theorem of Algebra, f has an eigenvalue λ. Because f is self-adjoint, λ is real. Let v be an eigenvector such that $f(v)=\lambda v$. Both $\operatorname{Span} v$ and its orthogonal complement $(\operatorname{Span} v)^{\perp}$ are stable under f, the former because it is an eigenspace, the latter in this way: let $\left\langle v^{\prime}, v\right\rangle=0$. Then $\left\langle f\left(v^{\prime}\right), v\right\rangle=\left\langle v^{\prime}, f(v)\right\rangle=\bar{\lambda}\left\langle v^{\prime}, v\right\rangle=0$.

By the induction hypothesis, $\left.f\right|_{(\operatorname{Span} v)^{\perp}}$ has $n-1$ orthogonal eigenvectors in W. They are still eigenvectors, and still orthogonal, when treated as members of V. Furthermore, they are orthogonal to v by construction.

As such f has a basis of orthogonal eigenvectors, so it has a basis of orthonormal eigenvectors as well.

Lemma 2 (Spectral theorem, factorization version). Let $A \in \mathbb{C}^{n \times n}$ satisfy $A=A^{*}$. Then there exist a unitary matrix U and a real diagonal matrix Λ such that $A=U \Lambda U^{*}$.

Notice that $U^{*}=U^{-1}$, so no manual inversion necessary.

[^0]Lemma 3 (Spectral theorem, projection version). Let $f: V \rightarrow V$ satisfy $f=f^{*}$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be orthonormal eigenvectors of f with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Then $f=\sum_{i=1}^{n} \lambda_{i} \operatorname{proj}_{v_{i}}$. That is, every self-adjoint operator is a real linear combination of orthogonal projections.
Lemma 4 (Spectral theorem, dyad version). The last and final form of the Spectral Theorem can be seen either as an expansion of the factorization version into outer products or as a translation of the projection version into orthonormal coordinates. Let $A \in \mathbb{C}^{n}$ satisfy $A=A^{*}$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be orthonormal eigenvectors of f with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Then $f=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{*}$.

Application: direction of maximum amplification

Given a nonzero matrix $A \in \mathbb{C}^{n \times n}$, we might wonder what spatial direction gives you the best bang for your buck under left multiplication by A. That is, we are interested in the maximum amplification that A can exert on any vector:

$$
\begin{equation*}
\max _{v} \frac{\|A v\|}{\|v\|} \tag{3.10}
\end{equation*}
$$

We can narrow our search to unit vectors.

$$
\begin{equation*}
\max _{\|v\|=1} \sqrt{\langle A v, A v\rangle}=\max _{\|v\|=1} \sqrt{\left\langle A^{*} A v, v\right\rangle} \tag{3.11}
\end{equation*}
$$

$A^{*} A$ is self-adjoint: $\left(A^{*} A\right)^{*}=\left(A^{*}\right)\left(A^{*}\right)^{*}=A^{*} A$. Diagonalize it as $A^{*} A=U \Lambda U^{*}$.

$$
\begin{align*}
& =\max _{\|v\|=1} \sqrt{\left\langle U \Lambda U^{*} v, v\right\rangle} \tag{3.12}\\
& =\max _{\|v\|=1} \sqrt{\left\langle\Lambda U^{*} v, U^{*} v\right\rangle} \tag{3.13}
\end{align*}
$$

Change variables to $w=U^{*} v$.

$$
\begin{equation*}
=\max _{\|w\|=1} \sqrt{\langle\Lambda w, w\rangle} \tag{3.14}
\end{equation*}
$$

This maximum is achieved when $w=e_{i}$, where λ_{i} is a maximal entry of Λ.

$$
\begin{equation*}
=\sqrt{\lambda_{\max }\left(A^{*} A\right)} \tag{3.15}
\end{equation*}
$$

The furthest that A can magnify any vector is the square root of $\lambda_{\text {max }}$, a maximal eigenvalue of $A^{*} A$. It quantifies how " $\mathrm{big}^{\prime} A$ is, and is sometimes called are σ_{1} or $\|A\|_{2}$, the operator norm of A.

[^0]: ${ }^{1}$ The word spectral imputes an aura of magic and mystery. That is fitting because this theorem is very, very powerful.

