EECS 16B Summer 2020 EECS 16B Linear Algebra Notes

Lecture 3

Adjoint and self-adjoint operators and
matrices

An inner product structure on a C-vector spaces induces a “mirrored” twin for every linear
transformation, called the adjoint. Linear operators equal their own adjoints have many
important properties.

3.1 Adjoint of an operator or matrix

Definition 15 (Adjoint of a linear map). Let f : U — V be a linear map between two inner
product spaces. The adjoint of f, denoted by f* : V — U, is the unique linear map such that
(f(u), v) = (u,f*(v))for alueUandv e V.

Theorem 13 (Technical facts about adjoints). Let f and g be two linear operators on V.
1. (af +g) =af* + g" (conjugate linear)
2. (fg) = g'f* (reverses composition)
3. (f*)" (involutive)
4. I" = I (identity operator is its own adjoint)

Proof. 1. Letx,y € V. We need to show that ((af + g) x,y) = (x, (@f" + ") v)-

((af +8)x,y)=a(fx,y)+(gx,y) (3.1)
=a(x, fy)+(x,8"y) (3.2)

=(x,(af +¢)y) (3.3)

= <x,§f*> + (x,g*y> (34)

(3.5)

2. Same setup as before. <fgx,y> = <gx,f*y> = (x,g*f*y).

3. Same setup as before. {f*x, y) = (y, f*x) = (fy,x) = (x, fy).

4. Same setup as before. <Ix, y> = <x, Iy).

O

Definition 16 (Adjoint of a matrix). Let A € C"™*". The adjoint or conjugate transpose of A
is the matrix A* such that A’zf]. = A_]Z

Theorem 14. Over an inner product space of finite dimension, adjoints exist. In C* with the standard
inner product, an adjoint matrix is the matrix of the adjoint of the linear operator it represents.
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3.2. Self-adjoint operators

3.2 Self-adjoint operators

In this section we'll prove a condition for matrices to be orthogonally (-normally) diagonal-
izable.

Definition 17 (Self-adjoint). A linear operator or matrix is called self-adjoint or Hermitian if it
is equal to its own adjoint.

Lemma 1 (Real eigenvalues). Let f : V — V be a Hermitian operator and A an eigenvalue of f.
Then A is real.

Proof. Let v be a unit eigenvector of f satisfying f(v) = Av. Then

A= <fv,v> (3.6)
= <v,fv) (3.7)
=(fv,v) (3.8)
=A. 3.9)

]

A large class of complex matrices with complex eigenvectors, but real eigenvalues. Wow!
Wow!

Definition 18 (Restriction). Let W be a subspace of V and f a linear operator on V. If f(W) C W,
then W is called f-invariant or f-stable. The linear operator fr : W — W defined by

f’w (w) = f(w) is called the restriction of f to W.

w

Theorem 15 (SpecTrAL[| THEOREM). A linear operator f : V — V is self-adjoint if and only if
it is diagonal and real in an orthonormal basis of V.

Proof. First we show that (diagonal and real in an orthonormal basis) = (self-adjoint).
Suppose that the matrix of f is diagonal and real in an orthonormal basis. A diagonal
real matrix is equal to its conjugate transpose. Therefore, as orthonormal bases faithfully
represent inner product spaces and maps between them, f is self-adjoint.

Next we show that (self-adjoint) = (diagonal and real in an orthonormal basis). We
will use induction on n, the dimension of V. If n = 1 then f is already diagonal in any basis.

Next we need to show that if the Spectral Theorem holds on vector spaces of dimension
n — 1, then it holds on vector spaces of dimension #.

By the Fundamental Theorem of Algebra, f has an eigenvalue A. Because f is self-adjoint,
A is real. Let v be an eigenvector such that f(v) = Av. Both Spanv and its orthogonal
complement (Span v)" are stable under f, the former because it is an eigenspace, the latter
in this way: let (v’, v) = 0. Then (f(v’), v) = (v’,f(v)) = A (v, v) = 0.

By the induction hypothesis, f |(Span o)t has n — 1 orthogonal eigenvectors in W. They are
still eigenvectors, and still orthogonal, when treated as members of V. Furthermore, they
are orthogonal to v by construction.

As such f has a basis of orthogonal eigenvectors, so it has a basis of orthonormal
eigenvectors as well. O

Lemma 2 (Spectral theorem, factorization version). Let A € C"™" satisfy A = A*. Then there
exist a unitary matrix U and a real diagonal matrix A such that A = UAU".

Notice that U* = U™, so no manual inversion necessary.

IThe word spectral imputes an aura of magic and mystery. That is fitting because this theorem is very, very
powerful.
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3.2. Self-adjoint operators

Lemma 3 (Spectral theorem, projection version). Let f : V. — V satisfy f = f*. Let
{v1,v2,..., 04} be orthonormal eigenvectors of f with eigenvalues A1, Aa, ..., Ay

Then f = Y.i_, Aiproj,.. That is, every self-adjoint operator is a real linear combination of
orthogonal projections.

Lemma 4 (Spectral theorem, dyad version). The last and final form of the Spectral Theorem can
be seen either as an expansion of the factorization version into outer products or as a translation of the
projection version into orthonormal coordinates. Let A € C" satisfy A = A*. Let {v1,v2,...,0Un}
be orthonormal eigenvectors of f with eigenvalues Ay, Ag, ..., Ay.

Then f = i, A;jv;v}.

Application: direction of maximum amplification

Given a nonzero matrix A € C"™", we might wonder what spatial direction gives you the
best bang for your buck under left multiplication by A. That is, we are interested in the
maximum amplification that A can exert on any vector:

Al

ax (3.10)

We can narrow our search to unit vectors.

max (Av, Av) = ﬁrna_x V(A*Av,v) (3.11)

lloll=1 ll=1

A*A is self-adjoint: (A*A)" = (A*) (A*)" = A*A. Diagonalize it as A*A = UAU".

= max \{UAU*v, v) (3.12)

loll=1
= ﬁnﬁix V{AU*v, U*v) (3.13)
v|[=1

Change variables to w = U"v.

= max {Aw, w) (3.14)

llwll=1

This maximum is achieved when w = ¢;, where A; is a maximal entry of A.

=N /\maX(A*A) (315)

The furthest that A can magnify any vector is the square root of Amax, a maximal eigenvalue
of A*A. It quantifies how “big” A is, and is sometimes called are o; or ||A]|,, the operator
norm of A.
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