Lecture 3

Adjoint and self-adjoint operators and matrices

An inner product structure on a \mathbb{C}-vector spaces induces a “mirrored” twin for every linear transformation, called the adjoint. Linear operators equal their own adjoints have many important properties.

3.1 Adjoint of an operator or matrix

Definition 15 (Adjoint of a linear map). Let $f : U \rightarrow V$ be a linear map between two inner product spaces. The adjoint of f, denoted by $f^* : V \rightarrow U$, is the unique linear map such that $\langle f(u), v \rangle = \langle u, f^*(v) \rangle$ for all $u \in U$ and $v \in V$.

Theorem 13 (Technical facts about adjoints). Let f and g be two linear operators on V.

1. $(\alpha f + g)^* = \overline{\alpha} f^* + g^*$ (conjugate linear)
2. $(fg)^* = g^* f^*$ (reverses composition)
3. $(f^*)^* = f^*$ (involutive)
4. $I^* = I$ (identity operator is its own adjoint)

Proof.

1. Let $x, y \in V$. We need to show that $\langle (\alpha f + g) x, y \rangle = \langle x, (\overline{\alpha} f^* + g^*) y \rangle$.

\[
\begin{align*}
\langle (\alpha f + g) x, y \rangle &= \alpha \langle fx, y \rangle + \langle gx, y \rangle \\
&= \alpha \langle x, f^* y \rangle + \langle x, g^* y \rangle \\
&= \langle x, (\overline{\alpha} f^* + g^*) y \rangle
\end{align*}
\]

2. Same setup as before. $\langle fgy, y \rangle = \langle gx, f^* y \rangle = \langle x, g^* f^* y \rangle$.

3. Same setup as before. $\langle f^* x, y \rangle = \overline{\langle y, f^* x \rangle} = \overline{\langle y, f x \rangle} = \langle x, f y \rangle$.

4. Same setup as before. $\langle I x, y \rangle = \langle x, I y \rangle$.

Definition 16 (Adjoint of a matrix). Let $A \in \mathbb{C}^{m \times n}$. The adjoint or conjugate transpose of A is the matrix A^* such that $A^*_ij = \overline{A}_{ji}$.

Theorem 14. Over an inner product space of finite dimension, adjoints exist. In \mathbb{C}^n with the standard inner product, an adjoint matrix is the matrix of the adjoint of the linear operator it represents.
3.2 Self-adjoint operators

In this section we’ll prove a condition for matrices to be orthogonally (-normally) diagonalizable.

Definition 17 (Self-adjoint). A linear operator or matrix is called self-adjoint or Hermitian if it is equal to its own adjoint.

Lemma 1 (Real eigenvalues). Let \(f: V \to V \) be a Hermitian operator and \(\lambda \) an eigenvalue of \(f \). Then \(\lambda \) is real.

Proof. Let \(v \) be a unit eigenvector of \(f \) satisfying \(f(v) = \lambda v \). Then
\[
\lambda = \langle f v, v \rangle = \langle v, f v \rangle = \langle f v, v \rangle = \bar{\lambda}.
\]
\(\square \)

A large class of complex matrices with complex eigenvectors, but real eigenvalues. Wow! Wow!

Definition 18 (Restriction). Let \(W \) be a subspace of \(V \) and \(f \) a linear operator on \(V \). If \(f(W) \subseteq W \), then \(W \) is called \(f \)-invariant or \(f \)-stable. The linear operator \(f|_W : W \to W \) defined by \(f|_W(w) = f(w) \) is called the restriction of \(f \) to \(W \).

Theorem 15 (Spectral1 Theorem). A linear operator \(f: V \to V \) is self-adjoint if and only if it is diagonal and real in an orthonormal basis of \(V \).

Proof. First we show that \((\text{diagonal and real in an orthonormal basis}) \implies \text{(self-adjoint)}\). Suppose that the matrix of \(f \) is diagonal and real in an orthonormal basis. A diagonal real matrix is equal to its conjugate transpose. Therefore, as orthonormal bases faithfully represent inner product spaces and maps between them, \(f \) is self-adjoint.

Next we show that \((\text{self-adjoint}) \implies \text{(diagonal and real in an orthonormal basis)}\). We will use induction on \(n \), the dimension of \(V \). If \(n = 1 \) then \(f \) is already diagonal in any basis.

Next we need to show that if the Spectral Theorem holds on vector spaces of dimension \(n - 1 \), then it holds on vector spaces of dimension \(n \).

By the Fundamental Theorem of Algebra, \(f \) has an eigenvalue \(\lambda \). Because \(f \) is self-adjoint, \(\lambda \) is real. Let \(v \) be an eigenvector such that \(f(v) = \lambda v \). Both \(\text{Span} v \) and its orthogonal complement \((\text{Span } v)^\perp\) are stable under \(f \), the former because it is an eigenspace, the latter in this way: let \(\langle v', v \rangle = 0 \). Then \(\langle f(v'), v \rangle = \langle v', f(v) \rangle = \bar{\lambda} \langle v', v \rangle = 0 \).

By the induction hypothesis, \(f|_{(\text{Span } v)^\perp} \) has \(n - 1 \) orthogonal eigenvectors in \(W \). They are still eigenvectors, and still orthogonal, when treated as members of \(V \). Furthermore, they are orthogonal to \(v \) by construction.

As such \(f \) has a basis of orthogonal eigenvectors, so it has a basis of orthonormal eigenvectors as well. \(\square \)

Lemma 2 (Spectral theorem, factorization version). Let \(A \in \mathbb{C}^{n \times n} \) satisfy \(A = A^* \). Then there exist a unitary matrix \(U \) and a real diagonal matrix \(\Lambda \) such that \(A = U\Lambda U^* \).

Notice that \(U^* = U^{-1} \), so no manual inversion necessary.

\hspace{1em}^1\text{The word spectral imparts an aura of magic and mystery. That is fitting because this theorem is very, very powerful.}
Lemma 3 (Spectral theorem, projection version). Let $f : V \to V$ satisfy $f = f^\ast$. Let \(\{v_1, v_2, \ldots, v_n\} \) be orthonormal eigenvectors of f with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Then $f = \sum_{i=1}^n \lambda_i \text{proj}_{v_i}$. That is, every self-adjoint operator is a real linear combination of orthogonal projections.

Lemma 4 (Spectral theorem, dyad version). The last and final form of the Spectral Theorem can be seen either as an expansion of the factorization version into outer products or as a translation of the projection version into orthonormal coordinates. Let $A \in \mathbb{C}^n$ satisfy $A = A^\ast$. Let \(\{v_1, v_2, \ldots, v_n\} \) be orthonormal eigenvectors of f with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Then $f = \sum_{i=1}^n \lambda_i v_i v_i^\ast$.

Application: direction of maximum amplification

Given a nonzero matrix $A \in \mathbb{C}^{n \times n}$, we might wonder what spatial direction gives you the best bang for your buck under left multiplication by A. That is, we are interested in the maximum amplification that A can exert on any vector:

$$\max_v \frac{\|Av\|}{\|v\|} \quad (3.10)$$

We can narrow our search to unit vectors.

$$\max_{\|v\|=1} \sqrt{\langle Av, Av \rangle} = \max_{\|v\|=1} \sqrt{\langle A^\ast Av, v \rangle} \quad (3.11)$$

$A^\ast A$ is self-adjoint: $(A^\ast A)^\ast = (A^\ast)^\ast (A^\ast)^\ast = A^\ast A$. Diagonalize it as $A^\ast A = U \Lambda U^\ast$.

$$= \max_{\|v\|=1} \sqrt{\langle U \Lambda U^\ast v, v \rangle} \quad (3.12)$$

$$= \max_{\|v\|=1} \sqrt{\langle \Lambda U^\ast v, U^\ast v \rangle} \quad (3.13)$$

Change variables to $w = U^\ast v$.

$$= \max_{\|w\|=1} \sqrt{\langle \Lambda w, w \rangle} \quad (3.14)$$

This maximum is achieved when $w = e_i$, where λ_i is a maximal entry of Λ.

$$= \sqrt{\lambda_{\text{max}}(A^\ast A)} \quad (3.15)$$

The furthest that A can magnify any vector is the square root of λ_{max}, a maximal eigenvalue of $A^\ast A$. It quantifies how “big” A is, and is sometimes called are σ_1 or $\|A\|_2$, the operator norm of A.

15