Discussion 6D
a) Show that finding the top principal component is equivalent to maximizing $\sum_{i=1}^{n}\left\langle\lambda_{i}, u\right\rangle^{2}$

Given: PCA solves $\underset{W \in \mathbb{R}^{d x} \ell}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|\vec{x}_{i}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle \vec{u}\right\|^{2} \quad(l=1)$
Teths try to understand this expiation first

$$
\begin{aligned}
& \rightarrow \sum_{i=1}^{n}\left\|\vec{x}_{i}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle \vec{u}\right\|^{2} \\
&=\sum_{i=1}^{n}\left(\vec{x}_{i}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle \vec{u}\right)^{\top}\left(\vec{x}_{i}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle \vec{u}\right) \\
&=\sum_{i=1}^{n}\left\langle\vec{x}_{i}, \vec{x}_{i}\right\rangle-2\left\langle\vec{x}_{i}, \vec{u}\right\rangle^{2}+\left\langle\vec{x}_{i}, \vec{u}\right\rangle^{2} \underbrace{\left\langle\vec{u}_{1}, \vec{u}\right.}_{=1 \text { bic }}\rangle \vec{u} \|^{2}=1^{2} \text { (given) } \\
&=\sum_{i=1}^{n}\left\|\vec{x}_{i}\right\|^{2}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle^{2}
\end{aligned}
$$

$\overrightarrow{x_{i}}$: data points Tie. fixed \rightarrow cannot change

$$
\therefore \quad \operatorname{argmin} \sum_{i=1}^{n}\left\|\vec{x}_{i}\right\|^{2}-\left\langle\vec{x}_{i}, \vec{u}\right\rangle^{2}=\operatorname{argmin} \sum_{i=1}^{n}-\left\langle\overrightarrow{x_{i}}, \vec{u}\right\rangle^{2}=\max \sum_{i=1}^{n}\left\langle\vec{x}_{i} \vec{u}\right\rangle^{2}
$$

b) To find the valid plot: consider part $(a) \rightarrow$ maximize $\sum_{i=1}^{n}\left\langle\vec{x}_{i} \vec{u}\right\rangle^{2}$
\Rightarrow maximize the sum of squares of the λ-coordinates of the plot

