
EECS 16B Designing Information Systems and Devices II UC Berkeley Summer 2022
Discussion 3C

The following notes are useful for this discussion: Note 6.

1. Transfer Function Practice

Transfer functions take an input phasor and “transform” it into an output phasor. Most of the work
we will do with transfer functions is analyzing how it will “respond” to a specific kind of input.
We will also design our own transfer functions using common circuit components such as resistors,
inductors, and capacitors to achieve some specified behavior. A block diagram of a transfer function
is represented in fig. 1. In this discussion, we will learn how to derive H(jω) from a given circuit, and
we will analyze how it behaves for certain values of ω.

Ṽin(jω) H(jω) Ṽout(jω)

Figure 1: Transfer Function Block Diagram

Recall that ZL = jωL and ZC = 1
jωC . For large ω, |ZL| = ωL becomes large (and becomes small for

small ω). On the other hand, for large ω, |ZC| = 1
ωC becomes small (and becomes large for small ω).

In this problem, you’ll be deriving some transfer functions on your own. For each circuit, determine

the transfer function H(jω) =
Ṽout(jω)

Ṽin(jω)
. How does |H(jω)| respond as ω → 0 (low frequencies), as

ω → ∞ (high frequencies)? Is the circuit a high-pass filter, low-pass filter, or band-pass filter? As
practice, sketch a graph (on a log-log plot) of |H(jω)|.

(a) RC circuit:
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(b) Circuit in “phasor domain”

Solution: We’ll use the voltage divider formula to find Ṽout(jω) :

Ṽout(jω) =
ZR

ZR + ZC
Ṽin(jω) (1)

Recalling the expression for the impendances, we note that for the resistor ZR = R, and for the
capacitor ZC = 1

jωC . Plugging in the impedances gives

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R
R + 1

jωC
=

jω
jω + 1

RC
(2)
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At low frequencies, i.e with ω � 1
RC we have

lim
ω→0
|H(jω)| = lim

ω→0

ω√
ω2 +

(
1

RC

)2
= 0 (3)

At high frequencies with ω � 1
RC we have

lim
ω→∞

|H(jω)| = lim
ω→∞

ω√
ω2 +

(
1

RC

)2
(4)

= lim
ω→∞

1√
1 +

(
1

ωRC

)2
(5)

= 1 (6)

So this circuit is a high-pass filter. The magnitude and phase plots are depicted in fig. 5.

Figure 3: Magnitude and Phase Plot for RC Circuit

(b) LR circuit:

+

−
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−

vout(t)

(a) Circuit in “time domain”

−
+Ṽin(jω)

ZL(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

Solution: The strategy is the same as the previous part, using the voltage divider formula, i.e. ,

Ṽout(jω) =
ZR

ZR + ZL
Ṽin(jω)

A similar manipulation to the previous part gives

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R
R + jωL

=
R
L

R
L + jω

(7)

At low frequencies, i.e with ω � R
L we have

lim
ω→0
|H(jω)| = lim

ω→0

R
L√(

R
L

)2
+ ω2

= 1 (8)
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while at high frequencies with ω � R
L , we have

lim
ω→∞

|H(jω)| = lim
ω→∞

R
L√(

R
L

)2
+ ω2

= 0 (9)

So this circuit is a low-pass filter. Notice that this circuit resembles the one in the previous
part, except we have replaced the capacitor with an inductor. The effect of this change was to
reverse the low-frequency and high-frequency behavior of the circuit! Another example of the
complementarity of capacitors and inductors. The magnitude and phase plots are depicted in
fig. 5.

Figure 5: Magnitude and Phase Plot for LR Circuit

(c) (PRACTICE) RCR circuit:

+

−
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R1
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R2

+

−

vout(t)

(a) Circuit in “time domain“

−
+Ṽin(jω)

ZR1(jω)

ZC(jω)

ZR2(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

Solution: Even though there are three components instead of two, we can still use the voltage
divider formula by treating R2 and C as a single impedance given by Z = ZC + ZR2 , giving us
Z = R2 +

1
jωC . This would give us

Ṽout(jω) =
Z

ZR1 + Z
Ṽin(jω) (10)

Then, the transfer function is

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R2 +
1

jωC

R1 + R2 +
1

jωC
=

1 + jωR2C
1 + jωC(R1 + R2)

(11)
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At low frequencies, we have

lim
ω→0
|H(jω)| = lim

ω→0

√
1 + (ωR2C)2√

1 + (ωC(R1 + R2))
2
= 1 (12)

while at high frequencies, we have

lim
ω→∞

|H(jω)| = lim
ω→∞

√
1 + (ωR2C)2√

1 + (ωC(R1 + R2))
2

(13)

= lim
ω→∞

√
1

ω2 + (R2C)2√
1

ω2 + (C(R1 + R2))
2

(14)

=
CR2

C(R1 + R2)
=

R2

R1 + R2
(15)

So at high frequencies, this circuit behaves like a regular voltage divider with just R1 and R2, as
if the capacitor had vanished. This circuit is like a combination of a low-pass filter and a voltage
divider: low frequency inputs are preserved, and high-frequency signals are diminished. The
magnitude and phase plots are depicted in fig. 7.

Figure 7: Magnitude and Phase Plot for RCR Circuit

(d) Assuming vin(t) = 12 sin(ωint) compute the vout(t) using the transfer function computed in
part 1.a. For this part, we assume that R = 1 kΩ, L = 25 µH, C = 10 µF, ωin = 100 rad/s. In
words, what is the effect of the transfer function in part 1.a on the magnitude of the input signal?
Determine whether this behavior is expected given the input signal.

Solution: To get vout(t), we must first convert vin(t) into phasor domain to get Ṽin(jω), then
apply the transfer function to get Ṽout(jω), and then convert back to time domain to get vout(t).

To convert from time domain to phasor domain, recall the following procedure which uses Eu-
ler’s method:

vin(t) = v0 cos(ωt + φ) (16)

=
v0

2

(
ejωt+jφ + e−jωt−jφ

)
(17)

=
v0ejφ

2
ejωt +

v0e−jφ

2
e−jωt (18)

=⇒ Ṽin(jω) =
v0ejφ

2
(19)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4



EECS 16B Discussion 3C 2022-07-07 10:51:43-04:00

Firstly, note that sin(x) = cos
(

x− π
2
)
, so we can write vin = 12 sin(ωt) as vin = 12 cos

(
ωt− π

2
)
.

Pattern matching with the result from eq. (19) (with v0 = 12 and φ = −π
2 ),

Ṽin(jω) = 6e−j π
2 (20)

Now, we can find Ṽout(jω) by multiplying the transfer function with the output phasor. Note
that we have to evaluate the transfer function at ω = ωin = 100 rad/s since that is the input
angular frequency:

H(jωin) =
j100

1
103∗10−5 + j100

(21)

=
j

1 + j
(22)

We will write H(jωin) in the form |H(jωin)|ej∠H(jωin), so that multiplying with Ṽin(jω) will be
easier. First, to find |H(jωin)|:

|H(jωin)| =
∣∣∣∣ j
1 + j

∣∣∣∣ = 1√
2

(23)

Next, to find ∠H(jωin):

∠H(jωin) = ∠(j)−∠(1 + j) =
π

2
− π

4
=

π

4
(24)

Hence, H(jωin) =
1√
2

ej π
4 , and

Ṽout(jωin) = H(jωin)Ṽin(jωin) = 3
√

2e−j π
4 (25)

The last step is changing back to the time domain. Recall, that

vout(t) = Ṽout(jω)ejωt + Ṽout(jω)e−jωt (26)

= 2|Ṽout(jω)| cos
(

ωt +∠Ṽout(jω)
)

(27)

Substituting the values from eq. (25) we recover

vout(t) = 6
√

2 cos
(

ωint− π

4

)
(28)

The circuit from part 1.a was a high pass filter, so we expect input signals with ωin values closer
to 0 to have lower magnitude once they are “passed through” the transfer function.

(e) Visualizing Transfer functions:

In this part, we visualize the transfer function for different types of circuits in a Jupyter Note-
book.

2. Band-Pass Filter

It is quite common to need to design a filter which selects only a narrow range of frequencies. One
example is in WiFi radios, it is desirable to select only the 2.4GHz frequency containing your data,
and reject information from other nearby cellular or bluetooth frequencies. This type of filter is called
a band-pass filter; we will explore the design of this type of filter in this problem.
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+

−
vin(t)

L
C

R

+

−

vout(t)

(a) Circuit in “time domain”

−
+Ṽin(jω)

ZL(jω) ZC(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

(a) Write down the transfer function H(jω) =
Ṽout(jω)

Ṽin(jω)
for this circuit.

Solution: Using the same voltage divider rule we’ve used in the past, Ṽout(jω) is:

Ṽout(jω) = Ṽin(jω)
ZR

ZR + ZL + ZC
(29)

= Ṽin
R

R + j
(

ωL− 1
ωC

) (30)

=⇒ H(jω) =
Ṽout

Ṽin
(31)

=
R

R + j(ωL− 1
ωC )

(32)

(b) Consider the inductor, capacitor, and resistor connected in series. Write down the impedance of
the series RLC combination in the form ZRLC(jω) = A(ω) + jX(ω), where A(ω) and X(ω) are
real valued functions of ω. At what frequency ωn does X(ωn) = 0? (i.e. at what frequency is
the impedance of the series combination of RLC purely real — meaning that the imaginary terms
coming from the capacitor and inductor completely cancel each other. This is called the natural
frequency.)

Solution: Recall that the series impedance is the denominator of the voltage divider formula.
From the previous part, ZRLC = ZR + ZL + ZC = R + j(ωL − 1

ωC ). Thus, A(ω) = R and
X(ω) = ωL− 1

ωC .

Now, we can proceed to find ωn.

X(ωn) = ωnL− 1
ωnC

= 0 (33)

Multiplying both sides by ωn:

ω2
nL− 1

C
= 0 (34)

ωn =
1√
LC

. (35)

(c) Find an expression for |H(jω)|. What is |H(jωn)|? What is |H(jωn/10)|? What is |H(j10ωn)|?
Rank the three quantities: |H(jωn)|, |H(jωn/10)|, |H(j10ωn)|. What do you think the magnitude
plot looks like?
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Solution: We can compute |H(jω)| as follows:

|H(jω)| =
∣∣∣∣∣ R
R + j(ωL− 1

ωC )

∣∣∣∣∣ (36)

=
|R|∣∣∣R + j(ωL− 1

ωC )
∣∣∣ (37)

=
R√(

R + j(ωL− 1
ωC )

)(
R− j(ωL− 1

ωC )
) (38)

=
R√

R2 + (ωL− 1
ωC )

2
(39)

Note that the only part that depends on ω is the X(ω) = ωL− 1
ωC term in the denominator. At

ω = ωn, this term is 0. Hence,

|H(jωn)| =
R√
R2

= 1 (40)

At ω = ωn/10, X(ω) = −9.9
√

L
C . Similarly, at ω = 10ωn, we have X(ω) = 9.9

√
L
C . This means

that X(ωn/10)2 = X(10ωn)2. Therefore,

|H(jωn/10)| = |H(j10ωn)| =
R√

R2 + 9.92 L
C

< 1 (41)

Thus, we would expect the graph of |H(jω)| to sharply peak at ω = ωn and decrease for ω > ωn

and ω < ωn. Specifically, |H(jωn)| > |H(jωn/10)| = |H(j10ωn)|. This transfer function only
“lets through” input signals with angular frequency ω = ωn and attenuates everything else.
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