The following notes are useful for this discussion: Note 10, Note 11, Note 12

1. Eigenvalue Placement in Discrete Time

Recall that, for a discrete linear system to be stable, we require that all of the eigenvalues of A in $\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]$ must have magnitude less than 1.

Consider the following linear discrete time system

$$
\vec{x}[i+1]=\left[\begin{array}{cc}
0 & 1 \tag{1}\\
2 & -1
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u[i]+\vec{w}[i]
$$

(a) Is the system given in eq. (1) stable?
(b) We can attempt to stabilize the system by implementing closed loop feedback. That is, we choose our input $u[i]$ so that the system is stable. If we were to use state feedback as in eq. (2), what is an equivalent representation for this system? Write your answer as $\vec{x}[i+1]=A_{\mathrm{CL}} \vec{x}[i]$ for some matrix A_{CL}.

$$
u[i]=\left[\begin{array}{ll}
f_{1} & f_{2} \tag{2}
\end{array}\right] \vec{x}[i]
$$

HINT: If you're having trouble parsing the expression for $u[i]$, note that $\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right]$ is a row vector, while $\vec{x}[i]$ is column vector. What happens when we multiply a row vector with a column vector like this?)
(c) Find the appropriate state feedback constants, f_{1}, f_{2}, that place the eigenvalues of the state space representation matrix at $\lambda_{1}=-\frac{1}{2}, \lambda_{2}=\frac{1}{2}$.
(d) Is the system now stable in closed-loop, using the control feedback coefficients f_{1}, f_{2} that we derived above?
(e) Suppose that instead of $\left[\begin{array}{l}1 \\ 0\end{array}\right] u[i]$ in eq. (1), we had $\left[\begin{array}{l}1 \\ 1\end{array}\right] u[i]$ as the way that the discrete-time control acted on the system. In other words, the system is as given in eq. (3). As before, we use $u[i]=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right] \vec{x}[i]$ to try and control the system.

$$
\vec{x}[i+1]=\left[\begin{array}{cc}
0 & 1 \tag{3}\\
2 & -1
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u[i]
$$

Show that the resulting closed-loop state space matrix is

$$
A_{\mathrm{CL}}=\left[\begin{array}{cc}
f_{1} & f_{2}+1 \tag{4}\\
f_{1}+2 & f_{2}-1
\end{array}\right]
$$

Is it possible to stabilize this system?
(f) (PRACTICE) Suppose you had a discrete, 2D, linear system with a real A matrix, and that you could modify both eigenvalues with feedback control (such as the system in eq. (1)). Can you place the eigenvalues at complex conjugates, such that $\lambda_{1}=a+\mathrm{j} b, \lambda_{2}=a-\mathrm{j} b$ using only real feedback gains f_{1}, f_{2} ? How about placing them at any arbitrary complex numbers, such that $\lambda_{1}=a+\mathrm{j} b, \lambda_{2}=c+\mathrm{j} d$?

2. Uncontrollability

Recall that, for a n-dimensional, discrete-time linear system to be controllable, we require that the controllability matrix $\mathcal{C}=\left[\begin{array}{lllll}A^{n-1} B & A^{n-2} B & \ldots & A B & B\end{array}\right]$ to be rank n.
Consider the following discrete-time system with the given initial state:

$$
\begin{gather*}
\vec{x}[i+1]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] u[i] \tag{5}\\
\vec{x}[0]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \tag{6}
\end{gather*}
$$

(a) Is the system controllable?
(b) Show that we can write the i th state as

$$
\vec{x}[i]=\left[\begin{array}{c}
2^{i} \tag{7}\\
-3 x_{1}[i-1]+x_{3}[i-1] \\
x_{2}[i-1]+2 u[i-1]
\end{array}\right]
$$

Is it possible to reach $\vec{x}[\ell]=\left[\begin{array}{c}-2 \\ 4 \\ 6\end{array}\right]$ for some ℓ ? If so, for what input sequence $u[i]$ up to $i=\ell-1$?
(c) (PRACTICE) Is it possible to reach $\vec{x}[\ell]=\left[\begin{array}{c}2 \\ -3 \\ -2\end{array}\right]$ for some ℓ ? For what input sequence $u[i]$ for $i=0$ to $i=\ell-1$?

HINT: Use the result for $\vec{x}[i]$ from the previous part.
(d) Find the set of all $\vec{x}[2]$, given that you are free to choose any $u[0]$ and $u[1]$.

Contributors:

- Anish Muthali.
- Ioannis Konstantakopoulos.
- John Maidens.
- Anant Sahai.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.
- Titan Yuan.
- Kareem Ahmad.

