The following notes are useful for this discussion: Note 13.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $[\vec{s}_1, \vec{s}_2, \vec{s}_3]$.

(a) Let's say we had two collections of vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ and $\{\vec{w}_1, \ldots, \vec{w}_n\}$. How can we prove that Span $(\{\vec{v}_1, \ldots, \vec{v}_n\}) =$ Span $(\{\vec{w}_1, \ldots, \vec{w}_n\})$?

Solution: Notice that taking the span of some vectors gives you a set of vectors. So, when proving two sets S_1 and S_2 are equal, we can show that $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$. We can show $S_1 \subseteq S_2$ by showing that, if $a \in S_1$, then $a \in S_2$. Likewise, we can show $S_2 \subseteq S_1$ by showing that, if $b \in S_2$, then $b \in S_1$.

In the context of the given problem, we can show that $\text{Span}(\{\vec{v}_1, \ldots, \vec{v}_n\}) = \text{Span}(\{\vec{w}_1, \ldots, \vec{w}_n\})$ by first showing $\text{Span}(\{\vec{v}_1, \ldots, \vec{v}_n\}) \subseteq \text{Span}(\{\vec{w}_1, \ldots, \vec{w}_n\})$. That is, we can show that $\vec{v}_i \in \text{Span}(\{\vec{w}_1, \ldots, \vec{w}_n\})$ for every i = 1 to i = n. Next, we can show $\text{Span}(\{\vec{w}_1, \ldots, \vec{w}_n\}) \subseteq \text{Span}(\{\vec{v}_1, \ldots, \vec{v}_n\})$ by showing that $\vec{w}_i \in \text{Span}(\{\vec{v}_1, \ldots, \vec{v}_n\})$ for every i = 1 to i = n.

(b) Find unit vector \vec{q}_1 such that $\text{Span}(\{\vec{q}_1\}) = \text{Span}(\{\vec{s}_1\})$, where \vec{s}_1 is nonzero. Solution: Note that any $\vec{v} \in \text{Span}(\{\vec{s}_1\})$ can be written as $\vec{v} = a\vec{s}_1$ for some $a \in \mathbb{R}$. We need $\vec{q}_1 \in \text{Span}(\{\vec{s}_1\})$ and we need it to be a unit vector. Hence, we can write

$$\vec{q}_1 = \frac{\vec{s}_1}{\|\vec{s}_1\|}.$$
 (1)

Next, we need to show $\vec{s}_1 \in \text{Span}(\{\vec{q}_1\})$. We can see that $\vec{s}_1 = a\vec{q}_1$ where $a = \|\vec{s}_1\|$.

(c) Let's say that we wanted to write

$$\vec{s}_2 = c_1 \vec{q}_1 + \vec{z}_2 \tag{2}$$

where $c_1\vec{q}_1$ entirely represents the component of \vec{s}_2 in the direction of \vec{q}_1 , and \vec{z}_2 represents the component of \vec{s}_2 that is distinctly *not* in the direction of \vec{q}_1 (i.e. \vec{z}_2 and \vec{q}_1 are orthogonal).

Given \vec{q}_1 from the previous step, find c_1 as in eq. (2), and use \vec{z}_2 to find unit vector \vec{q}_2 such that $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2\})$ and \vec{q}_2 is orthogonal to \vec{q}_1 . Show that $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2\})$.

Solution: To find c_1 , we can compute the projection of \vec{s}_2 onto \vec{q}_1 , namely

$$\operatorname{proj}_{\vec{q}_{1}}(\vec{s}_{2}) = \frac{\vec{q}_{1}^{\top}\vec{s}_{2}}{\left(\underbrace{\vec{q}_{1}^{\top}\vec{q}_{1}}_{1}\right)}\vec{q}_{1} = \underbrace{\left(\vec{q}_{1}^{\top}\vec{s}_{2}\right)}_{c_{1}}\vec{q}_{1}$$
(3)

This projection represents all the components of \vec{s}_2 that are in the direction of \vec{q}_1 . To find \vec{z}_2 , we can use eq. (2) to obtain

$$\vec{z}_2 = \vec{s}_2 - \left(\vec{q}_1^\top \vec{s}_2\right) \vec{q}_1 \tag{4}$$

which, by design, is orthogonal to \vec{q}_1 since it has no components in the direction of \vec{q}_1 . We have satisfied the orthogonality condition with \vec{z}_2 , so all that is left is to normalize this quantity to find \vec{q}_2 :

$$\vec{q}_2 = \frac{\vec{z}_2}{\|\vec{z}_2\|} \tag{5}$$

Next, we need to show the two spans are equal. First, we can show $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) \subseteq \text{Span}(\{\vec{s}_1, \vec{s}_2\})$. From part **1**.b, we already know $\vec{q}_1 \in \text{Span}(\{\vec{s}_1\}) \subseteq \text{Span}(\{\vec{s}_1, \vec{s}_2\})$. We can rewrite \vec{q}_2 as

$$\vec{q}_2 = \alpha \vec{s}_2 + \beta \vec{q}_1 \tag{6}$$

for $\alpha = \frac{1}{\|\vec{z}_2\|}$ and $\beta = \frac{-(\vec{q}_1^\top \vec{s}_2)}{\|\vec{z}_2\|}$. We know $\vec{q}_1 = a\vec{s}_1$ for $a = \frac{1}{\|\vec{s}_1\|}$ (from part 1.b), so we can write

$$\vec{q}_2 = \alpha \vec{s}_2 + a\beta \vec{s}_1 \tag{7}$$

so $\vec{q}_2 \in \text{Span}(\{\vec{s}_1, \vec{s}_2\})$.

Next, we can show $\text{Span}(\{\vec{s}_1, \vec{s}_2\}) \subseteq \text{Span}(\{\vec{q}_1, \vec{q}_2\})$. From the **1**.b, we know $\vec{s}_1 \in \text{Span}(\{\vec{q}_1\}) \subseteq \text{Span}(\{\vec{q}_1, \vec{q}_2\})$. Now, we can perform algebraic manipulation and rewrite eq. (6) to say

$$\vec{s}_2 = \frac{\vec{q}_2}{\alpha} - \frac{\beta \vec{q}_1}{\alpha} \tag{8}$$

so $\vec{s}_2 \in \text{Span}(\{\vec{q}_1, \vec{q}_2\})$. Hence, we have shown that $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2\})$.

Intuitive Explanation on Projections for Orthogonalization:

The idea behind why we take projections and calculate projection error can be seen as a method to extract \vec{z}_2 from

$$\vec{s}_2 = c_1 \vec{q}_1 + \vec{z}_2 \tag{9}$$

where we choose this decomposition of \vec{s}_2 such that $c_1\vec{q}_1$ and \vec{z}_2 are orthogonal. That is, we will use the term $c_1\vec{q}_1$ to represent the component of \vec{s}_2 in the direction of \vec{q}_1 , and \vec{z}_2 to represent the component of \vec{s}_2 that is distinctly *not* in the direction of \vec{q}_1 . We can solve for c_1 using projections. By subtracting this part out as in eq. (4), we are left with a vector \vec{z}_2 that does not have any components in the direction of \vec{q}_1 . Hence, it will be orthogonal to \vec{q}_1 . See fig. 1 for an intuitive plot of what this decomposition could look like.

Figure 1: Decomposition of \vec{s}_2

(d) What would happen if $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ were *not* linearly independent, but rather \vec{s}_1 were a multiple of \vec{s}_2 ?

Solution: If \vec{s}_2 is a multiple of \vec{s}_1 , then $\vec{z}_2 = 0$. This means that the projection of \vec{s}_2 onto Span($\{\vec{s}_1\}$) is just \vec{s}_2 , so we have found an orthonormal basis for Span($\{\vec{s}_1, \vec{s}_2\}$), in particular the basis { \vec{q}_1 }. Hence, we can move onto \vec{s}_3 and continue the algorithm from there.

(e) Now given \vec{q}_1 and \vec{q}_2 in parts 1.b and 1.c, find \vec{q}_3 such that $\text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$, and \vec{q}_3 is orthogonal to both \vec{q}_1 and \vec{q}_2 , and finally $\|\vec{q}_3\| = 1$. You do not have to show that the two spans are equal.

Solution: Based on the intuitive explanation from part 1.c, we would like to write

$$\vec{s}_3 = c_1 \vec{q}_1 + c_2 \vec{q}_2 + \vec{z}_3 \tag{10}$$

where $c_1\vec{q}_1$ represents the component of \vec{s}_3 that is in the direction of only \vec{q}_1 , $c_2\vec{q}_2$ represents the component that is in the direction of only \vec{q}_2 , and \vec{z}_3 represents the component that is distinctly *not* in the directions of \vec{q}_1 and \vec{q}_2 . Note that \vec{q}_1 and \vec{q}_2 are in distinctly different directions, since they are orthogonal (this allows us to claim that $c_1\vec{q}_1$ and $c_2\vec{q}_2$ represent distinctly different directional components of \vec{s}_3).

We can compute c_1 and c_2 by projections. Namely,

$$c_1 \vec{q}_1 = \operatorname{proj}_{\vec{q}_1}(\vec{s}_3) = \frac{\vec{q}_1^{\top} \vec{s}_3}{\|\vec{q}_1\|^2} \vec{q}_1 = \underbrace{\left(\vec{q}_1^{\top} \vec{s}_3\right)}_{c_1} \vec{q}_1$$
(11)

$$c_2 \vec{q}_2 = \operatorname{proj}_{\vec{q}_2}(\vec{s}_3) = \frac{\vec{q}_2^\top \vec{s}_3}{\|\vec{q}_2\|^2} \vec{q}_2 = \underbrace{\left(\vec{q}_2^\top \vec{s}_3\right)}_{c_2} \vec{q}_2$$
(12)

To find \vec{z}_3 , we can subtract out $c_1\vec{q}_1$ and $c_2\vec{q}_2$, namely:

$$\vec{z}_3 = \vec{s}_3 - \left(\vec{q}_1^{\top} \vec{s}_3\right) \vec{q}_1 - \left(\vec{q}_2^{\top} \vec{s}_3\right) \vec{q}_2 \tag{13}$$

All that is left is to normalize this quantity, that is

$$\vec{q}_3 = \frac{\vec{z}_3}{\|\vec{z}_3\|}$$
 (14)

3

(f) **(PRACTICE) Confirm that** $\text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}).$

Solution: We already showed that $\vec{q}_1, \vec{q}_2 \in \text{Span}(\{\vec{s}_1, \vec{s}_2\}) \subseteq \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$ and also $\vec{s}_1, \vec{s}_2 \in \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) \subseteq \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$. It remains to show that $\vec{q}_3 \in \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$ (so we can show $\text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) \subseteq \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$) and that $\vec{s}_3 \in \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$ (so we can show $\text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}) \subseteq \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$)

To show $\vec{q}_3 \in \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$:

$$\vec{q}_{3} = \frac{\vec{z}_{3}}{\|\vec{z}_{3}\|} = \underbrace{\gamma}_{\frac{1}{\|\vec{z}_{3}\|}} \left(\vec{s}_{3} - \left(\vec{s}_{3}^{\top}\vec{q}_{1}\right)\vec{q}_{1} - \left(\vec{s}_{3}^{\top}\vec{q}_{2}\right)\vec{q}_{2}\right)$$
(15)

$$= \gamma \left(\vec{s}_3 - \left(\vec{s}_3^\top \vec{q}_1 \right) \underbrace{\vec{q}_1}_{a\vec{s}_1} - \left(\vec{s}_3^\top \vec{q}_2 \right) \underbrace{\vec{q}_2}_{a\vec{s}_2 + a\beta\vec{s}_1} \right)$$
(16)

$$=\gamma\vec{s}_{3} + \left(-\alpha\left(\vec{s}_{3}^{\top}\vec{q}_{2}\right)\right)\vec{s}_{2} + \left(-a\left(\vec{s}_{3}^{\top}\vec{q}_{1}\right) - a\beta\left(\vec{s}_{3}^{\top}\vec{q}_{2}\right)\right)\vec{s}_{1}$$
(17)

where $a = \frac{1}{\|\vec{s}_1\|}$, $\alpha = \frac{1}{\|\vec{z}_2\|}$, and $\beta = \frac{-(\vec{q}_1^\top \vec{s}_2)}{\|\vec{z}_2\|}$ (taken from eq. (7)). So, $\vec{q}_3 \in \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$. Now, to show $\vec{s}_3 \in \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$, we can perform algebraic manipulation on eq. (16):

$$\vec{s}_{3} = \frac{1}{\gamma} \left(\vec{q}_{3} + \left(\vec{s}_{3}^{\top} \vec{q}_{1} \right) \vec{q}_{1} + \left(\vec{s}_{3}^{\top} \vec{q}_{2} \right) \vec{q}_{2} \right)$$
(18)

so $\vec{s}_3 \in \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$. Hence, we conclude that $\text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}) = \text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\})$.

2. Orthonormal Matrices and Projections

A matrix *A* has orthonormal columns, \vec{a}_i , if they are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_j \rangle = \vec{a}_j^\top \vec{a}_i = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|_2 = \langle \vec{a}_i, \vec{a}_i \rangle = \vec{a}_i^\top \vec{a}_i = 1$.
- (a) When $A \in \mathbb{R}^{n \times m}$ and $n \ge m$ (i.e. for tall matrices), show that if the matrix is orthonormal, then $A^{\top}A = I_{m \times m}$.

Solution: We want to show $A^{\top}A = I_{m \times m}$. We proceed directly from the definition of matrix multiplication, using that the columns of *A* are indexed by \vec{a}_i :

$$A^{\top}A = \begin{bmatrix} - & \vec{a}_{1}^{\top} & - \\ - & \vec{a}_{2}^{\top} & - \\ \vdots \\ - & \vec{a}_{m}^{\top} & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ \vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{m} \\ | & | & | & | \end{bmatrix}$$

$$= \begin{bmatrix} \vec{a}_{1}^{\top}\vec{a}_{1} & \vec{a}_{1}^{\top}\vec{a}_{2} & \cdots & \vec{a}_{1}^{\top}\vec{a}_{m} \\ \vec{a}_{2}^{\top}\vec{a}_{1} & \vec{a}_{2}^{\top}\vec{a}_{2} & \cdots & \vec{a}_{2}^{\top}\vec{a}_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a}_{m}^{\top}\vec{a}_{1} & \vec{a}_{m}^{\top}\vec{a}_{2} & \cdots & \vec{a}_{m}^{\top}\vec{a}_{m} \end{bmatrix}$$
(19)

$$= \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
(21)
$$= I_{m \times m}$$
(22)

When $\vec{a}_i^{\top}\vec{a}_i = \|\vec{a}_i\|^2 = 1$ and when $i \neq j$, $\vec{a}_i^{\top}\vec{a}_j = 0$ because the column vectors are orthogonal.

(b) Again, suppose $A \in \mathbb{R}^{n \times m}$ where $n \ge m$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of A is now $AA^{\top}\vec{y}$.

Solution: Recall from 16A, that in order to project onto the column space of a matrix we use the least squares formula. By applying this result, we have that

$$\operatorname{proj}_{\operatorname{Col}(A)}(\vec{y}) = A\hat{\vec{x}} = A\left(A^{\top}A\right)^{-1}A^{\top}\vec{y}$$
(23)

Plugging in the result from part 2.a,

$$\operatorname{proj}_{\operatorname{Col}(A)}(\vec{y}) = A \left(\underbrace{A^{\top}A}_{I_{m \times m}}\right)^{-1} A^{\top} \vec{y}$$
(24)

$$=AA^{\top}\vec{y}$$
(25)

(c) (PRACTICE) Show if $A \in \mathbb{R}^{n \times n}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^n .

Solution: Recall that, if we would like to show that a set of vectors are linearly independent, then the only β_i 's satisfying

$$\beta_1 \vec{a}_1 + \beta_2 \vec{a}_2 + \ldots + \beta_n \vec{a}_n = \vec{0}$$
(26)

would be $\beta_i = 0$ for i = 1 to i = n. To show that $\beta_i = 0$ for the given instance, we can left multiply eq. (26) by \vec{a}_i^{\top} (for any i = 1 to i = n):

$$\vec{a}_{i}^{\top}(\beta_{1}\vec{a}_{1}+\beta_{2}\vec{a}_{2}+\ldots+\beta_{n}\vec{a}_{n})=\vec{a}_{i}^{\top}\vec{0}$$
(27)

$$\sum_{j=1}^{n} \beta_j \vec{a}_i^\top \vec{a}_j = 0 \tag{28}$$

$$\beta_i \underbrace{\vec{a}_i^\top \vec{a}_i}_1 = 0 \tag{29}$$

$$\implies \beta_i = 0$$
 (30)

where we get to eq. (29) by using the fact that $\vec{a}_i^{\top}\vec{a}_j = 0$ for $i \neq j$. Hence, $\beta_i = 0$ for i = 1 to i = n.

Contributors:

- Anish Muthali.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.