The following notes are useful for this discussion: Note 13, Note 15.

1. Towards Upper-Triangularization By An Orthonormal Basis

Previously in this course, we have seen the value of changing our coordinates to be eigenbasis-aligned, because we can then view the system as a set of parallel scalar systems. Diagonalization causes these scalar equations to be fully uncoupled such that they can be solved separately. But even when we cannot diagonalize, we can *upper-triangularize* such that we can still solve the equations one at a time, from the "bottom up".

To better understand the steps involved, we will use the following concrete example:

\[
M = S_{3\times3} = \begin{bmatrix}
5 & 5 & 1 \\
5 & 5 & 1 \\
1 & 6 & 2
\end{bmatrix}
\]

(1)

and solve the general case by abstracting variables. Note that there is a datahub link to a jupyter notebook on the website, which will allow you to perform the numerical calculations quickly.\(^1\)

(a) Consider a non-zero vector \(\vec{u}_0 \in \mathbb{R}^n\). Can you think of a way to extend it to a set of basis vectors for \(\mathbb{R}^n\)? In other words, find \(\vec{u}_1, \cdots, \vec{u}_{n-1}\), such that \(\text{span}(\vec{u}_0, \vec{u}_1, \cdots, \vec{u}_{n-1}) = \mathbb{R}^n\). To make things concrete, consider \(\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}\). Can you get an orthonormal basis where the first vector is a multiple of this vector?

(HINT: What was the last discussion all about? Also, the given vector isn’t normalized yet!)

\(^1\)This particular matrix has an additional special property of symmetry, but we won’t be invoking that here.
(b) Now consider a real eigenvalue λ_1, and the corresponding (normalized) eigenvector $\vec{v}_1 \in \mathbb{R}^n$ of $M \in \mathbb{R}^{n \times n}$ ($M\vec{v}_1 = \lambda_1 \vec{v}_1$). We know we can extend \vec{v}_1 to an orthonormal basis of \mathbb{R}^n. We will denote the basis by

$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_n \end{bmatrix}$$

where $\vec{u}_1 = \vec{v}_1$ (note that this eigenvector is already normalized).

Our goal is to look at what the matrix M looks like in the coordinate system defined by the basis U. Compute $U^T MU$ by writing $U = [\vec{v}_1 \ R]$, where $R := \begin{bmatrix} \vec{r}_1 & \vec{r}_2 & \cdots & \vec{r}_{n-1} \end{bmatrix}$. (Note: $\vec{r}_j = \vec{u}_{j+1}$)

(c) Verify that $U^{-1} = U^T$, where U is the matrix we get from Gram-Schmidt process.
(d) Look at the first column and the first row of $U^\top MU$ and show that:

$$M = U \begin{bmatrix} \lambda_1 & \vec{a}^\top \\ 0 & Q \end{bmatrix} U^\top$$

where $Q = R^\top MR$. Here, \vec{a} is a vector related to M, R, and \vec{v}_1 (we will show the relation!).

(e) Now, we can recurse on Q to get:

$$Q = \begin{bmatrix} \vec{v}_2 & Y \end{bmatrix} \begin{bmatrix} \lambda_2 & \vec{b}^\top \\ 0 & P \end{bmatrix} \begin{bmatrix} \vec{v}_2 & Y \end{bmatrix}^\top$$

where we have taken $\vec{v}_2 \in \mathbb{R}^{n-1}$, a normalized eigenvector of Q, associated with eigenvalue λ_2. Again \vec{v}_2 is extended into an orthonormal basis to form $[\vec{v}_2 \ Y]$.

Plug this form of Q into M above, to show that:

$$M = \begin{bmatrix} \vec{v}_1 & R\vec{v}_2 & RY \end{bmatrix} \begin{bmatrix} \lambda_1 & \vec{a}_1 & \vec{a}_{\text{rest}}^\top \\ 0 & \lambda_2 & \vec{b}^\top \\ 0 & 0 & P \end{bmatrix} \begin{bmatrix} \vec{v}_1 & R\vec{v}_2 & RY \end{bmatrix}^\top$$

where we define \vec{a} to be the "adjusted" \vec{a} to account for the substitution of Q; $\vec{a}^\top = \vec{a}^\top \begin{bmatrix} \vec{v}_2 & Y \end{bmatrix}$.
(f) (PRACTICE) Show that the matrix \[
\begin{pmatrix}
\vec{v}_1 & R\vec{v}_2 & RY
\end{pmatrix}
\] is still orthonormal.

(g) (PRACTICE) We have shown how to upper triangularize a 3 \times 3 and a 2 \times 2 matrix. **How can we generalize this process to any \(n \times n \) matrix \(M \)?
(h) **(PRACTICE)** Show that the characteristic polynomial of square matrix M is the same as that of the square matrix UMU^{-1} for any invertible U. You should use the key property $\det(AB) = \det(A) \det(B)$ for square matrices.

Contributors:
- Neelesh Ramachandran.
- Yuxun Zhou.
- Edward Wang.
- Anant Sahai.
- Sanjit Batra.
- Pavan Bhargava.
- Kumar Krishna Agrawal.