
EECS 16B Designing Information Systems and Devices II UC Berkeley Summer 2022
Discussion 7C

The following note is useful for this discussion: Note 18.

1. Using a Nonlinear NMOS Transistor for Amplification

Consider the following schematic where VDD = 1.5 V, RL = 400 Ω and the NMOS transistor has
threshold voltage Vth = 0.2 V. We are interested in analyzing the response of this circuit to input
voltages of the form Vin(t) = Vin,DC + vin,AC(t), where Vin,DC is some constant voltage and vin,AC(t) =
0.001 cos(ωt)V is a sinusoidal signal whose magnitude is much smaller than Vin,DC.

The I-V relationship of an NMOS can be modeled as non-linear functions over different regions of
operation. For simplicity, let’s just focus on the case when 0 ≤ VGS − Vth < VDS. In this regime of
interest, the relevant I-V relationship is given by

IDS(VGS) =
K
2
(VGS − Vth)

2 (1)

where K is a constant that depends on the NMOS transistor size and properties.
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(b) Vout vs Vin in the regime of interest. Tangent is drawn at
the operating point Vin,DC = 0.6 V, Vout,DC = 0.7 V

Figure 1: NMOS figures.

From Ohm’s law and KCL, we know that

Vout(t) = VDD − RL IDS(t). (2)

Note from Figure 1a that Vin = VGS and Vout = VDS. In Figure 1b, we can see the curve of Vout vs Vin

in the transistor operating regime of interest.

(a) Using eq. (1) and eq. (2), express Vout(t) as a function of Vin(t) symbolically. (You can use
VDD, RL, Vin, K, Vth in your answer.)
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Solution:

Vout(t) = VDD − RL IDS(t)
∣∣∣
VGS=Vin(t)

(3)

= VDD − RL
K
2
(Vin(t)− Vth)

2 (4)

A plot of eq. (4) is shown in Figure 1b.

(b) We can decompose the input into constant (i.e., DC) and time-varying (i.e., AC) components to
obtain Vin(t) = Vin,DC + vin,AC(t). Linearize Vout(t) as a function of Vin(t) about Vin = Vin,DC.
What is the slope of the linearized function?

Solution: Using eq. (4), we have

V̂out(Vin; Vin,DC) = VDD − RL
K
2
(Vin,DC − Vth)

2 +
dVout

dVin
(Vin − Vin,DC) (5)

where
dVout

dVin
= −RLK(Vin,DC − Vth) (6)

This is our slope. We can rewrite this as −RLgm where gm := K(Vin,DC − Vth) is defined to be the
transconductance gain. Altogether, we have

V̂out(Vin; Vin,DC) = VDD − RL
K
2
(Vin,DC − Vth)

2 − RLgmvin,AC (7)

(c) Next, we can also decompose the output Vout into DC and AC components to obtain Vout =

Vout,DC + vout,AC(t). What is Vout,DC from the linearized representation in part 1.b? Simplify
the linear approximation to be in terms of vout,AC(t) and vin,AC(t), for very small vin,AC(t).

Solution: The linearized equation is

V̂out(Vin; Vin,DC) = VDD − RL
K
2
(Vin,DC − Vth)

2 − RLgmvin,AC (8)

Note that the term −RLgmvin,AC is time-varying due to the vin,AC term being time-varying.
Hence, we may define Vout,DC := VDD − RL

K
2 (Vin,DC − Vth)

2.

For very small vin,AC(t), we may write

Vout ≈ Vout,DC − RLgmvin,AC (9)

since the linear approximation is close to the true value of Vout. Simplifying this, we obtain

vout,AC(t) ≈ −RLgmvin,AC(t) (10)

(d) For very small vin,AC(t), what circuit element can we use to represent the I-V relation between
vout,AC(t) and ∆IDS := gmvin,AC(t)? Draw this circuit element.

Solution: To find the I-V relationship, we compute

vout,AC(t)
∆IDS

=
−RLgmvin,AC(t)

gmvin,AC(t)
= −RL (11)
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This relationship is not exactly the I-V relationship of a resistor (due to the negative sign), so we
can use a voltage-controlled current source as shown in Figure 2.

gmvin,AC(t) RL

+

−

vout,AC(t)

Figure 2: Small signal model for NMOS circuit in Figure 1a.

2. Feedback Control and Linearization

Consider the problem of balancing a pole on a cart as follows:

l

m

M

θ

F

x

The mass of the cart itself is M, the length of the rod is l, and the mass of the rod is m. The angle
θ is measured with respect to the vertical as shown above, and x is the horizontal translation of the
cart (i.e., along the x-axis). The force F is the control input to the system. Assume that all of the mass
on the rod is concentrated at the very end of the rod. Further assume that there is no friction. The
following differential equations are derived from the physics describing the cart-pole system:

d2x(t)
dt2 =

1
M + m sin2(θ)

(
F + m sin(θ)

(
l
(

dθ

dt

)2
− g cos(θ)

))
(12)

d2θ(t)
dt2 =

1
l(M + m sin2(θ))

(
−F cos(θ)− ml

(
dθ

dt

)2
cos(θ) sin(θ) + (M + m)g sin(θ)

)
(13)

Deriving these equations is out of scope. The task is as follows: we would like the pole to remain
upright and the cart to be at the origin (i.e., x = 0). The cart and pole must also be stationary.
In this problem, we will use Jacobian linearization and state feedback to derive a controller that can
achieve this goal for us.
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(a) Show that an appropriate state space would be ~x(t) =


x

dx
dt
θ
dθ
dt

. Find an appropriate control

input u(t), and then find ~f (~x, u) such that d
dt~x = ~f (~x, u). Assume m = M = l = 1.

Solution: Since we have second derivatives in translational displacement and angle of the pole,
we can define our state as

~x(t) =


x

dx
dt
θ
dθ
dt

 (14)

which means that

d
dt
~x(t) =


dx
dt

d2x
dt2
dθ
dt

d2θ
dt2

 (15)

As mentioned in the problem statement, u = F. To find ~f (~x, u), we can use the physics equations
in eq. (12) and eq. (13) to write

~f (~x, u) =


x2

1
1+sin2(x3)

(
u + sin(x3)

(
x2

4 − g cos(x3)
))

x4
1

1+sin2(x3)

(
−u cos(x3)− x2

4 cos(x3) sin(x3) + 2g sin(x3)
)

 (16)

(b) What point ~x? and u? do we want to linearize around?

(HINT: Think about what we want the cart-pole system to do. What state do we want the system to
converge to?)

Solution: We want the cart to be located at the origin and we want the pole to be vertical (with
neither the cart nor the pole moving). Hence, we want x = 0, dx

dt = 0, θ = 0, and dθ
dt = 0. Thus,

we can choose ~x? to be

~x? =


0
0
0
0

 (17)

If we choose ~x? as above, then f2(~x?, u) = u, so we need u? = 0 (since we require f2(~x?, u?) = 0).

(c) Write ~x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

. Find the Jacobian of ~f (~x, u). That is, find J~x~f and Ju~f . You may leave

your answer in terms of the components of ~x, ∂ f2
∂x3

, and ∂ f4
∂x3

.
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Solution: We know that

J~x~f =


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

 (18)

To compute so we have

J~x~f =


0 1 0 0

0 0 ∂ f2
∂x3

2x4
sin(x3)

sin2(x3)+1

0 0 0 1

0 0 ∂ f4
∂x3

− 2x4 sin(x3) cos(x3)

sin2(x3)+1

 (19)

where ∂ f2
∂x3

and ∂ f4
∂x3

are written in full form below. Next, recall that

Ju~f =


∂ f1
∂u
∂ f2
∂u
∂ f3
∂u
∂ f4
∂u

 (20)

so we have

Ju~f =


0
1

1+sin2(x3)

0

− cos(x3)

1+sin2(x3)

 (21)

(Optional) Computing ∂ f2
∂x3

and ∂ f4
∂x3

:
The partial derivatives are as follows:

∂ f2

∂x3
=

1
(sin2(x3) + 1)2

(
cos(x3)

(
x2

4

(
1 − sin2(x3)

)
− 2u sin(x3)

)
(22)

+ g sin2(x3)(sin2(x3) + 1) + g cos2(x3)(sin2(x3)− 1)
)

(23)

∂ f4

∂x3
=

1
(sin2(x3) + 1)2

(
sin(x3)

(
sin2(x3) + 1

)(
x2

4 sin(x3) + u
)

(24)

+ cos2(x3)
(

x2
4 sin2(x3)− x2

4 + 2u sin(x3)
)
− 2g

(
sin2(x3)− 1

)
cos(x3)

)
(25)

Note: In this class, you will not be asked to compute derivatives as complicated as this.

(d) Linearize the dynamics about the ~x? that you found earlier. Explicitly write this linearized
system. You may use the fact that ∂ f2

∂x3
(~x?, u?) = −g and ∂ f4

∂x3
(~x?, u?) = 2g. Is the linearized sys-

tem stable? How can we accomplish the task mentioned at the beginning of the problem?

Solution: Plugging in x1 = 0, x2 = 0, x3 = 0, x4 = 0 into the expressions for J~x f and Ju f from
eq. (19) and eq. (21) respectively, we obtain

J~x~f (~x?, u?) =


0 1 0 0
0 0 −g 0
0 0 0 1
0 0 2g 0

 (26)
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Ju~f (~x?, u?) =


0
1
0
−1

 (27)

Define A := J~x~f (~x?, u?) and B := Ju~f (~x?, u?). The linearized system is

d
dt
~x(t) = A~x(t) + B~u(t) (28)

The eigenvalues of A are 0 (repeated twice), −
√

2g and
√

2g. The linearized system is not
stable because of the eigenvalue

√
2g. To accomplish the given task, we may want to apply

feedback control. It happens to be the case that, for this continuous time system, we can place
the eigenvalues anywhere so long as they are distinct.

The accompanying Colab notebook shows a demo of how we may want to accomplish the goal
of stabilizing the cart-pole system.
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