
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2022
Note j: Complex Numbers

1 What are Complex Numbers?

1.1 Introduction

Most students have some basic background in complex numbers (C) from high school. The purpose of this
note is to solidify this understanding. With that, let’s begin with the most basic definition: j =

√
−1 (in

most engineering discplines, we will use j, so as to not confuse ourselves with current or the identity matrix
I. Besides, NumPy uses j as well). All complex numbers are of the form z = a + jb, where a is the real part
and b is the imaginary part. This form is more commonly known as the rectangular form, and as we will
see, addition in this form is very similar to vector addition.

The complex conjugate1 of z, represented by z (and sometimes by z∗), is defined as follows:

z = (a + jb) = a− jb (1)

The magnitude of a complex number, z, is given by

|z| =
√

a2 + b2 (2)

and the phase is given by
θ = ∠z = atan2(b, a). (3)

Here, atan2(y, x) is a function2 that returns the angle from the positive x-axis to the vector from the origin
to the point (x, y).

1.2 Basic Operations

Let’s say we have two complex numbers z1 = a1 + jb1 and z2 = a2 + jb2. As you may recall, addition is
defined as follows:

z1 + z2 = (a1 + a2) + j(b1 + b2) (4)

This should look very similar to the addition of vectors in 2D. Multiplication is a little more complicated,
but it behaves very similarly to polynomial multiplication, except the indeterminate3 is replaced by j, and
we have j2 = −1:

z1 · z2 = (a1 + jb1) · (a2 + jb2) (5)

= a1a2 + jb1a2 + ja1b2 + j2b1b2 (6)
= (a1a2 − b1b2) + j(a1b2 + a2b1) (7)

Before we move on to division, let’s see what the multiplicative inverse would look like:

1
z
=

1
a + jb

=
1

a + jb
· a− jb

a− jb
(8)

=
a− jb

a2 + b2 =
a

a2 + b2 − j
b

a2 + b2 (9)

1z is also used in digital logic to represent ’NOT’ operation
2See its relation to tan−1 ( y

x
)

at https://en.wikipedia.org/wiki/Atan2.
3You might know of these as a “variable” in the sense that “3x + 2” is a polynomial in the variable x of degree 1. The technical term

for that x is “indeterminate” because it does not have a determined value.

1

https://en.wikipedia.org/wiki/Atan2


EECS 16B Note j: Complex Numbers 2022-01-25 15:32:24-08:00

Above, we multiply both the numerator and denominator by z. This allows us to make the denominator
real, and we also observe z · z = |z|2.

Following the same train of thought, let’s define division as well:

z1

z2
=

a1 + jb1

a2 + jb2
(10)

=
(a1 + jb1) · (a2 − jb2)

a2
2 + b2

2
(11)

=
(a1a2 + b1b2)− j(a1b2 − a2b1)

a2
2 + b2

2
(12)

In eq. (11), we subsititute the multiplicative inverse found in eq. (9), and we continue by carrying out the
multiplication as defined in eq. (7).
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Figure 1: Complex number z depicted as a vector in the complex plane.

1.3 Complex Plane

The complex plane is an extension of the real number line; by adding another independent axis to represent
the purely imaginary numbers (i.e. those with the real part equal to zero) we can represent all complex
numbers. As shown in Figure 1, a complex number z = x + jy has an coordinate of x along the real axis
and y along the imaginary axis. We can also see visually that the magnitude of z is its distance from the
origin, and the phase is the angle from the positive real axis.

2 The Polar Form

2.1 Revisiting Multiplication

With our understanding of the complex plane, let’s see how a complex number z = 1 + j0 changes as we
multiply it with z1 = 1 + j repeatedly:

It looks like z seems to be rotating by 45°. Is this an arbitrary angle? Not really, as the angle of rotation
seems to related to the phase ]z1 = 45°. So, can we think of some representation of complex numbers
where this additive property of angles is natural?
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Figure 2: Multiplying z (in blue) by z1 repeatedly

How can we turn multiplication into some kind of addition? Well, we can represent the phase in an expo-
nent. What if we used ‘e’ as the base for our exponent, and just set z = e]z? Unfortunately, a pure real
exponential will blow up as ]z increases, but this is not the behaviour we see with complex number angles.
Any real number in the exponent couldn’t possibly behave the right way — angles spin around while real
exponents either go to zero or blow up. So if the term in the exponent can’t be real, for now, let’s take a leap
of faith and hope that something imaginary works! i.e. Multiply the term in the exponent by j, i.e. z = ej]z2 .
We don’t yet know how this will behave, but let’s push forward.

The above motivation just captured the rotation property of multiplication by complex numbers. Futher-
more, there is some scaling as well. More precisely, for the example of 1 + j, it is scaling by

√
2. This cannot

be a coincidence, so how can we express this scaling with our new form? We could multiply the magnitude
of z2 with the exponential, i.e. z2 = |z2|ej]z2 .

Now, let’s try to isolate the effect of rotation by multipling z = 1 + j0 by z2 = 1√
2
+ j 1√

2
(note that |z2| = 1)

repeatedly. We get plot in fig. 3:

We have a rotation by 45° as before, and we do not have any scaling. So, our intuition of multiplying the
magnitude with the exponential agrees with this example as well. This is good news and increases our
degree of comfort and confidence with our guess. But we really do need to justify it more thoroughly to be
able to lean on it.

2.2 Developing the Polar Form and Euler’s Equation

In the last section we conjectured that:
z = |z|ej]z (13)

But what does ej]z even mean? It is a natural first step, from our experiences, to use the exponential’s
definition in the form of its Taylor’s expansion around 0 (or the Maclaurin’s expansion of ‘e(·)’):

z = |z|ejθ (14)
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Figure 3: Multiplying z (in blue) by z2 repeatedly

= |z|
(

1 + jθ +
(jθ)2

2!
+

(jθ)3

3!
+ · · ·+ (jθ)2n

2n!
+

(jθ)2n+1

(2n + 1)!
+ · · ·

)
(15)

= |z|
(

1 + jθ − θ2

2!
− j

θ3

3!
+ · · ·+ (−1)n θ2n

2n!
+ j(−1)n θ2n+1

(2n + 1)!
+ · · ·

)
(16)

= |z|
[(

1− θ2

2
+

θ4

4
− · · ·+ (−1)n θ2n

2n!
+ · · ·

)
+ j
(

θ − θ3

3
+ · · ·+ (−1)n θ2n+1

(2n + 1)!
+ · · ·

)]
(17)

= |z|(cos(θ) + j sin(θ)). (18)

Here, θ = ]z and the angles are measured in radians. At eq. (16), we used the fact that jk has a regular
periodically repeating pattern to it: j0 = +1, j1 = +j, j2 = −1, j3 = −j, j4 = +1, and so it goes. Basically we
just need to look at the remainder4 that we get after we divide k by 4.

• If that remainder is 0 (i.e. k is 0 plus a multiple of 4 or, k = 4`+ 0 for some integer `), then jk = +1.

• If that remainder is 1 (i.e. k is 1 plus a multiple of 4 or, k = 4`+ 1 for some integer `), then jk = +j.

• If that remainder is 2 (i.e. k is 2 plus a multiple of 4 or, k = 4`+ 2 for some integer `), then jk = −1.

• If that remainder is 3 (i.e. k is 3 plus a multiple of 4 or, k = 4`+ 3 for some integer `), then jk = −j.

Going from eq. (17) to eq. (18), we recognize and substitute for the Taylor expansions of sine and cosine
around at 0. Let’s analyze our result in eq. (18) with reference to the diagram of the complex plane in
Figure 1:

Recalling basic definitions from trigonometry, we can see that x = |z| cos(θ) and y = |z| sin(θ), hence
z = x + jy = |z|(cos(θ) + j sin(θ)), agreeing with our previous result. Hence, the form we guessed in the
earlier section was correct and we have come back full circle, connecting with the rectangular form we
discussed in Section 1.

4Such remainder operations are often called mod operations, and they play a major role in our follow-on course 70. But in 16B, you
will begin to be prepared for thinking about such cyclic behavior because the complex numbers exhibit it very naturally.
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Concept Check: Using Euler’s equation:

ejθ = cos(θ) + j sin(θ) (19)

write sine and cosine as sums of complex exponentials.

Solution:
e−jθ = cos(−θ) + j sin(−θ) = cos(θ)− j sin(θ) (20)

Adding and Subtracting eq. (19) and eq. (20), we get:

2 cos(θ) = ejθ + e−jθ ⇒ cos(θ) =
ejθ + e−jθ

2
(21)

2j sin(θ) = ejθ − e−jθ ⇒ sin(θ) =
ejθ − e−jθ

2j
=
−jejθ + je−jθ

2
(22)

This is the source of the famous identity ejπ + 1 = 0, connecting five very fundamental numbers together: 0
(the additive identity), 1 (the multiplicative identity), e (the base of the natural logarithm, defined because
we want a function whose derivative was itself), j (the basic imaginary number

√
−1), and π (the area of a

perfect circle with radius 1). Such remarkable beauty is what marks the subject of complex analysis5 more
generally.

2.3 Conclusion

The polar form of z is a very important representation as it greatly simplifies multiplication. The polar form
of z = a + jb is given as follows:

z = |z|ej]z

The conjugate of z is given as z = |z|e−j]z since sin(−θ) = − sin(θ) while cos(−θ) = cos(θ) from trigonom-
etry.

Multiplication in this form is given as:

z1 · z2 = (|z1|ej]z1) · (|z2|ej]z2) = (|z1| · |z2|)ej(]z1+]z2) (23)

If we look carefully, we can realize that complex multiplication is nothing but a rotation operation, followed
by scaling. We are essentially rotating z1 by]z2 in the counter-clockwise direction6, and scaling it by a factor
of |z2|. Of course, this conclusion would have been difficult to make precise without the use of polar forms.
We will solidfy this view of rotations further in the next section where we will model complex numbers as
matrices to augment the vector intuition we have gained thus far.

5The historical tradition within Electrical Engineering has traditionally placed a lot of emphasis on complex analysis alongside
real analysis and linear algebra. You will see some evidence of this in later courses like 120 and 128, and even in courses like 105,
140, and 142. However, the 16AB sequence is almost completely rooted in linear algebra because linear algebra is far simpler, and
while sometimes lacking the delicate beauty of complex analysis, it can be more robust. At advanced levels, you need to know both.
There is a reason why Complex Analysis 185 is considered an absolutely core course for Math majors and minors, along with Real
Analysis 104, Linear Algebra 110, and Abstract Algebra 113. In the EECS lower division, 16AB hit basic linear algebra, 16B touches on
some ideas from real analysis and only skirts vague hints of complex analysis, and 70 touches on some ideas from abstract algebra.
We encourage our students to take the core upper division Math courses for a deeper understanding and appreciation for these
foundational conceptual tools.

6It is common to define the counter-clockwise direction as the positive direction while measuring angles in the Cartesian plane.
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2.4 Useful Identities

Complex Number Properties

Rectangular vs. polar forms: z = x + jy = |z|ejθ

where |z| =
√

zz =
√

x2 + y2, θ = atan2(y, x). We can
also write x = |z| cos θ, y = |z| sin θ.

Euler’s identity: ejθ = cos θ + j sin θ

sin(θ) =
ejθ − e−jθ

2j
, cos(θ) =

ejθ + e−jθ

2

Complex conjugate: z = x− jy = |z|e−jθ

(z + w) = z + w, (z− w) = z− w

(zw) = zw,
( z

w

)
=

z
w

z = z⇔ z is real

z = −z⇔ z is purely complex, i.e. no real part

(zn) = (z)n

Complex Algebra

Let z1 = x1 + jy1 = |z1|ejθ1 , z2 = x2 + jy2 = |z2|ejθ2 .

(Note: we adopt the easier representation between
rectangular form and polar form.)

Addition: z1 + z2 = (x1 + x2) + j(y1 + y2)

Multiplication: z1z2 = |z1||z2|ej(θ1+θ2)

Division:
z1
z2

=
|z1|
|z2|

ej(θ1−θ2)

Power: zn
1 = |z1|nejnθ1

z
1
2
1 = ±|z1|

1
2 ej θ1

2

(Note: Just like square roots are not unique, other
fractional powers of z1 are not unique as well.)

Useful Relations

−1 = j2 = ejπ = e−jπ

j = ej π
2 =
√
−1

−j = −ej π
2 = e−j π

2√
j = (ej π

2 )
1
2 = ±ej π

4 =
±(1 + j)√

2

Concept Check: Verify the above identities for yourself if you have not done so in prior classes.

3 Complex Numbers Represented As Matrices (OPTIONAL, not in scope)

Viewing complex numbers as vectors definitely seems attractive and it does fit into our visualization of the
complex plane, but it has a major flaw — vectors do not naturally multiply, but complex numbers do. In
fact, multiplication is the raison d’etre for complex numbers. So, how do we get a better model? What both
adds and multiplies? Enter matrices, and more specifically scaled rotation matrices.

3.1 Matrix form of rotations

But first, what is a rotation matrix? To begin answering this question, we need to first understand what a

rotation tranformation would look like. Rotating the vector ~e1 =

[
1
0

]
by angle θ in the counter clockwise

direction would give us~̃e1 =

[
cos(θ)
sin(θ)

]
, and similarly for~e2 =

[
0
1

]
, we will get~̃e2 =

[
− sin(θ)
cos(θ)

]
. Hence, we

can describe the rotation transform (by angle θ) as the following matrix:

~̃v = Rθ~v =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
~v (24)

An important thing to note is this rotation matrix has orthonormal columns7. Next, what would happen if
we rotated a vector by θ1 and then by θ2? Well, it would be equivalent to rotating it by θ1 + θ2, hence we

7The columns in a matrix with orthonormal columns all have norm 1 and are mutually orthogonal to each other (i.e. their inner
products with each other are zero). Such matrices are commonly referred to as orthogonal matrices in the mathematical literature.
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have:

Rθ1 · Rθ2 =

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
= Rθ1+θ2 (25)

Concept Check: Use basic trigonometry (in particular, the sum-angle formulas for sine and cosine that
you probably derived in high school) to check the equality established in eq. (25). Futhermore, rotations in
2D are commutative8 as well. Show that this is true by proving Rθ1 · Rθ2 = Rθ2 · Rθ1

When we look back at rotation matrix in eq. (24), it bears some resemblance to the Euler form (eq. (18)) we
discovered in the previous section. If we have a complex number z = a + jb = cos(θ) + j sin(θ), where
|z| = 1 (for simplicity, we will look at scaling a bit later) and ∠z = θ, then we could define a matrix Z(a,b) as
follows:

Z(a,b) =

[
a −b
b a

]
(26)

Concept Check: Check that this matrix has orthogonal columns.

We can express the fundamentally two-dimensonal nature of such matrices by expressing them using a
relevant basis:

Z(a,b) = aI + bJ where I =
[

1 0
0 1

]
and J =

[
0 −1
1 0

]
. (27)

Notice that J2 = −I above, and so the matrix J acts like the counterpart of the basic imaginary number j.

What is a complex conjugate in this representation? What can we do to swap the b and −b in the matrix
above? Indeed we see that transposing the matrix corresponds to complex conjugation of the underlying
complex number. It has no effect on a scaled identity matrix which would correspond to a purely real
number. But J> = −J.

Next, let’s look at the scaling. In this case, we have z = a + jb, with |z| =
√

a2 + b2. To account for this in
our matrix model, we can factor out |z| as follows:

Za,b =
√

a2 + b2

[ a√
a2+b2 − b√

a2+b2
b√

a2+b2
a√

a2+b2

]
(28)

Looking at the above form, the factor out in the front is responsible for the scaling. From the figure below,
we can find θ = atan2(b, a) such that cos(θ) = a√

a2+b2 and sin(θ) = b√
a2+b2 .
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Figure 4: Complex number z = a + jb represented as a vector in the complex plane.

8This commutative property for rotations only holds for 2D spaces, and not for 3D spaces. Take a second to think about this!
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Now, let’s see if this model fits with everything that we know about complex arithmetic.

3.1.1 Addition:

For two complex numbers, z1 = a1 + jb1 and z2 = a2 + jb2, we have:

Z(a1,b1)
+ Z(a2,b2)

=

[
a1 + a2 −(b1 + b2)
b1 + b2 a1 + a2

]
= Z(a1+a2,b1+b2)

Hence, it satisfies our definition of addition.

3.1.2 Multiplication by real number:

Let z = a + jb, then λz = λa + jλb, where λ is a real number. This can be easily extended to our matrix form
as well:

λZ(a,b) = λ

[
a −b
b a

]
=

[
λa −λb
λb λa

]
= Z(λa,λb)

3.1.3 Multiplication by a complex number:

Finally, and the reason we are pursuing this representation, multiplication by another complex number. Let
z1 = a1 + jb1 and z2 = a2 + jb2, then we have z1 · z2 = (a1a2 − b1b2) + j(a1b2 + a1b1). Let’s check if this is
the case with matrix multiplication:

Z(a1,b1)
· Z(a2,b2)

=

[
a1 −b1
b1 a1

] [
a2 −b2
b2 a2

]
=

[
a1a2 − b1b2 −(a1b2 + a2b1)
a1b2 + a2b1 a1a2 − b1b2

]
= Z(a1a2−b1b2,a1b2+a2b1)

Note that since our 2D rotations are communtative, so are the multiplications with complex numbers.

Multiplication by the complex conjugate also gives an identity matrix with the magnitude squared along
the diagonal.

It turns out, although we will not show this here, that even the natural generalization of exponentiation to
matrices, called the matrix exponential, works with this matrix representation for complex numbers. This
allows Euler’s formula ea+jb = eaejb = ea(cos(b) + j sin(b)) to still apply for this model.
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