
EECS 16B Designing Information Systems and Devices II UC Berkeley Summer 2022
Note 4: Inductors and RLC Circuits

1 Inductors

1.1 Introduction to Inductors

Here, we introduce a new passive component, the inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

Definition 1 (Inductor)

An inductor is denoted as in Figure 1.

IL(t)

L

+

−

VL(t)

Figure 1: Example Inductor Circuit

The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
(1)

where L is the inductance of the inductor. The SI unit of inductance is the Henry (H).
The following are important facts about inductors:

1. The voltage across an inductor cannot change instantaneously.

2. Immediately after a current is passed through the inductor, the inductor acts as an open circuit,
but as t → ∞, the inductor acts like a short.

Notice that the voltage-current relationship written in eq. (1) is similar to that of a capacitor, but with
voltage and current swapped. The short term and long term behavior of inductors and capacitors are also
opposites of each other.

Theorem 2 (Series Equivalence)

Consider the two inductors in series configuration in Figure 2, and suppose we wish to find the series
equivalent as in Figure 3.
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Itest(t)

L1

+

−

V1(t)

L2

+

−

V2(t)

Itest

Figure 2: Series Inductor Circuit

Itest(t)

Leq

+

−

Veq(t)

Itest

Figure 3: Equivalent Series Inductor Circuit

The equivalent series inductance is Leq = L1 + L2.

Proof. We use the test current source, Itest(t), depicted in Figure 2 and Figure 3 to find the equivalent voltage
across both inductors, i.e., Veq(t). Using KVL, we have

V1(t) + V2(t) = Veq(t) (2)

L1
dIL(t)

dt
+ L2

dIL(t)
dt

= Veq(t) (3)

(L1 + L2)︸ ︷︷ ︸
Leq

dIL(t)
dt

= Veq(t) (4)

as desired.

Theorem 3 (Parallel Equivalence)

Consider the two inductors in parallel configuration in Figure 4, and suppose we wish to find the
parallel equivalent as in Figure 5.
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Ieq(t)

I1(t)

L1

+

−

V1(t)

I2(t)

L2

+

−

V2(t)−
+Vtest

Figure 4: Parallel Inductor Circuit

Ieq(t)

Leq

+

−

Vtest(t)−
+Vtest

Figure 5: Equivalent Parallel Inductor Circuit

The equivalent inductance is given by Leq =
(

1
L1

+ 1
L2

)−1
.

Proof. We can apply the test voltage Vtest as depicted in Figure 4 and Figure 5 to find the equivalent current
through both inductors, i.e., Ieq(t). By NVA, we have that

V1(t) = V2(t) = Vtest(t) (5)

L1
dI1

dt
= L2

dI2

dt
= Leq

dIeq

dt
(6)

and from KCL we have

Ieq(t) = I1(t) + I2(t) (7)

dIeq

dt
=

dI1

dt
+

dI2

dt
(8)

dIeq

dt
=

Leq

L1

dIeq

dt
+

Leq

L2

dIeq

dt
(9)

1
Leq

=
1
L1

+
1
L2

(10)

Leq =

(
1
L1

+
1
L2

)−1
(11)
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as desired.

1.2 OPTIONAL: Physics behind Inductors

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and this
leads to an electric field (E⃗), anytime current flows down a conductor, it creates a magnetic field (B⃗), and this
magnetic field can store energy. Inductors’ behavior can be described using Faraday’s Law of Induction.

The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other
geometries to create useful inductances. A solenoid is a good example, where we wind a wire around a
conductor like a copper rod:

A
IS L

N turns

ℓ L = N2µA
ℓ [H]

Figure 6: The Inductance of a Solenoid: a wire coiled around something.

Note that the inductance (L) depends on the geometry and a material property called magnetic perme-
ability (µ) of the solenoid core material. In the case of the solenoid in fig. 6, the inductance depends on
the number of turns (N), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful
in many applications such as wireless communications, chargers, DC-DC converters, key card locks, trans-
formers in the power grid, etc. But in many high speed applications, their presence might be undesirable
as they create delays in the time response of the circuit (analogous to capacitors).

2 LC Tank Example

This section is an extended example to demonstrate how inductors can create oscillations in circuits. Con-
sider the LC Tank circuit depicted in Figure 7.

L

IL

C

+

−

Vout

IC

Figure 7: An LC Tank.

We can model Vout(t) using differential equations. Suppose that Vout(0) = 0 and IL(0) = 1 A.
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2.1 Deriving the Differential Equations

We will use KCL and NVA to derive the system of differential equations that models this circuit. NVA gives
us

VL = VC = Vout (12)

KCL gives us

IL = −IC = −C
dVout

dt
(13)

dVout

dt
= − 1

C
IL (14)

and NVA again gives us

VL = Vout = L
dIL
dt

(15)

L
dIL
dt

= Vout (16)

dIL
dt

=
1
L

Vout (17)

Notice that we have derivatives of IL(t) and VL(t), so we can make these state variables. Arranging this as
a matrix differential equation, we have

d
dt

[
Vout

IL

]
︸ ︷︷ ︸

x⃗(t)

=

[
0 − 1

C
1
L 0

]
︸ ︷︷ ︸

A

[
Vout

IL

]
︸ ︷︷ ︸

x⃗(t)

(18)

2.2 Solving the Matrix Differential Equation

It happens to be the case A is diagonalizable here. We can solve this matrix differential equation using the
technique from the previous note: by first diagonalizing, performing a change of basis, solving a diagonal
system, and then undoing the change of basis. We can find the eigenvalues by solving for λ in

det{A − λI2} = 0 (19)

which yields λ1 = j 1√
LC

and λ2 = −j 1√
LC

. We can find v⃗1, the eigenvector for λ1, by finding a basis for

Null(A − λ1 I). Computing this gives v⃗1 =

j
√

L
C

1

. We perform a similar operation with λ2 and obtain

v⃗2 =

−j
√

L
C

1

. Hence, we have

Λ =

j 1√
LC

0

0 −j 1√
LC

 (20)

V =

j
√

L
C −j

√
L
C

1 1

 (21)

=⇒ V−1 =
1

2j
√

L
C

 1 j
√

L
C

−1 j
√

L
C

 (22)
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The new differential equation for ⃗̃x(t) is

d
dt
⃗̃x(t) =

j 1√
LC

0

0 −j 1√
LC

⃗̃x(t) (23)

with initial condition ⃗̃x(0) = V−1

[
0
1

]
= 1

2

[
1
1

]
. Solving this diagonal system, we see that

⃗̃x(t) =

 1
2 ej t√

LC

1
2 e−j t√

LC

 (24)

Undoing the change of variables to find x⃗(t), we obtain

x⃗(t) = V⃗̃x(t) (25)

=

j
√

L
C −j

√
L
C

1 1

 1
2 ej t√

LC

1
2 e−j t√

LC

 (26)

=


√

L
C

(
j
2 ej t√

LC − j
2 e−j t√

LC

)
1
2 ej t√

LC + 1
2 e−j t√

LC

 (27)

Using Euler’s formula (ejθ = cos(θ) + j sin(θ)), we can simplify the above to obtain

x⃗(t) =

−√
L
C sin

(
t√
LC

)
cos

(
t√
LC

)  (28)

so we have Vout(t) = −
√

L
C sin

(
t√
LC

)
and IL(t) = cos

(
t√
LC

)
.

2.3 Visualizing Vout(t), IL(t), and Energy

A plot of IL(t) and Vout(t) will resemble the graph in Figure 8.

Figure 8: Voltage and Current response of LC Tank
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We can find the energy in the capacitor and inductor respectively:

EC =
1
2

CV2
out =

L
2

sin2(
t√
LC

) (29)

EL =
1
2

LI2
L =

L
2

cos2(
t√
LC

) (30)

Notice that EC + EL = L
2 , so the energy is constant over time. This is expected, since physics tells us that

energy in this closed system should be conserved. A plot of EC and EL will resemble Figure 9.

Figure 9: Energy stored in Inductor and Capacitor. Notice the sum is constant.
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