
EECS 16B Designing Information Systems and Devices II UC Berkeley Summer 2022
Note 9: Introduction to Controls

NOTE: Starting from this note, and really for Modules 2 and 3, the material starts to become a little
more mathematically sophisticated. As a result, the notes may become more densely packed with informa-
tion. Here are some tips to read more mathematically dense notes (although this really applies to papers,
textbooks, etc. as well).

• Skim through the note first, get an outline of the main ideas and results covered, then go through
it again with an eye to detail for proofs. Re-reading for a second time after doing some practice
problems to crystallize your understanding can also be helpful, though be aware that this usually
isn’t a resource you can use for mathematical text you might encounter in "the wild", i.e., your job or
in academia.

• When reading carefully, work out some of the intermediate steps of proofs and calculations yourself
using pencil and paper (or whiteboard/chalkboard/tablet/etc.). Also, try to come up with small
examples and work out what we are saying might be true for those examples.

• Take notes on the notes! It really helps your working memory to have a shortlisted copy of all the
important stuff within easy access.

• Last but not least, don’t get discouraged if it takes you a while to understand the notes! For a mathematical
text, reading a handful of pages an hour carefully is a very robust pace, and you should expect to go
around this speed, especially when first learning the concepts.

NOTE: For this note we will use the notation R+ to mean the set of non-negative real numbers, and the
notation N = {0, 1, 2, . . . } to mean the set of natural numbers.

1 Controls Overview

Recall that one of the big-picture motivations for the course is to understand what it takes to create artificial
systems that interact with the real world. One important component of this is being able to act in the real
world to achieve our goals. Interacting with the real world to achieve our objectives is the subject of the
field of control. Control is one of the foundational disciplines for robotics and artificial intelligence, and is
also very critical for many other areas in EECS such as high performance computing and power systems.

We will study control through the framework of so-called "model-based control." A model is a function
that attempts to mathematically describe the way a physical system works, in a sense we will make precise
shortly. Often-times, people refer to a model and its underlying physical system interchangeably.

Key Idea 1
The main idea of model-based control is that we leverage an explicit model for the physical system we’re con-
cerned with in order to plan and execute our actions.

There are two main quantities of interest when discussing a model, usually both represented as vectors.

1



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

Definition 2 (State, Control Input)

• The state ~x represents the collection of variables we care about.

• The control input ~u is the collection of variables that a controller is able to change in order to push
the state where we want.

Now we have the vocabulary to precisely define a control model.

Definition 3 (Control Model)

A control model is a rule that

• takes in: (1) an initial condition for the state, and (2) all control inputs over time;

• and produces: a state trajectory, i.e., all states achieved over time.

This is a very abstract definition, so let’s discuss two main examples of models we will use in this class.
NOTE: Neither example explicitly gives a formula for the state in terms of the initial condition and

inputs. This is because, when analyzing a system and setting up a model, it is usually easiest to map our
system onto a differential/difference equation, instead of a solution to said equation (which can be very
complicated). From there we can solve for the state trajectory using the formulas we will derive in this
note.

Model 4 (Discrete-Time LTI Difference Equation Model)

The model is of the form

~x[i + 1] = A~x[i] + B~u[i] (1)

~x[0] = ~x0 (2)

for ~x : N→ Rn the state vector as a function of timestep, ~u : N→ Rm the control inputs as a function
of timestep, and A ∈ Rn×n, B ∈ Rn×m matrices.

Model 5 (Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt
~x(t) = A~x(t) + B~u(t) (3)

~x(0) = ~x0 (4)

for ~x : R+ → Rn the state vector as a function of time, ~u : R+ → Rm the control inputs as a function
of time, and A ∈ Rn×n, B ∈ Rn×m matrices.

NOTE: We use square brackets in discrete-time (instead of parentheses) to differentiate between discrete-
time functions of timestep (i.e., sequences), and continuous-time functions of time.

Right now the names of these models are probably just jargon, and in particular the "LTI" (a.k.a. "linear
time-invariant") portion may not make sense. This is absolutely fine; knowing the models is important, but
memorizing the names is not, and you certainly aren’t expected to divine the definitions of these words

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

without us telling you. In particular, linearity and time-invariance of models is out of scope for the course,
though you can read more about it in section 6.

Solving the differential equation or difference equation will tell us the state trajectory as a function of
the initial condition and inputs, which is a more explicit form of the model.

It turns out that in many cases that are important to us, we have the ability to explicitly solve for the
state trajectory. The remainder of the note will be dedicated to solving for the state trajectory in both the
discrete-time and continuous-time cases, as well as some examples of where each model is used.

2 Solving the Discrete-Time LTI Difference Equation Model

We will start with the discrete-time LTI difference equation model. Given an initial condition ~x0 and a
sequence of inputs ~u, we would like to compute ~x[i] for every i.

Theorem 6 (State Trajectory in Discrete-Time LTI Difference Equation Model)

In the discrete-time LTI difference equation model, we have

~x[i] = Ai~x0 +
i−1

∑
k=0

Ai−k−1B~u[k]. (5)

Proof. We start with the fact that eq. (1) looks like a recursion, because to compute ~x[i + 1] we require only
the most recent state ~x[i], as well as the most recent input ~u[i]. Motivated by this, we can try to unroll the
recursion, and get

~x[i] = A~x[i− 1] + B~u[i− 1] (6)

= A(A~x[i− 2] + B~u[i− 2]) + B~u[i− 1] (7)

= A2~x[i− 2] + AB~u[i− 2] + B~u[i− 1] (8)

= A2(A~x[i− 3] + B~u[i− 3]) + AB~u[i− 2] + B~u[i− 1] (9)

= A3~x[i− 3] + A2B~u[i− 3] + AB~u[i− 2] + B~u[i− 1] (10)

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (11)

= Ai−1(A~x[0] + B~u[0]) +
i−1

∑
k=1

Ai−k−1B~u[k] (12)

= Ai~x[0] +
i−1

∑
k=0

Ai−k−1B~u[k] (13)

= Ai~x0 +
i−1

∑
k=0

Ai−k−1B~u[k]. (14)

This gives us the state trajectory of the discrete-time LTI difference equation model.
Concept Check: Check that the trajectory given by eq. (5) is correct, in the sense that it obeys the differ-

ence eq. (1) and initial condition eq. (2).

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

3 Solving the Continuous-Time LTI Differential Equation Model

We now study the Continuous-Time LTI Differential Equation Model. Given an initial condition ~x0 and all
inputs ~u, we would like to compute ~x(t) for every t.

As you might imagine, it is not possible to use the recursion approach for this model. Instead, we will
rely on our knowledge of differential equations that we have already covered (for example in Note 1), and
use it to extend the solution to matrices.

3.1 Scalar Model

In the scalar case, the Continuous-Time LTI Differential Equation Model becomes the following:

Model 7 (Scalar Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt

x(t) = ax(t) + bu(t) (15)

x(0) = x0 (16)

for x : R+ → R the state scalar as a function of time, u : R+ → R the control input as a function of
time, and a ∈ R, b ∈ R scalar coefficients.

Theorem 8 (State Trajectory in Scalar Continuous-Time LTI Differential Equation Model)

In the scalar continuous-time LTI differential equation model, we have

x(t) = eatx0 +
∫ t

0
ea(t−τ) · bu(τ)dτ . (17)

Proof. The first thing to note is that eqs. (15) and (16) looks like a differential equation we already know
how to solve! Recall that in Note 1 we showed that the (unique) solution to the differential equation

d
dt

x(t) = λx(t) + u(t) (18)

x(0) = x0 (19)

is given by

x(t) = eλtx0 +
∫ t

0
eλ(t−τ)u(τ)dτ . (20)

But eqs. (15) and (18) look really similar. In fact, if we replace "λ" with "a" and replace "u(t)" by "bu(t)", they
are exactly the same. Thus, the solution to eqs. (15) and (16) is exactly the same as eq. (20) after we make
those replacements. So we have

x(t) = eatx0 +
∫ t

0
ea(t−τ) · bu(τ)dτ . (21)

This gives us the trajectory of the scalar continuous-time LTI differential equation model.

So, given an input function u and an initial condition x0, we can solve for the state trajectory x using the
formula eq. (17).

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://www.eecs16b.org/notes/sp22/note01.pdf
https://www.eecs16b.org/notes/sp22/note01.pdf


EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

3.2 A Diagonal Model

The next step after solving one scalar differential equation is to solve n independent differential equa-
tions. This is accomplished whenever A is diagonal. Indeed, suppose A is diagonal, say with entries
a11, a22, . . . , ann going from top-left to bottom-right (we write this as A = diag(a11, a22, . . . , ann)). This gives
us the model:

Model 9 (Diagonal Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt
~x(t) = A~x(t) + B~u(t) (22)

~x(0) = ~x0 (23)

for ~x : R+ → Rn the state scalar as a function of time, ~u : R+ → Rm the control input as a function of
time, B ∈ Rn×m a matrix, and A := diag(a11, a22, . . . , ann) ∈ Rn×n a diagonal matrix.

Theorem 10 (State Trajectory in Diagonal Continuous-Time LTI Differential Equation Model)

In the diagonal continuous-time LTI differential equation model, we have

~x(t) = eAt~x0 +
∫ t

0
eA(t−τ)B~u(τ)dτ , (24)

where we use the notation

eAt :=


ea11t

ea22t

. . .

eannt

 (25)

for A = diag(a11, a22, . . . , ann) a square diagonal matrix.

NOTE: eAt is a square matrix of the same size as A.

Proof. We can rewrite eq. (22) as

d
dt
~x(t) = A~x(t) + B~u(t) (26)

d
dt


x1(t)
x2(t)

...
xn(t)

 =


a11

a22
. . .

ann




x1(t)
x2(t)

...
xn(t)

+


(B~u(t))1

(B~u(t))2
...

(B~u(t))n

 (27)


d
dt x1(t)
d
dt x2(t)

...
d
dt xn(t)

 =


a11x1(t) + (B~u(t))1

a22x2(t) + (B~u(t))2
...

annxn(t) + (B~u(t))n

 . (28)

Writing each row of the vector separately as its own equation, we get

d
dt

x1(t) = a11x1(t) + (B~u(t))1 (29)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

d
dt

x2(t) = a22x2(t) + (B~u(t))2 (30)

...
... (31)

d
dt

xn(t) = annxn(t) + (B~u(t))n (32)

We know how to solve each of these equations; along with the initial conditions, which are seen from
eq. (23) to be

x1(0) = (~x0)1 (33)

x2(0) = (~x0)2 (34)

...
... (35)

xn(0) = (~x0)n (36)

Then each equation is of the form that we solved in section 3.1. Hence we can solve each equation to get

x1(t) = ea11t(~x0)1 +
∫ t

0
ea11(t−τ)(B~u(τ))1 dτ (37)

x2(t) = ea22t(~x0)2 +
∫ t

0
ea22(t−τ)(B~u(τ))2 dτ (38)

...
... (39)

xn(t) = eannt(~x0)n +
∫ t

0
eann(t−τ)(B~u(τ))n dτ . (40)

Stacking each scalar equation to get a vector solution, we get

~x(t) =



ea11t(~x0)1 +
∫ t

0
ea11(t−τ)(B~u(τ))1 dτ

ea22t(~x0)2 +
∫ t

0
ea22(t−τ)(B~u(τ))2 dτ

...

eannt(~x0)n +
∫ t

0
eann(t−τ)(B~u(τ))n dτ


(41)

=


ea11t(~x0)1

ea22t(~x0)2
...

eannt(~x0)n

+
∫ t

0


ea11(t−τ)(B~u(τ))1

ea22(t−τ)(B~u(τ))2
...

eann(t−τ)(B~u(τ))n

dτ . (42)

Now to simplify to the form we want, we use the definition of matrix multiplication to get
ea11t(~x0)1

ea22t(~x0)2
...

eannt(~x0)n

 =


ea11t

ea22t

. . .

eannt



(~x0)1

(~x0)2
...

(~x0)n

 = eAt~x0 (43)

and


ea11(t−τ)(B~u(τ))1

ea22(t−τ)(B~u(τ))2
...

eann(t−τ)(B~u(τ))n

 =


ea11(t−τ)

ea22(t−τ)

. . .

eann(t−τ)



(B~u(τ))1

(B~u(τ))2
...

(B~u(τ))n

 = eA(t−τ)B~u(τ). (44)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

Using this to simplify eq. (42), we get

eAt~x0 +
∫ t

0
eA(t−τ)B~u(τ)dτ (45)

as desired.

Phew! That was a lot of work. Thankfully, this is the mathematically hardest part of the note. Make sure
you can replicate each of the steps and justify why they are true.

So, given an input function ~u and an initial condition ~x0, we can solve for the state trajectory ~x using the
formula eq. (24).

3.3 A Diagonalizable Model

Now that we have solved the case of n independent differential equations, let us now see what happens if
the differential equations are independent in a desirable basis. That is – let us suppose that the A matrix
can be written as A = VΛV−1 for some given diagonal matrix Λ and invertible matrix V. Note that this
is equivalent to A being diagonalizable, i.e., having n linearly independent eigenvectors; in this case Λ is
actually the matrix of eigenvalues and V is the matrix of eigenvectors of A.

This yields the model:

Model 11 (Diagonalizable Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt
~x(t) = A~x(t) + B~u(t) (46)

~x(0) = ~x0 (47)

for ~x : R+ → Rn the state scalar as a function of time, ~u : R+ → Rm the control input as a function of
time, B ∈ Rn×m a matrix, and A ∈ Rn×n a diagonalizable matrix with diagonalization A = VΛV−1.

Theorem 12 (State Trajectory in Diagonalizable Continuous-Time LTI Differential Equation Model)

In the diagonalizable continuous-time LTI differential equation model, we have

~x(t) = VeΛtV−1~x0 +
∫ t

0
VeΛ(t−τ)V−1B~u(τ)dτ , (48)

where we again use the notation in eq. (25).

NOTE: Recall that Λ is the diagonal matrix in the diagonalization of A = VΛV−1, so the notation eΛt is
valid and represents the diagonal matrix whose entries are the exponentials eλiit.

Proof. We can rewrite eq. (46) as

d
dt
~x(t) = A~x(t) + B~u(t) (49)

= VΛV−1~x(t) + B~u(t). (50)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

Now we can use the change-of-basis that was introduced when we first solved vector differential equations.
Namely, let ~̃x(t) := V−1~x(t). Then

d
dt
~x(t) = VΛV−1~x(t) + B~u(t) (51)

V−1 d
dt
~x(t) = V−1VΛV−1~x(t) + V−1B~u(t) (52)

d
dt

(
V−1~x(t)

)
= ΛV−1~x(t) + V−1B~u(t) (53)

d
dt
~̃x(t) = Λ~̃x(t) + B̃~u(t) (54)

if we use the substitution B̃ := V−1B. Thus, after changing the basis for the initial condition eq. (47) by
setting ~̃x0 = V−1~x0, we have the vector system

d
dt
~̃x(t) = Λ~̃x(t) + B̃~u(t) (55)

~̃x(0) = ~̃x0. (56)

This is a system of differential equations where the A matrix – in this case Λ – is diagonal, so this is exactly
the form of equation we solved in section 3.2! Thus, we can solve eqs. (55) and (56) to get a function ~̃x(t):

~̃x(t) = eΛt~̃x0 +
∫ t

0
eΛ(t−τ)B̃~u(τ)dτ (57)

To finish the proof, it remains to convert back to the usual basis of x coordinates (as opposed to the x̃
coordinates which the solution is in).

~x(t) = V~̃x(t) (58)

= VeΛt~̃x0 +
∫ t

0
VeΛ(t−τ)B̃~u(τ)dτ (59)

= VeΛtV−1~x0 +
∫ t

0
VeΛ(t−τ)V−1B~u(τ)dτ (60)

as desired.

A summary of the above proof is captured by the familiar change of coordinates diagram:

d
dt~x(t) = A~x(t) + B~u(t) ~x(t) = . . .

d
dt
~̃x(t) = Λ~̃x(t) + B̃~u(t) ~̃x(t) = . . .

Too difficult

Change of
variables to get

a diagonal system

Solve a
diagonal system

Undo change
of variables

3.4 Beyond Diagonalizable A

Not all matrices are diagonalizable, so it is necessary to handle the case where we cannot perform the
decomposition we used to get eqs. (55) and (56). Unfortunately, there is no neat closed form, such as the
one we found in theorem 12.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

The primary way to handle this case is to use upper triangularization instead of diagonalization. Upper
triangularization provides a change of basis to an upper triangular matrix (instead of to a diagonal matrix),
i.e., we write A = VTV−1 where T is upper triangular. Once in the x̃ basis, the differential equations we get
will not be strictly independent; however, each equation will be solvable without needing any information
from the equations above it. So we solve the equations bottom-to-top and back-substitute solutions to lower
equations into upper equations. Once we have solved all the equations in the x̃ basis, we convert back to
the x basis.

The process is captured in the modification to the change-of-coordinates diagram:

d
dt~x(t) = A~x(t) + B~u(t) ~x(t) = . . .

d
dt
~̃x(t) = T~̃x(t) + B̃~u(t) ~̃x(t) = . . .

Too difficult

Change of
variables to get an

upper triangular system

Solve an upper
triangular system

Undo change
of variables

Upper triangularization is covered later on in this course. We will show that, in fact, every square matrix
is upper triangularizable, so this technique is universally applicable.

3.5 (OPTIONAL) Matrix Exponential

Section 3.4 is slightly misleading; in fact, there is a theoretical fully general closed form for the state trajec-
tory of the continuous-time LTI differential equation model. However, to find it, we need to expand the
notation we introduced in eq. (25). This notation eAt is called the matrix exponential.

Definition 13 (Matrix Exponential)

Let X ∈ Rn×n be a square matrix. Then the matrix exponential of X is the term

eX = In + X +
X2

2
+

X3

6
+ · · · =

∞

∑
i=0

Xi

i!
. (61)

To calculate eAt, we can compute eq. (61) with X = A · t.
It is insightful to compare eq. (61) with the Maclaurin series (i.e. Taylor series centered at 0) of the usual

scalar exponential function:

ex = 1 + x +
x2

2
+

x3

6
+ · · · =

∞

∑
i=0

xi

i!
. (62)

This motivates why we call this expansion the matrix exponential. Anyways, here are some properties:

Lemma 14 (Properties of Matrix Exponential)

• If X = diag(x11, x22, . . . , xnn), then

eX =


ex11

ex22

. . .

exnn

 . (63)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 9



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

In this sense it coincides with the definition from eq. (25).

• If X = VYV−1 is a change of basis of X, then

eX = VeYV−1. (64)

• The function ~x(t) := eAt~x0 is the solution to the differential equation

d
dt
~x(t) = A~x(t) (65)

~x(0) = ~x0. (66)

Concept Check: Prove lemma 14.
Concept Check: Show that eqs. (17), (24) and (48) are all versions of eq. (67).
With these facts in hand, we can introduce the general trajectory for model 5, the continuous-time LTI

differential equation model.

Theorem 15 (State Trajectory in Continuous-Time LTI Differential Equation Model)

In the continuous-time LTI differential equation model, we have

~x(t) = eAt~x0 +
∫ t

0
eA(t−τ)B~u(τ)dτ . (67)

4 Examples

There are many instances where using the Discrete-Time LTI Difference Equation Model and the Continuous-
Time LTI Differential Equation Model is practical and we can use them to describe engineering systems.
Two such examples follow, one for continuous-time and one for discrete-time.

4.1 Continuous-Time LTI Model Example

Consider the following familiar RC circuit:

R

C−
+ vin(t)

+

−

vout(t)

Let’s say we wanted to model vout(t). We can set up the following differential equation:

d
dt

vout(t) =
vin(t)− vout(t)

RC
(68)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

vout(0) = V0 (69)

Let’s say we have the ability to change vin(t) via a controller device. This is an explicit instance of a scalar
continuous-time LTI differential equation model, which we covered in section 3.1, with the variables A =

− 1
RC , B = 1

RC being scalars. We can read off the solution as

vout(t) = e−
1

RC tV0 +
1

RC

∫ t

0
e−

1
RC (t−τ)vin(τ)dτ . (70)

This is interesting to study as a control model if, for instance, we want to set the trajectory of vout(t) to, for
example, be a decaying exponential function with a desired decay rate.

4.2 Discrete-Time LTI Model Example

In the robot car project, we may model the distance traveled d and the velocity v of the left (L) and right (R)
wheels at timestep i using the following state model:

vL[i] = dL[i + 1]− dL[i] = θLuL[i]− βL (71)

vR[i] = dR[i + 1]− dR[i] = θRuR[i]− βR (72)

where θL, θR and βL, βR are constants given by the physical system that we learn from data, and uL, uR are
inputs (i.e. power supplied) to the left and right wheels.

From this model, we can compute uL[i] and uR[i] such that vL[i] = vR[i] = vd for some desired velocity
vd. In principle, this is how we compute the inputs needed for the wheels to move at the desired velocity.

Note that until now we have not involved any sophisticated control ideas, such as the Discrete-Time LTI
Difference Equation Model.

The issue with this computation is that our parameters θL, θR, βL, βR may be imperfectly learned from
data. Thus the velocities for the two wheels may disagree, even given the inputs we calculated above. Thus
the robot car would go in circles or circular arcs, not in a straight line. In fact, the robot car would go in
circles unless the distance traveled by each wheel is the same at each timestep.

Thus, we will define a new variable δ[i] = dL[i]− dR[i], and attempt to find control inputs that send δ[i]
to 0. It turns out that δ[i] obeys the Discrete-Time LTI Difference Equation Model, but the exact details are
left to homework. This system will tell us how to get a car that moves straight even in the face of inacurate
θ, β measurement.

5 Final Comments

There are many problems we can tackle once we have fixed a model, even after we know the state trajectory
given the inputs and initial conditions. Examples of such problems are:

• Suppose we have a continuous-time model for the system, but we want to implement a digital con-
troller. Since our controller doesn’t have infinite memory and infinite computing power, it can only
read to/modify the system at discrete timesteps, effectively forcing us to use a discrete-time model.
So, given a continuous-time model, we convert it to an approximate discrete-time model and use that
to implement the controller.

The process of coming up with a discrete-time model that approximates a continuous-time model is
called discretization and is covered in Note 10.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11

https://www.eecs16b.org/notes/sp22/note10.pdf


EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

• Suppose we have a discrete-time model (respectively, a continuous-time model) for the system, but
we don’t know the matrices A and B. We also have data from the system; specifically, we have
(~x[i],~u[i],~x[i + 1]) for lots of values of i (respectively (~x(t),~u(t), d

dt~x(t)) for lots of values of t). Then
we can learn the A and B matrices from data and thereby get a discrete-time model that accurately
reflects the system.

The process of learning the model parameters A and B from data is called system identification and is
covered in Note 10.

• Suppose we have a model for the system, and want to know whether the state vector will grow un-
boundedly over time, and in particular which inputs will cause the state vector to grow unboundedly
over time. We generally do not want this to happen in real systems.

The process of determining, given a model, under what conditions the state trajectory grows un-
boundedly is called stability analysis and is covered in Note 11.

• Suppose we have a model for the system, and want to know whether the state can ever reach some
desired state ~xd. If the state is, for example, the position of the robot car, then this is tantamount to
asking whether the car can reach a desired position. This property is desirable in general.

The process of determining, given a model, if there is a set of inputs that will push the state to a given
desired state is called controllability analysis and is covered in Note 12.

• Suppose we have a model for the system, and want to find inputs that push the state to a given desired
state ~xd while consuming minimum energy.

The process of determining the correct inputs to push the state towards a given desired state while
consuming minimum energy is called minimum energy control and is covered in Note 16.

6 (OPTIONAL) More on LTI

Back when we started the note, we defined some models with the "linear time-invariant" (LTI) property.
This property is really two properties which can apply to a model: linearity and time-invariance. To describe
the definitions of these properties, we will introduce a new notation which makes our description easier.

More particularly, recall that we said a model is a rule which takes in an initial state ~x0 and a control
input ~u (a function of time), and returns a state function ~x (again a function of time). We will say in this
case that (~x0,~u)→ ~x is an input-output pair of the model.

Now we are ready to give our definitions.

Definition 16 (Linearity)

A model is linear if for every c1, c2 ∈ R and any input-output pairs

(~x0;1,~u1)→ ~x1 and (~x0;2,~u2)→ ~x2 (73)

then the model also has the input-output pair

(c1~x0;1 + c2~x0;2, c1~u1 + c2~u2)→ c1~x1 + c2~x2. (74)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12

https://www.eecs16b.org/notes/sp22/note10.pdf
https://www.eecs16b.org/notes/sp22/note11.pdf
https://www.eecs16b.org/notes/sp22/note12.pdf
https://www.eecs16b.org/notes/sp22/note16.pdf


EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

This is the same definition we use for a linear transformation, or a matrix; it is just abstracted to deal
with the inputs and outputs being functions of time. Essentially this means that the model’s output is linear
in its inputs.

Definition 17 (Time-Invariance)

A model is time-invariant if for every non-negative time τ ≥ 0, and every input-output pair (~x0,~u) →
~x, if we define the notation

~̃x0 := ~x(τ) ~̃x(t) := ~x(t + τ) ~̃u(t) := ~u(t + τ) (75)

then the model has the input-output pair (~̃x0,~̃u) → ~̃x. Essentially this means that the model doesn’t
change its behavior as time goes on.

Note that here we used the continuous-time notation, but this also applies for the discrete-time model.
In discrete-time, τ ∈N; in continuous-time, τ ∈ R+.

Theorem 18
The Discrete-Time LTI Difference Equation Model and the Continuous-Time LTI Differential Equation
Model are LTI.

Concept Check: Prove theorem 18 by using the solutions to the difference/differential equations (eqs. (5)
and (67)) to write the state function explicitly in terms of the initial condition and control input, and show-
ing that it is linear.

Intuitively, the Discrete-Time LTI Difference Equation Model and the Continuous-Time LTI Differential
Equation Model are linear because the right-hand side of the equations are linear in the current ~x value and
the current ~u value, and they are time-invariant because the coefficients A and B don’t depend on time.

For example, an example of a discrete-time linear difference equation model which is not time invariant
(and in particular called time-varying) is:

~x[i + 1] = i2 ·~x[i] + i · ~u[i] (76)

~x[0] = ~x0. (77)

And an example of a continuous-time time-invariant differential equation model which is not linear is:

d
dt
~x(t) = ‖~x(t)‖2~x(t) + B~u(t) (78)

~x(0) = ~x0. (79)

This is nonlinear because the first term

‖~x(t)‖2~x(t) =

(
n

∑
i=1

xi(t)2

)
~x(t) (80)

is at least quadratic in the xi(t) (and in particular each coordinate is cubic).
Dealing with time-varying models is out of scope of this class. The one caveat is that we should know

qualitatively how to learn parameters that may change over time. The way to do this is to collect more data
over time, and use only recent data to learn the current model parameters via system identification.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13



EECS 16B Note 9: Introduction to Controls 2022-07-09 09:12:41-04:00

Dealing with nonlinear models is out of scope for this note, though we will learn in Note 20 how to
locally approximate a nonlinear model by a linear model through linearization. Once we do this approxima-
tion we can use the linear model for designing our inputs for a short time, until the state leaves the region
in state space where the approximation is valid, at which point we will have to re-linearize and repeat. We
can also do nonlinear system identification using machine learning techniques, discussed in Note 21.

7 (OPTIONAL) More on Model-Based Control

We have discussed linear time-invariant models in discrete-time and continuous-time in the main part of
the note, and in section 6 we have discussed ways to produce nonlinear and time-varying models. By
mixing and matching these categories, we can generate several types of models we won’t be using in this
course, but are nonetheless practical and useful to study.

As a summary, here is a diagram of models that are studied in model-based control:

Model-Based Controls Methods

Linear Models

Linear Time-
Invariant (LTI)

Models

Discrete
Time

Difference
Equations (sec. 2)

...

Continuous
Time

Differential
Equations (sec. 3)

...

Linear Time-
Varying (LTV)

Models

Nonlinear Models

Linearization Machine
Learning

...

this note this note

Note 20 Note 21

Figure 1: Classification of model-based control techniques. Taken from EE 221A Fall 2020 Lecture Note 1.

Contributors:
• Druv Pai.
• Anish Muthali.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14

https://www.eecs16b.org/notes/sp22/note20.pdf
https://www.eecs16b.org/notes/sp22/note21.pdf
https://www.eecs16b.org/notes/sp22/note20.pdf
https://www.eecs16b.org/notes/sp22/note21.pdf
https://inst.eecs.berkeley.edu/~ee221a/fa20/lectures/lecture_notes_1.pdf

	Controls Overview
	Solving the Discrete-Time LTI Difference Equation Model
	Solving the Continuous-Time LTI Differential Equation Model
	Scalar Model
	A Diagonal Model
	A Diagonalizable Model
	Beyond Diagonalizable A
	 Matrix Exponential

	Examples
	Continuous-Time LTI Model Example
	Discrete-Time LTI Model Example

	Final Comments
	 More on LTI
	 More on Model-Based Control

