1 Complex Numbers Introduction

Definition 1 (Complex Numbers)
Consider an arbitrary complex number \(a \in \mathbb{C} \). We can write this complex number as \(a = x + jy \) where \(j = \sqrt{-1} \) and \(x, y \in \mathbb{R} \).

Definition 2 (Complex Number Operations)
Consider two complex numbers \(a, b \in \mathbb{C} \). Let \(a = x + jy \) and \(b = u + jv \) where \(x, y, u, v \in \mathbb{R} \). Addition is defined as follows:
\[
 a + b = (x + jy) + (u + jv) = (x + u) + j(y + v)
\]
and multiplication is defined as follows:
\[
 a \cdot b = (x + jy) \cdot (u + jv) = xu - yv + j(xv + uy)
\]
Note: this uses the "FOIL" technique for multiplication of real quantities.

Definition 3 (Complex Conjugate and Magnitudes)
Consider an arbitrary complex number \(a \in \mathbb{C} \) where we can equivalently write \(a = x + jy \) for \(x, y \in \mathbb{R} \). The complex conjugate of \(a \) is
\[
 \bar{a} = x - jy
\]
The magnitude of \(a \) is
\[
 |a| = \sqrt{a\bar{a}}
\]

2 Polar Form

We will investigate another method to write complex numbers.

Theorem 4 (Euler’s Identity)
Consider an arbitrary complex number \(a \in \mathbb{C} \) which we can write as \(a = x + jy \). We can equivalently write this as \(a = |a| e^{j\theta} \) where \(x = |a| \cos(\theta) \) and \(y = |a| \sin(\theta) \) (equivalently, \(\theta = \text{atan2}(y, x) \)).

\(^a\text{Here, atan2}(y, x) \text{ is a function that returns the angle from the positive x-axis to the vector from the origin to the point } (x, y). \text{ See https://en.wikipedia.org/wiki/Atan2.}\)

Proof. Let us write \(a = |a| e^{j\theta} \). We can show that \(x = |a| \cos(\theta) \) and \(y = |a| \sin(\theta) \), using the Taylor expansion of \(f(x) = e^x \):
\[
 a = |a| e^{j\theta}
\]
\[\begin{align*}
= |a| \left(1 + j\theta + \frac{(j\theta)^2}{2!} + \frac{(j\theta)^3}{3!} + \cdots + \frac{(j\theta)^{2n}}{2n!} + \frac{(j\theta)^{2n+1}}{(2n+1)!} + \cdots \right) \\
(6)
= |a| \left(1 + j\theta - \frac{\theta^2}{2!} - \frac{\theta^3}{3!} + \cdots + (-1)^n \frac{\theta^{2n}}{2n!} + j(-1)^n \frac{\theta^{2n+1}}{(2n+1)!} + \cdots \right) \\
(7)
= |a| \left[\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots + (-1)^n \frac{\theta^{2n}}{2n!} + \cdots \right) + j \left(\theta - \frac{\theta^3}{3!} + \cdots + (-1)^n \frac{\theta^{2n+1}}{(2n+1)!} + \cdots \right) \right] \\
(8)
= |a| (\cos(\theta) + j\sin(\theta)) \\
= |a| \cos(\theta) + j |a| \sin(\theta) \\
(9)
\end{align*} \]

To show that \(\theta = \text{atan2}(y, x) \), consider that

\[\frac{y}{x} = \frac{|a| \sin(\theta)}{|a| \cos(\theta)} \]

\[\Rightarrow \theta = \arctan \frac{y}{x} \]

(11)

(12)

Instead of using regular arctan, we will use \(\text{atan2} \), two argument arctan, which protects against sign errors (i.e., to differentiate the cases when \(x \) and \(y \) are both positive or both negative) and division by zero (i.e., when \(x = 0 \)). Hence, we write

\[\theta = \text{atan2}(y, x) \]

(13)

The plot in Figure 1 visually describes the conversion from rectangular (i.e., \(x + jy \)) form to polar form (i.e., \(|a|e^{j\theta} \))

![Figure 1: Complex number \(a \in \mathbb{C} \) depicted as a vector in the complex plane.](image)

Corollary 5 (Complex Exponential Representations of Sine and Cosine)

Using Theorem 4, we have that

\[\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} \]

(14)
\[\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \quad (15) \]

Proof. Using Theorem 4 and the even/odd nature of cosine/sine respectively, we have the following direct results:

\[e^{j\theta} = \cos(\theta) + j\sin(\theta) \quad (16) \]
\[e^{-j\theta} = \cos(\theta) - j\sin(\theta) \quad (17) \]

From this, we have that

\[2\cos(\theta) = e^{j\theta} - j\sin(\theta) + e^{-j\theta} + j\sin(\theta) \quad (18) \]
\[\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} \quad (19) \]

and

\[2j\sin(\theta) = e^{j\theta} - \cos(\theta) - e^{-j\theta} + \cos(\theta) \quad (20) \]
\[2j\sin(\theta) = e^{j\theta} - e^{-j\theta} \quad (21) \]
\[\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \quad (22) \]

Contributors:
- Anish Muthali.
- Aditya Arun.
- Anant Sahai.
- Nikhil Shinde.
- Druv Pai.
- Neelesh Ramachandran.