
EECS 16B Notes

Simon Kuang, Seth Sanders

Spring (now Fall) 2020

Introduction

These are notes for EECS 16B, a freshman-level survey of topics in electrical

engineering. I (Simon) mostly wrote them during the Spring 2020 semester

of EECS 16B paraphrasing Prof. Sanders’s lectures the same semester. The

sentences are my own; the source graphics1 and a lot of proofreading are Seth’s.

If you find a mistake or can suggest an improvement, let me know on

GitHub.

I release these notes under Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International (cbna).

The file you’re viewing was compiled at 2020-10-01 20:59:50-07:00.

1
which I lightly edited in GIMP

https://inst.eecs.berkeley.edu/~ee16b/sp20/
https://github.com/simontheflutist/eecs16b-notes
https://github.com/simontheflutist/eecs16b-notes
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Contents ii

List of Figures iv

1 16A review and prerequisites 1

1.1 The language of circuits . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current-voltage characteristic . . . . . . . . . . . . . . . . . . . . 2

1.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Transistor Circuits 4

2.1 mosfet behavior at a low level . . . . . . . . . . . . . . . . . . . 4

2.2 An nmos inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A cmos inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A cmos inverter chain with capacitance . . . . . . . . . . . . . . 10

3 Transient Analysis 13

3.1 RC transient in an inverter chain . . . . . . . . . . . . . . . . . . 13

3.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Differential equations with inputs 19

4.1 RC with exponential input . . . . . . . . . . . . . . . . . . . . . . 19

4.2 General scalar differential equation . . . . . . . . . . . . . . . . . 21

5 Vector differential equations and second-order circuits 22

5.1 Guess-and-check for RC filter with cosine input . . . . . . . . . . 22

5.2 Second-order filter with two capacitors . . . . . . . . . . . . . . 23

5.3 General state-space linear ODEs . . . . . . . . . . . . . . . . . . . 23

6 Diagonalization to solve vector differential equations 27

6.1 Solution technique . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Numerical example from RCRC circuit . . . . . . . . . . . . . . . 28

6.3 Introduction to inductors . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Example: RL circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Inductors and RLC Circuits 32

ii



Contents

7.1 LR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 LC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 LRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Phasors 38

8.1 Exponential inputs and outputs . . . . . . . . . . . . . . . . . . . 38

8.2 Phasor representation of a sinusoid . . . . . . . . . . . . . . . . . 39

8.3 Current and voltage phasors in circuits . . . . . . . . . . . . . . . 41

9 Frequency Response and Bode Plots 43

9.1 Phasors review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.2 Transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Resonance in RLC Circuits 47

10.1 Time-domain analysis . . . . . . . . . . . . . . . . . . . . . . . . 48

10.2 Reparameterized transfer function . . . . . . . . . . . . . . . . . 50

10.3 Applications of (R)LC filtering . . . . . . . . . . . . . . . . . . . 50

iii



List of Figures

1.1 Current and voltage annotated on a passive element. . . . . . . . . 1

1.2 I-V characteristic of a resistor. . . . . . . . . . . . . . . . . . . . . . . 2

1.3 I-V characteristic of a voltage source. . . . . . . . . . . . . . . . . . . 2

1.4 I-V characteristic of a current source. . . . . . . . . . . . . . . . . . . 3

2.1 Physical construction of a simple mosfet. . . . . . . . . . . . . . . . 4

2.2 Currents and voltages labeled on an nmos transistor. . . . . . . . . 5

2.3 I-V characteristic of an nmos transistor at different values of vGS. . 5

2.4 Regions of an nmos I-V characteristic. . . . . . . . . . . . . . . . . . 6

2.5 Currents and voltages labeled on a pmos transistor. . . . . . . . . . 6

2.6 I-V characteristic of a PMOS transistor at different values of vGS. . 7

2.7 A inverter built using an nmos transistor. . . . . . . . . . . . . . . . 7

2.8 Truth table of the nmos inverter. . . . . . . . . . . . . . . . . . . . . 8

2.9 A inverter built using the cmos design.. . . . . . . . . . . . . . . . . 8

2.10 Equivalent circuit of Figure 2.9 when vin = VDD. . . . . . . . . . . . 9

2.11 A chain of inverters, which is kind of similar to a computer. . . . . . 10

2.12 An inverter taken from a chain with a capacitor modeling the next

stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.13 An inverter outputting VDD with load capacitor. . . . . . . . . . . . 10

2.14 Energy stored in a capacitor can be computed by an integral under

the V = Q/C curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.15 cmos load capacitor forced from voltage VDD to 0. . . . . . . . . . . 11

3.1 Model of nmos transistor with G-S capacitance. . . . . . . . . . . . 13

3.2 Model of pmos transistor with G-S capacitance. . . . . . . . . . . . 14

3.3 A cmos inverter at three levels of abstraction. . . . . . . . . . . . . . 14

3.4 Two consecutive cmos inverters, part of a longer chain. . . . . . . . 14

3.5 Input signal to the first inverter of Figure 3.4 . . . . . . . . . . . . . 15

3.6 Analog redrawing of Figure 3.4, showing switch actions of the first

inverter, as well as a distinguished node. . . . . . . . . . . . . . . . . 15

3.7 Sketch of transient from t1 to t2 in Figure 3.6. . . . . . . . . . . . . . 17

4.1 An amp with three knobs to adjust playback. . . . . . . . . . . . . . 19

4.2 RC circuit as a filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



List of Figures

5.1 Filter with two resistors and two capacitors. . . . . . . . . . . . . . . 23

5.2 Decomposition of ~x along eigenbasis directions ~v1 and ~v2. . . . . . 25

6.1 Illustration of multiplication actions of A, Λ, V , and V−1
. . . . . . . 28

6.2 Parallels between capacitors and inductors. . . . . . . . . . . . . . . 30

6.3 RL circuit, which is similar to an RC circuit (cf. Figure 4.2). . . . . . 31

7.1 An RL circuit with an (AC) voltage source. . . . . . . . . . . . . . . 32

7.2 An LC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Current and voltage of an oscillating LC circuit. . . . . . . . . . . . 34

7.4 Phase portrait of an oscillating LC circuit. . . . . . . . . . . . . . . . 34

7.5 An LRC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.6 The effects of the real and imaginary parts of an eigenvalue λ =
λr + jλi, when neither is zero. . . . . . . . . . . . . . . . . . . . . . . 36

8.1 AnRC circuitwith a sinusoidal voltage source and its phasor domain

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1 Bode magnitude plot of Equation 9.19. . . . . . . . . . . . . . . . . . 45

9.2 Bode phase plot of Equation 9.19. . . . . . . . . . . . . . . . . . . . . 46

10.1 An LRC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.2 Eigenvalue locus from imaginary pair at R = 0 to negative real at

critical R, as R increases from 0. . . . . . . . . . . . . . . . . . . . . . 48

10.3 Figure 10.1, but reparameterized usingωn and ξ. . . . . . . . . . . 49

10.4 Homogeneous response of an LRC circuit with R > 0. . . . . . . . . 49

10.5 Bode plot of an LRC filter with ξ = 0.1. . . . . . . . . . . . . . . . . . 50

10.6 An R ≈ 0 LC circuit used as an matching network. . . . . . . . . . . 51

10.7 An R ≈ 0 LC circuit used in a DC-DC converter. . . . . . . . . . . . 51

10.8 Output of the switch in Figure 10.7, approximated as an offset sine

wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



Lecture 1

16A review and prerequisites

1.1 The language of circuits

Electrical circuits are models, specifically, abstractions of underlying physics-

based descriptions of realities that govern behavior of an electrical system

under analysis. Mathematically, circuits are collections of nodes joined by branch

elements. Between every pair of adjacent nodes there is a voltage difference,

measured in volts, as well as a current, measured in amps. You should be able to

explain, both in approximate physical terms, and, if possible, by a mechanical

analog, what voltage and current are. Given a circuit drawing, you should

be able to write a comprehensive set of voltage-current constraints that fully

predicts what is happening in the circuit. For a well-posed circuit model withN
nodes, one preferred method is Nodal Analysis, which involves writing N− 1
linearly independent KCL node equations, and incorporating KVL and element

branch consraints while writing the node equations.

Figure 1.1: Current and voltage annotated on a passive element.

Understand how current and voltage are annotated on a circuit. Our terms

are “voltage across branch element X” and “current through branch element

X.” The phrases “voltage through. . . ” or “current across. . . ” do not make sense.

Understand, as shown in Fig. 1.1, that the reference directions for voltage
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1.2. Current-voltage characteristic

Figure 1.2: I-V characteristic of a resistor.

Figure 1.3: I-V characteristic of a voltage source.

and current are such that power absorbed by a circuit element is given by the

formula vi.

1.2 Current-voltage characteristic

Resistor

As shown in Fig. 1.2, resistors enforce a proportionality relationship between

current and voltage:

V = RI (1.1)

I = GV (1.2)

The ratio V/I is called resistance. The ratio I/V is called conductance.

Voltage source

As shown in Fig. 1.3, a voltage source will provide any current (or none at all)

to maintain its target voltage.

Current source

As shown in Fig. 1.4, a current source will provide any voltage (or none at all)

to maintain its target current.
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1.3. Linear algebra

Figure 1.4: I-V characteristic of a current source.

Circuit-solving techniques

Be familiar with the following methods for solving circuits:

• Series elements, e.g. two resistors in series

• Parallel elements, e.g. two resistors in parallel.

• Voltage and current dividers

• Kirchoff’s voltage and current laws

• Norton and Thévenin equivalent circuits

• Nodal analysis

• Power calculations

1.3 Linear algebra

Knowwhat a vector is. Knowwhat eigenvalues and eigenvectors are, and know

how to solve for the eigenvalues and eigenvectors of a matrix, by solving for the

null space of A− λI, where λ is an indeterminate. Know why this technique

works.
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Lecture 2

Transistor Circuits

2.1 mosfet behavior at a low level

Transistors are nonlinear circuit elements that are integral to building digital

electronics. We’ll focus on a class of transistor called mosfet (metal-oxide

semiconductor field-effect transistor), of which there are two types, nmos and

pmos. For the most part, we will view mosfets from a digital perspective as

voltage-controlled switches (more on that later), but we’ll first have a look at

the analog world under the hood.

The physical makeup of a mosfet is shown in Figure 2.1. It is a device

built on a silicon substrate with three terminals: source (S), drain (D), and gate

(G). What makes a transistor a transistor is 2) mediated by gate voltage. (No

current enters the gate of a mosfet: IG = 0.) 1) a current-voltage characteristic

between drain and source, These quantities are labeled on Figure 2.2. Notice

that voltages are understood with reference to their difference from VS, so:

• D-S current-voltage characteristic is between ID and vDS = vD − vS,

• parameterized by vGS = vG − vS.

Figure 2.1: Physical construction of a simple mosfet.
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2.1. mosfet behavior at a low level

Figure 2.2: Currents and voltages labeled on an nmos transistor.

Figure 2.3: I-V characteristic of an nmos transistor at different values of vGS.

The role of vGS in nmos

Figure 2.3 depicts several current-voltage characteristics of an nmos, parame-

terized by vGS. There’s a lot happening on this graph in both the vertical and

horizontal directions. Here’s a self-guided tour:

• Notice the horizontal line lying along the positive vDS-axis. This is the plot

of the I-V characteristic when vGS < vt,n, where vt,n > 0 is the threshold
voltage for an nmos transistor. The current-voltage characteristic is

I = 0, the transistor is behaving as a current source corresponding to zero

current—in other words, it’s an open circuit. The transistor is “off.” 1

• Notice that three I-V curves, parameterized by how much vGS exceeds

vt,n, lie above the line I = 0. Each of them is intersected by what looks

like the eastern half of a dotted upward-facing parabola rising from the

origin. This parabola divides the quadrant into two regions, one left and

1
English semantics for “on” and “off” in circuits can be counterintuitive. An open circuit/switch

is off, and vice versa.
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2.1. mosfet behavior at a low level

region # on/off? vGS predicate vDS predicate name

0 off vGS < vt,n any

1 on vGS > vt,n low “linear region”

2 on vGS > vt,n high “saturation”

Figure 2.4: Regions of an nmos I-V characteristic.

Figure 2.5: Currents and voltages labeled on a pmos transistor.

one right. The left region is called region 1; the right region is called

region 2.

• Focus on region 1, which is called the Linear Region. Notice that in region

1 near the origin, ID and vDS are proportional for every value of vGS. The

slope G = ID/vDS increases for higher values of vGS. This means that the

D-S resistance R = G−1
transitions from ∞ to a finite (perhaps small)

value as vGS increases past vt,n. A resistor that can alternate between

finite and infinite resistance is called a switch: in the Linear Region the

transistor is a voltage-controlled switch.

• Focus on region 2, which is called Saturation, Here the ID increases only

very weakly as vDS increases.For a given VDS, ID increases with increasing

vGS: the transistor behaves approximately as a voltage-controlled current

source!

These characteristics are summarized in Figure 2.4. Regions 0 and 1 can be used

to implement a switch. Region 2 is used for analog electronics—dependent

sources, amplifiers, etc.

pmos transistors: opposite of nmos

Another kind of mosfet is the pmos. They have a similar construction as

nmos transistors, but their behavior is opposite, and for the “on” condition of

VGS < Vt,p, Vt,p < 0. Figure 2.5 and Figure 2.6 are the counterparts of Figure 2.2

and Figure 2.3, respectively.

For most of this class, we’ll use more idealized models of these transistors

in digital logic settings. In the voltage-controlled switch perspective, nmos

6



2.2. An nmos inverter

Figure 2.6: I-V characteristic of a PMOS transistor at different values of vGS.

Figure 2.7: A inverter built using an nmos transistor.

transistors open at lower voltages and close at higher voltages, and pmos

transistors close at lower voltages and open at high ones.

2.2 An nmos inverter

One building block we need to understand digital logic is the inverter, which

is a circuit that outputs a high voltage when its input is a low voltage, and

vice versa. The high voltage represents a digital value of 1 (true), and the low

voltage represents a digital value of 0 (false).

It’s possible to build an inverter using an nmos transistor, as shown in

Figure 2.7. The high voltage is called VDD, which stands for the voltage supplied

by the high power rail, and in this example has a value of 1 volt.2 In this example,

our reference voltage will be ground—0 volts.

2
For obscure historical reasons.
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2.3. A cmos inverter

vin vout
0 VDD

VDD 0

Figure 2.8: Truth table of the nmos inverter.

Figure 2.9: A inverter built using the cmos design..

Analysis

• (Case vin = 0) The transistor, as a switch, is off. As a result, the terminal

vout is connected directly to VDD by a resistor. Because no current flows

into the voltage terminal, by Ohm’s law there can be no voltage drop

across the resistor. Therefore vout = VDD.

• (Case vin = VDD) The transistor, as a switch, is on. The terminal vout has a
short to ground, so vout = 0.

Figure 2.8 shows the truth table of this circuit and verifies that this circuit is

indeed an inverter.

Power consumption

When vin = 0, the circuit consumes no power, as we have established that there

is no current through the resistor between VDD and vout. When vin = VDD, there

is a path from VDD through the resistor, then the transistor, to ground. The

circuit consumes power VI = V2
DD
/R. While this might not necessarily be a lot,

in computing applications with countless transistors, it adds up, and moving

heat away from a dense circuit poses engineering challenges. Dense digital

circuits were made possible by the discovery of the CMOS inverter architecture,

which avoids a path from VDD to ground.
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2.3. A cmos inverter

Figure 2.10: Equivalent circuit of Figure 2.9 when vin = VDD.

2.3 A cmos inverter

Figure 2.9 shows an inverter circuit that exemplifies the cmos design strategy

of using pmos and nmos transistors together.

Analysis

• (Case vin = VDD)

– The pmos having as its source VDD and vout as its drain VGS,1 = 0,
which is higher than Vt,p. Therefore there is no path from VDD to

vout.

– The nmos having vout as its drain and ground as its source has

VGS,2 = VDD, which is higher than Vt,n. Therefore, due to the

terminal’s short to ground, vout = 0.

The equivalent circuit once the switch model has been applied is shown

in Figure 2.10.

• (Case vin = 0)

– The pmos, having VGS,1 = −VDD < Vt,p, turns on.

– The nmos, having VGS,2 = 0 < Vt,n, turns off.

Therefore Vout = VDD.

Power consumption

All currents are zero in this model, so no power is consumed.
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2.4. A cmos inverter chain with capacitance

Figure 2.11: A chain of inverters, which is kind of similar to a computer.

Figure 2.12: An inverter taken from a chain with a capacitor modeling the next

stage.

Figure 2.13: An inverter outputting VDD with load capacitor.

2.4 A cmos inverter chain with capacitance

Contrary to our last conclusion, inverters in real electronics certainlydo consume

some power. We’ll pretend digital circuits are chains of inverters (Figure 2.11)—

although this model won’t teach you how to build a computer, it is close enough

to real cmos networks to illustrate when and where power is expended.

We will concentrate our analysis on just one stage of the cmos inverter

chain. A single inverter is shown in Figure 2.12, with a capacitor between vout
and ground to model the next stage’s load. Figure 2.13 shows the equivalent

circuit when the output of this inverter settles at VDD.

10



2.4. A cmos inverter chain with capacitance

Figure 2.14: Energy stored in a capacitor can be computed by an integral under

the V = Q/C curve.

Figure 2.15: cmos load capacitor forced from voltage VDD to 0.

Potential energy in a capacitor

The energy stored in the capacitor when it has voltage VDD is given by the

formula

Ecap =
1

2
CV2

DD
, (2.1)

which can be derived by using the facts that 1) that voltage is energy per unit

charge and 2) a capacitor obeys Q = CV , and integrating through the total

charge stored in the capacitor:

∫CVDD

0 vC dq (Figure 2.14).

When the inverter’s input changes from low to high, the output must change

from VDD to 0 (Figure 2.15). That means that the load capacitor must discharge

11



2.4. A cmos inverter chain with capacitance

fully, burning
1
2
CV2

DD
of potential energy as heat.

Total energy supplied

Even though the capacitor only stores and discharges
1
2
CV2

DD
, an up-down

cycle costs CV2
DD

. This is because the voltage source must offer Q = CVDD of

charge at VDD energy per unit charge. Where does this go? Let’s follow the

energy as the output changes from 0 to 1 and back to 0.

1. (qC = 0, vC = 0)

2. Voltage source loads CVDD of charge at VDD energy per unit charge, at a

total expense of CV2
DD

. Half of its energy output is burned by “parasitic”

resistance en route to the capacitor, and the other half is stored in the

capacitor.

3. (qC = CVDD, vC = VDD)

4. Transistors toggle, and the capacitor drains, generating
1
2
CV2

DD
of heat on

the pull-down circuit.

5. (qC = 0, vC = 0)

Where does the energy in a device go?

With reference to our chain-of-inverters model, power consumption in digital

devices is mainly explained by three phenomena:

• If the inverter flips every cycle at a clock speed of fs, the circuit will burn

fsCV
2
DD

charging its capacitors.

• Leakage: a transistor that’s “off” isn’t 100% off, and a small amount of

current flows and burns some energy.

• Short-circuit current (smaller): when the input is flipping between 0 and

1, there’s a very short instant during which both transistors may be on,

and some current flows through the momentary VDD-ground short.

12



Lecture 3

Transient Analysis

(For this lecture, a mosfet transistor is considered to transition between “on”

and “off” at vGS =
1
2
VDD.)

We’ll enrich our analog model of mosfets as voltage-controlled switches by

acknowledging capacitance between the mosfet’s gate and source. Figure 3.1

and Figure 3.2 depict nmos and pmos transistors in this model.

Figure 3.3 summarizes the three levels of abstraction with which we are

able to reason about cmos inverters. On the very left is a digital symbol for an

inverter that hides how the inverter works. In the center is the construction of an

inverter using complementary mosfets. On the right is a fairly faithful analog

representation of an inverter that will allow us to interrogate the assumptions

that, thus far, have enabled us to treat the analog circuit as a digital one.

3.1 RC transient in an inverter chain

Let’s return to the case study of a chain of inverters, this time focusing on just

two consecutive inverters. In Figure 3.4 three wires are labeled as follows:

Figure 3.1: Model of nmos transistor with G-S capacitance.

13



3.1. RC transient in an inverter chain

Figure 3.2: Model of pmos transistor with G-S capacitance.

Figure 3.3: A cmos inverter at three levels of abstraction.

Figure 3.4: Two consecutive cmos inverters, part of a longer chain.

• vin is the input to the first inverter,

• vo1 is the output of the first inverter (and the input to the second), and

• vo2 is the output of the second.
The digital logic interpretation is that vo2 is the double negation of vin, that is,
vo2 = vin.

We will study what happens when vin is driven by the input depicted in

Figure 3.5. It will begin having remained at 0 for a long time, change to vDD at

time t1, then return to 0 at time t2 > t1. Figure 3.6 shows the actions of the

switches of the first inverter’s transistors at times t1 and t2. For the rest of this
section, we’ll just concentrate on what happens to vo1 .

14



3.1. RC transient in an inverter chain

Figure 3.5: Input signal to the first inverter of Figure 3.4

Figure 3.6: Analog redrawing of Figure 3.4, showing switch actions of the first

inverter, as well as a distinguished node.

Before t1

As vin = 0 well before t1, we can assume that the circuit has settled, and the

output of the first inverter is vDD.

After t1, before t2

At t1, the pull-up switch opens, and the pull-down switch closes. KCL applied

to the distinguished (red) middle node of Figure 3.6 requires the outgoing

currents to sum to zero. Using Ohm’s Law once and the capacitor current-

voltage relationship twice, we have the following equation:

vo1
RN

+ CN
d

dt
vo1 + CP

d

dt

(
vo1 − vDD

)
= 0 (3.1)

d

dt
vo1 +

1

RN (CN + CP)
vo1 = 0 (3.2)

This is a differential equation that we will analyze with initial condition

vo1(t1) = VDD. For equations of this sort we will identify a characteristic

quantity τ as follows:

τ = RN (CN + CP) (3.3)
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3.1. RC transient in an inverter chain

The International System of Units means that τ is measured in Ohm-Farads,

or seconds. For this reason, τ is called the time constant of the system. A

time constant on the order of tens of picoseconds is considered state-of-the-art

for modern devices, arising from resistances on the order of kiloOhms and

capacitances on the order of femtofarads. Rewriting using τ,

d

dt
vo1 = −

1

τ
vo1 (3.4)

We will refer to the constant of proportionality between
d

dt
vo1 and vo1 as λ.

d

dt
vo1 = λvo1 (3.5)

There are many heuristic techniques to propose a solution to this differential

equation. One of them is called Separation of Variables, which involves

equations such as

∫
dvo1
vo1

=
∫
λdt. The resulting solution form, where A is a

constant that remains to be determined, is all that you will need to know about

this variety of differential equation:

vo1(t) = Ae
λt

(3.6)

(As an aside, you can verify that vo1(t) = Ae
λt

is a solution— differentiating

both sides with respect to t results in d

dt
vo1(t) = Aλe

λt = λ(Aeλt).) Our next

goal is to determineA. We can do so by choosingA to meet the initial condition

vo1(t1) = VDD. Substituting vo1(t) = Ae
λt
,

Aeλt1 = VDD (3.7)

A = VDDe
−λt1

(3.8)

vo1 =
(
VDDe

−λt1
)
eλt (3.9)

= VDDe
−
(
t−t1
τ

)
(3.10)

Figure 3.7 is a sketch of vin and vo1 after t1 and before t2. Notice that vo1
doesn’t immediately jump to 0 like the digital model assumes. Rather, vo1
decays exponentially toward 0 at a rate predicted by τ. Discharging a capacitor

takes time, and digital devices’ clock speed is limited by how quickly binary

values settle in between logic gates.

After t2

We will try to write a differential equation describing the evolution of vo1 at
time t2 and beyond. Figure 3.6 shows that at time t2, the pull-up switch closes,

and the pull-down switch opens. KCL applied to the same central node yields
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3.2. Uniqueness

Figure 3.7: Sketch of transient from t1 to t2 in Figure 3.6.

the following differential equation:

vo1 − VDD

RP
+ (CP + CN)

d

dt
vo1 = 0 (3.11)

d

dt
vo1 +

1

RP (CP + CN)
vo1 =

vDD

RP (CP + CN)
(3.12)

The previous solution for vo1 , which is valid up until time t2, may be evaluated

at t2 for a boundary condition valid past t2:

vo1(t2) = VDDe
−
(
t2−t1
τ

)
(3.13)

A solution for vo1 from t2 onwards is:

vo1 = VDD +
(
vo1(t2) − VDD

)
e
−
(
t−t2
τP

)
, (3.14)

where τP = RP (CP + CN).

3.2 Uniqueness

We solved a differential equation. Differential equations are universal and

ubiquitous in science and engineering.

A theorem states that a large class of differential equations with boundary

conditions have unique solutions. These differential equations are of the form

d

dt
x = f(x, t), x(0) = x0, (3.15)

where
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3.2. Uniqueness

1. for all values of t, f(x, t) is differentiable with respect to x and
∣∣∣ ∂f∂x (x, t)∣∣∣ <

M for some nonnegative real numberM; and

2. for all values of x, f(x, t) has a finite number of discontinuities in t in any

unit interval [t0, t0 + 1].

If these conditions hold, then our differential equation has a unique solution.

Note that these conditions are in fact quite loose, and are more than

enough to certify that unique solutions exist to differential equations of the

form
d

dt
x = f(x) = λx. It is important that we have proofs of existence and

uniqueness because methods such as Separation of Variables are not inherently

rigorous. Only once we have verifed that a proposed solution satisfies the

differential equation and boundary condition may we claim that it is a solution.

Because these problems have unique solutions, we may be certain that the

model we are using is physically deterministic—it tells precisely what must

happen, not just what may happen.
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Lecture 4

Differential equations with inputs

4.1 RC with exponential input

In this section we will derive, in a more hands-on way, the behavior of an RC

circuit forced by an exponential input. If you have ever used an ampwith knobs

for treble and bass (Figure 4.1), then you have interacted with two circuits

similar to the one shown in Figure 4.2. The resistor with a arrow is a variable

resistor, or potentiometer,1 that might be controlled by one of the amp’s knobs.

In Figure 4.2,

• vin represents the amp’s analog input,

• vo is used to drive the speakers after subsequent amplification, and

• R represents the setting on one of the potentiometers.

By studying the distinguished (green) node, we can write the following differ-

ential equation:

d

dt
vo(t) = −

1

RC
vo(t) +

1

RC
vin(t). (4.1)

1
Electric guitars use this circuit component, which guitarists call “pots,” to blend the pickups’

signals.

Figure 4.1: An amp with three knobs to adjust playback.
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4.1. RC with exponential input

Figure 4.2: RC circuit as a filter.

We’ll constrain vin to have the following form:

vin(t) = Vine
st. (4.2)

While it seems that this form is arbitrary, it will prove insightful, because est is
an eigenfunction for input-output behavior of this circuit, i.e. we expect

vo(t) = Voe
st. (4.3)

We can determine Vo by substituting our parameterization of vo into Equa-

tion 4.1, whose LHS. . .

d

dt
vo(t) =

d

dt
Voe

st
(4.4)

= sVoe
st

(4.5)

. . . is equated with the RHS:

sVoe
st = −

1

RC
Voe

st +
1

RC
Vine

st. (4.6)

Now we can isolate Vo.

sV0 +
1

RC
Vo =

1

RC
Vin (4.7)

Vo =

(
1

RC

)(
1

s+ 1
RC

)
Vin (4.8)

Substituting λ = − 1
RC

,

Vo =
1

1− s
λ

Vin (4.9)

All together, our solution for vo(t) is the following:

vo(t) = Voe
st =

1

1− s
λ

Vine
st. (4.10)
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4.2. General scalar differential equation

Suppose that we have an initial condition for vo at time 0.

vo

∣∣∣∣
t=0

= v1 (4.11)

Then our solution, taking this fact into account, will be

vo(t) = Ae
− t
RC +

1

RC

(
Vine

st

s+ 1
RC

)
, (4.12)

where A remains to be determined, viz. by evaluating both sides at t = 0:

v1 = A+
1

RC

(
Vin

s+ 1
RC

)
(4.13)

A = v1 −
1

RC

(
Vin

s+ 1
RC

)
. (4.14)

This concludes our example. A solution to a linear differential equation will,

generally, have the following structure:

v(t) = v
homogeneous

(t) + v
particular

(t), (4.15)

where v
homogeneous

(t) corresponds to the initial condition, and v
particular

(t) to the

input term.

(4.16)

4.2 General scalar differential equation

We will verify that the following general differential equation:

d

dt
x(t) = λx(t) + u(t); x(t0) = x0 (4.17)

has the following solution, which is a sum of a homogeneous and a particular

term:

x(t) = eλ(t−t0)x0 +

∫t
t0

eλ(t−τ)u(τ)dτ. (4.18)

We can check the initial condition x(t0) = x0: the former term evaluates to

x0 and the latter to 0. Next, we can verify that
d

dt
x(t) = λx(t) + u(t) holds by

differentiating.

d

dt
x(t) =

{
λeλ(t−t0)x0

}
+ u(t) +

{∫t
t0

λeλ(t−τ)u(τ)dτ

}
(4.19)

The two terms in curly braces sum to λx(t), so Equation 4.17 is satisfied.
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Lecture 5

Vector differential equations and

second-order circuits

5.1 Guess-and-check for RC filter with cosine input

Last lecture we derived the folowing equation modeling the input-output

properties of an amp: (where R is set by a potentiometer)

d

dt
vout(t) = −

1

RC
vout(t) +

1

RC
vin(t); vout

∣∣∣∣
t0

= V (5.1)

In this section we will try to determine the result in vout when vin has the

following sinusoidal form:

vin(t) = Vin cos (ωt) (5.2)

This defines a sinusoid with amplitude Vin and a frequency of ω, which is

angular frequency, in rad/ s. Angular frequency is related to cycles/second by

ω = 2πf, where f is in units of Hz.

We can solve for vout by guessing that the particular solution—-the summand

that corresponds to vin—has the form A cos (ωt+ φ). The second summand of

vout is the homogeneous solution, which corresponds to the initial condition. It

has the form Be−
1
RC

(t−t0)
.

vout(t) = A cos (ωt+ φ) + Be−
1
RC

(t−t0)
(5.3)

Substitution into the differential equation and initial conditions result in the

following constants:

A =
Vin√

ω2 (RC)2 + 1
(5.4)

φ = − tan
−1(ωRC) (5.5)

B = vout

∣∣∣∣
t0

−A cos(ωt0 + φ) (5.6)
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5.2. Second-order filter with two capacitors

Figure 5.1: Filter with two resistors and two capacitors.

5.2 Second-order filter with two capacitors

Perhaps a “better” filter could be constructed by using two capacitors and two

resistors instead of just one. Figure 5.1 depicts the proposed circuit, which is

a “second-order circuit” or “second-order” filter, with values C1 = C2 = 1µF,
R1 = 1

3
MΩ, and R2 = 1

2
MΩ. KCL at the two dotted-circled upper nodes

yields:

C1
d

dt
v1 +

v1 − vin(t)

R1
+
v1 − v2
R2

= 0 (5.7)

C2
d

dt
v2 +

v2 − v1
R2

= 0 (5.8)

In order to view this system of differential equations in state-space form, we

will isolate derivatives on the LHS and emphasize that the RHS consists of

linear combinations of v1, v2, and vin(t):

d

dt
v1 = −v1

((
1

R1
+
1

R2

)
1

C1

)
+ v2

(
1

R2C1

)
+ vin(t)

(
1

R1C1

)
(5.9)

d

dt
v2 = v1

(
1

R2C2

)
− v2

(
1

R2C2

)
(5.10)

Written in matrix-vector form with physical parameters substituted,

d

dt

[
v1
v2

]
=

[
−5 2
2 −2

][
v1
v2

]
+

[
3
0

]
vin(t) (5.11)

5.3 General state-space linear ODEs

Generally, a system of linear differential equations similar to the one derived

above has the following form:

d

dt
~x = A~x+ ~bu(t), (5.12)
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5.3. General state-space linear ODEs

where ~x is a vector and A is a 2× 2matrix.

Suppose that A has an eigenvector ~v for an eigenvalue λ. We propose the

following solution to the homogeneous problem
d

dt
~x = A~x:

~x(t) = ~veλt (5.13)

and verify that “
d

dt
~x” and “A~x” for this candidate solution are equal:

d

dt

(
~veλt

)
= λ~veλt (5.14)

A
(
~veλt

)
= λ~veλt (5.15)

Detour: diagonalization of A

Let’s additionally assume that A has two linearly independent eigenvectors:

A~v1 = λ1~v1 (5.16)

A~v2 = λ2~v2 (5.17)

These two relationships can be expressed simultaneously using matrices that

consolidate the eigenvectors (side by side) and eigenvalues (on a diagonal):

A
[
~v1 ~v2

]
=
[
~v1 ~v2

] [
λ1 0
0 λ2

]
(5.18)

Calling the former two matrices V and the latter Λ,

AV = VΛ (5.19)

Because we chose two linearly independent eigenvectors to constitute V , V is

invertible. Stating A in terms of its eigenvectors and eigenvalues is called the

eigenvector-eigenvalue decomposition of A:

A = VΛV−1
(5.20)

Second-order homogeneous solution from modes

Generally, ~x(0) will be a linear combination of ~v1 and ~v2:

~x(0) = x̃1(0)~v1 + x̃2(0)~v2 (5.21)

These coefficients can be solved by inverting V :[
x̃1(0)
x̃2(0)

]
= V−1~x(0) (5.22)
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5.3. General state-space linear ODEs

Figure 5.2: Decomposition of ~x along eigenbasis directions ~v1 and ~v2.

We can build a homogeneous solution for~x(t) by superposing one-dimensional

solutions in each eigenvector’s respective direction:

~x(t) = ~v1e
λ1tx̃1(0) +~v2e

λ2tx̃2(0) (5.23)

= V

[
eλ1t 0

0 eλ2t

][
x̃1(0)
x̃2(0)

]
(5.24)

To verify the initial condition, we can observe that the diagonal matrix of

exponentials becomes an identity matrix at time 0:

~x(0) =
[
~v1 ~v2

] [
1 0
0 1

][
x̃1(0)
x̃2(0)

]
, (5.25)

which is true by construction (Equation 5.21).

Modal decomposition

In the previous section, we wrote ~x(0) in eigenbasis-aligned coordinates x̃1(0)
and x̃2(0). In this section, we will follow x̃1 and x̃2 as functions of t. Recall that
the eigenbasis-aligned coordinates are defined as follows:

~x =
[
~v1 ~v2

] [
x̃1
x̃2

]
= V~̃x. (5.26)

In reverse,

~̃x = V−1~x. (5.27)
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5.3. General state-space linear ODEs

We can use the Chain Rule to obtain a differential equation for ~̃x:

d

dt
~̃x = V−1 d

dt
x (5.28)

= V−1
(
A~x+ ~bu

)
(5.29)

= V−1AV~̃x+ V−1~bu (5.30)

=

[
λ1 0
0 λ2

]
~̃x+ ~̃bu, ~̃b = V−1b (5.31)

This vector differential equation is effectively scalar in each variable, in which

scalar techniques can be applied separately. The separation of x into its

eigenbasis-aligned components is called modal decomposition; ~v1e
λ1t

and ~v2e
λ2t

are the two modes of this system.
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Lecture 6

Diagonalization to solve vector

differential equations

In the last lecture, a second-order low-pass filter circuit using two resistors and

two capacitors led us to the following differential equation:

d

dt
~x = A~x+ ~bu, (6.1)

where ~x =

[
v1(t)
v2(t)

]
and ~x(0) or ~x(t0) is known. We represented ~x as a linear

combination of A’s eigenvectors ~v1 (for eigenvalue λ1) and ~v2 (for eigenvalue
λ2):

~x = ~v1x̃1 +~v2x̃2 (6.2)

=
[
~v1 ~v2

] [
x̃1
x̃2

]
= V~̃x (6.3)

Wewill assume that λ1 and λ2 are distinct, which implies thatA has an invertible

matrix of linearly independent eigenvectors V .We established that

AV = VΛ, V =
[
~v1 ~v2

]
, Λ =

[
λ1 0
0 λ2

]
. (6.4)

These findings are summarized in Figure 6.1, which shows how ~x, A~x, ~̃x, and
Λ~̃x are related by matrix multiplication (along arrows).

6.1 Solution technique

A system

d

dt
~x = A~x+ ~bu; ~x(t0) (6.5)

is solved as follows:
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6.2. Numerical example from RCRC circuit

Figure 6.1: Illustration of multiplication actions of A, Λ, V , and V−1
.

1. Compute eigenvalues λ1 and λ2 of A, as well as their respective eigenvec-

tors ~v1 and ~v2.

2. Construct V =
[
~v1 ~v2

]
and define ~̃x = V−1x.

3. Construct Λ =

[
λ1 0
0 λ2

]
and

˜b = V−1b. Solve the differential equation

d

dt
~̃x = Λ~̃x + ˜bu with initial condition x̃(t0) = V

−1x(t0). (More on this

later.)

4. Recover a solution for ~x using ~x = V~̃x.

6.2 Numerical example from RCRC circuit

Equation 5.11 captured a second-order low-pass filter using

A =

[
−5 2
2 −2

]
and

~b =

[
3
0

]
. (6.6)

We will solve the differential equation for ~x =

[
v1
v2

]
using the technique of the

previous section.

Eigenvalues and eigenvectors

We will solve for eigenvectors λ as roots of det (λI−A), the characteristic

polynomial of A.

det

[
λ+ 5 −2
−2 λ+ 2

]
= λ2 + 7λ+ 6 = 0 (6.7)
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6.2. Numerical example from RCRC circuit

This quadratic equation in the indeterminate λ is called the characteristic equation

of A. It has the following roots:

λ1 = −1; λ2 = −6. (6.8)

Next we will solve for an eigenvector belonging to eigenvalue λ1, by choosing a

nonzero vector from the null space of λ1I−A:

λ1I−A =

[
4 −2

−2 1

]
(6.9)

~v1 =

[
1
2

]
(6.10)

. . . and, mutatis mutandis, for λ2:

λ2I−A =

[
−1 −2
−2 −4

]
(6.11)

~v2 =

[
2

−1

]
(6.12)

Differential equation in new coordinates

In our example,

V =

[
1 2
2 −1

]
, so (6.13)

V−1 =

[
1
5

2
5

2
5

−1
5

]
. (6.14)

Our differential equation in ~̃xwill be

d

dt
~̃x = Λ~̃x+ V−1~bu (6.15)

=

[
−1 0
0 −6

]
~̃x+

[
3
5
6
5

]
. (6.16)

With t0 = 0, ~̃x is solved as follows:

~̃x(t) =
(
homogeneous solution

)
+
(
particular solution

)
(6.17)

=

[
eλ1t 0

0 eλ2t

]
~̃x(0) +

∫t
0

[
eλ1(t−τ) 0

0 eλ2(t−τ)

]
~̃bu(τ)dτ, (6.18)

viz., in individual components,x̃1(t) = eλ1tx̃1(0) +
∫t
0 e
λ1(t−τ) ˜b1u(τ)dτ

x̃2(t) = e
λ2tx̃2(0) +

∫t
0 e
λ2(t−τ) ˜b2u(τ)dτ

(6.19)

29



6.3. Introduction to inductors

Figure 6.2: Parallels between capacitors and inductors.

Solution in original coordinates

A solution for ~x(t)may be reconstituted from eigenbasis-aligned coordinates

using the following equation:

~x(t) =
[
~v1 ~v2

] [
x̃1(t)
x̃2(t)

]
. (6.20)

6.3 Introduction to inductors

Inductors are a branch element that are analogous to capacitors. Figure 6.2

compares them with capacitors, and the parallels are repeated below.

q = charge (Coulomb) λ = flux (Weber = Volt-second) (6.21)

d

dt
q = i

d

dt
λ = v (6.22)

v =
q

C
i =

λ

L
(6.23)

EC =
1

2
Cv2 EL =

1

2
Li2 (6.24)
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6.4. Example: RL circuit

Figure 6.3: RL circuit, which is similar to an RC circuit (cf. Figure 4.2).

6.4 Example: RL circuit

Figure 6.3 shows a circuit with a time-varying voltage source, a resistor, and an

inductor. KCL at the marked upper right node yields

v− vin
R

+ i = 0. (6.25)

In addition, from the current-voltage relationship of an inductor,

L
d

dt
i = v. (6.26)

Eliminating v and isolating

d

dt
i, we have

d

dt
i = −

R

L
i+

vin

L
. (6.27)

The state variable for an inductor is i, and this differential equation may be

solved the same way we solved RC circuits.
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Lecture 7

Inductors and RLC Circuits

7.1 LR

The RL circuit in Figure 7.1 can be described by the following differential

equation:

d

dt
i = −

R

L
i+

1

L
vin. (7.1)

It has eigenvalue λ = −R
L
and time constant τ = L

R
. Inductance is a ratio

of magnetic flux (volt-seconds) to current (amps), so inductance divided by

resistance works out to units of seconds.

7.2 LC

The LC circuit in Figure 7.2 can be described by the following two differential

equations, which originate in Kirchoff’s voltage and current laws, respectively.

C
d

dt
v+ i = 0 (7.2)

L
d

dt
i = v (7.3)

Figure 7.1: An RL circuit with an (AC) voltage source.
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7.2. LC

Figure 7.2: An LC circuit.

In vector form, with ~x =

[
v
i

]
,

d

dt
~x =

[
0 − 1

C
1
L

0

]
~x (7.4)

This equation can be solved given an initial condition (knowing the value ~x(t0)
at some particular time t0), yielding a solution for v and i that is good at every

point in time. Substituting L = 1H and C = 1 F,

d

dt
~x =

[
0 −1
1 0

]
~x (7.5)

Wewill analyze this system by taking eigenvalues and eigenvectors of thematrix

A =

[
0 −1
1 0

]
. Its eigenvalues are the roots of its characteristic polynomial

det (λI−A) = λ2 + 1, which are ±j. Call them λ1 = j and λ2 = −j. Solving for

eigenvectors,

λ1 

[
j 1

−1 j

]
~v1 = ~0 =⇒ ~v1 =

[
1

−j

]
(7.6)

λ2 

[
−j 1
−1 −j

]
~v2 = ~0 =⇒ ~v2 =

[
1
j

]
(7.7)

Conjugate pairs

Notice that λ2 = λ1 and ~v2 = ~v1. The eigenvalues and eigenvectors come in

conjugate pairs because A is real, and the characteristic polynomial p(λ) =
det (λI−A) has real-valued coefficients. The Fundamental Theorem of Algebra

states that a polynomial of degree n has n roots. When the polynomial has

real coefficients, then roots are real or occur in complex conjugate pairs: let

p(λ) = 0. Then p(λ) = 0 = 0:

p(λ) = λn + an−1λn−1 + . . .+ a1λ+ a0 = 0 (7.8)

=
(
λ
)n

+ an−1

(
λ
)n−1

+ . . .+ a1λ+ a0 = 0 (7.9)
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7.2. LC

Figure 7.3: Current and voltage of an oscillating LC circuit.

Figure 7.4: Phase portrait of an oscillating LC circuit.

From this we can see that whenver λ1 is a root of the real polynomial p(λ), so is

λ1.
Conjugate pairing also happens with eigenvectors when A is real. If

A~v1 = λ1~v1, then conjugating both sides, we have

(A~v1) = (λ1~v1) (7.10)

A~v1 = λ1~v1 (7.11)

This shows that ~v1 is an eigenvector as well, completing a pair with ~v1.

Back to LC circuit

Let’s take initial condition ~x(0) =

[
1V
0A

]
. As a combination of ~v1 and ~v2,

~x(0) =
1

2

[
1

−j

]
︸  ︷︷  ︸

~v1

+
1

2

[
1
j

]
︸︷︷︸
~v2

(7.12)
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7.3. LRC

Therefore, the same linear combination will construct ~x(t) from its constituent

modes.

~x(t) =
1

2

[
1

−j

]
︸  ︷︷  ︸

~v1

ejt +
1

2

[
1
j

]
︸︷︷︸
~v2

e−jt (7.13)

=

[
1
2
ejt + 1

2
e−jt

1
j
ejt − 1

2j
e−jt

]
=

[
cos t
sin t

]
, (7.14)

which follows from the identities cos θ = 1
2

(
ejθ + e−jθ

)
andsin θ = 1

2j

(
ejθ − e−jθ

)
,

which are both consequences of Euler’s formula ejθ = cos θ+ j sin θ.
Under an oscilloscope, v(t) = sin t and i(t) = cos tmight appear as they do

in Figure 7.3. If ~x(t) is plotted as a parametric curve in the plane (called a phase

portrait), the result is a counterclockwise traversal of the unit circle, shown in

Figure 7.4. This means that the ~x vector has constant length:

v2 + i2 = 1 for all t. (7.15)

Euler’s formula

Euler’s formula states that ejθ = cos θ+ j sin θ. This can be derived from the

series expansion of the exponential function around θ = 0,

ez = 1+ z+
1

2!
z2 + . . . (7.16)

Substituting z = jθ, we have

ejθ = 1+ jθ+
−1

2!
θ2 +

−j

3!
θ3 + . . . , (7.17)

whose even terms add to cos θ:

cos θ = 1−
1

2!
θ2 +

1

4!
θ4 + . . . , (7.18)

and whose odd terms add to j sin θ:

sin θ = θ−
1

3!
θ3 +

1

5!
θ5 . . . . (7.19)

7.3 LRC

The following node equations describe the LRC circuit in Figure 7.5:

(1) −i+
v1 − v

R
= 0 (7.20)

(2)
v− v1
R

+ C
d

dt
v = 0 (7.21)

(3) L
d

dt
i = −v1 (7.22)
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7.3. LRC

Figure 7.5: An LRC circuit.

Figure 7.6: The effects of the real and imaginary parts of an eigenvalue λ =
λr + jλi, when neither is zero.

After using Equation 7.20 to eliminate v1, we have the following two differential

equations:

C
d

dt
v = i (7.23)

L
d

dt
i = −Ri− v (7.24)

or, in vector form,

d

dt

[
v
i

]
=

[
0 1

C

− 1
L

−R
L

][
v
i

]
(7.25)

From its characteristic equation

0 = λ2 +
R

L
λ+

1

LC
, (7.26)
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7.3. LRC

we obtain eigenvalues

λ1,2 = −
1

2

R

L
± j

√(
1

2

R

L

)2
−
1

LC
. (7.27)

As R increases from zero, the eigenvalues move in significant ways.

1. When R = 0, the eigenvalues are the imaginary pair ±j
√

1
LC

.

2. When

(
1
2
R
L

)2
= − 1

LC
, the eigenvalues are both −1

2
R
L
.

3. When

(
1
2
R
L

)2
> − 1

LC
, the eigenvalues are distinct and real-valued.

Between (1) and (2), the eigenvalues are neither real nor pure imaginary:

λ1,2 = −
1

2

R

L︸  ︷︷  ︸
λr

± j

√(
1

2

R

L

)2
−
1

LC︸                  ︷︷                  ︸
λi

= λr ± jλi (7.28)

The time domain response will incorporate eλt, which has the following

trigonometric interpretation:

e(λr+jλi)t = eλrtejλit (7.29)

= eλrt (cos λit+ j sin λit) , (7.30)

a sinusoid of angular frequency λi under an envelope with rate λr, as shown in

Figure 7.6.
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Lecture 8

Phasors

8.1 Exponential inputs and outputs

Phasors are a ubiquitous method for understanding particular responses of

linear differential equations, given sinusoidal input. The following differential

equation is familiar as the capacitor voltage of an RC circuit with vin across

both components:

d

dt
vo = −

1

RC
vo +

1

RC
vin, λ = −

1

RC
(8.1)

Equation 5.3 showed the solution to this differential equation with vin =
Vin cosωt, purportedly obtained by direct substitution. While that works, an

easier way to the solution is to practice on a general exponential input:

vin = Vine
st. (8.2)

Assuming that vo = Voe
st

is also exponential with the same rate s,

sVoe
st = −

1

RC
Voe

st +
1

RC
Vine

st
(8.3)

Vo =
1

1+ sRC
Vin =

1

1− s
λ

Vin (8.4)

If our circuit has not existed with its input forever, then the solution for vo is a
superposition of Voe

st
with a homogeneous response, in which A is a constant

that depends on the initial condition.

vo = Voe
st +Aeλt︸     ︷︷     ︸
→0 if Re{λ}<0

(8.5)
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8.2. Phasor representation of a sinusoid

If λ has a negative real part, then the impact of the initial condition tends

to zero as t → ∞. Sinusoidal inputs and outputs arise as superpositions of

exponentials where s has no real part:

s = jω est = cosωt+ j sinωt (8.6)

cosωt = Re

{
ejωt
}
= Re{cosωt+ j sinωt} (8.7)

cosωt =
1

2

(
ejωt + e−jωt

)
(8.8)

sinωt =
1

2j

(
ejωt − e−jωt

)
(8.9)

8.2 Phasor representation of a sinusoid

A phasor is a complex number that has amplitude and phase information of

a time-domain sinusoid. By writing the following cosine as the real part of a

complex exponential, we can factor the phasor part from the time-varying part.

x(t) = A cos(ωt+ φ), A real, positive (8.10)

= Re

[
Aej(ωt+φ)

]
(8.11)

= Re

Aejφ︸  ︷︷  ︸
phasor

ejωt

 (8.12)

The phasor representation of A cos(ωt+ φ) is Aejφ. φ is the phase of this

sinusoid.

Uniqueness

Phasors uniquely represent the sinusoids that they represent. Suppose we

assign the phasors A1 and A2 to sinusoids x1 and x2, respectively:

x1(t) = Re

{
A1e

jωt
}

phasor representation−−−−−−−−−−−−→ A1 (8.13)

x2(t) = Re

{
A2e

jωt
}

phasor representation−−−−−−−−−−−−→ A2 (8.14)

Uniqueness means that (x1 = x2) ⇐⇒ (A1 = A2). We can see see that

A1 = A2 implies x1 = x2, because the identity Re

{
A1e

jωt
}
= Re

{
A2e

jωt
}

follows immediately from A1 = A2.
To show that x1 = x2 implies A1 = A2, we verify the real and imaginary

layers of this equation independently. The real part emerges at t = 0: x1(0) =
Re {A1} and x2(0) = Re {A2}. Therefore Re {A1} = Re {A2}. On the other hand,

we need t = π
2
1
ω

to access the imaginary part. From

x1

∣∣∣∣
t=π

2
1
ω

= x2

∣∣∣∣
t=π

2
1
ω

(8.15)
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8.2. Phasor representation of a sinusoid

follows

Re

{
A1e

jπ
2

}
= Re

{
A2e

jπ
2

}
. (8.16)

Applying ej
π
2 = j,

Re (A1j) = Re (A2j) (8.17)

Re

[
Re (A1) j+ j

2
Im (A1)

]
= Re

[
Re (A1) j+ j

2
Im (A1)

]
(8.18)

− Im (A1) = − Im (A2) (8.19)

Linearity

Linearity of the phasor transformation means that a real linear combination

of sinusoids is represented as the same linear combination of the sinusoids’

respective phasors. For real constants a1 and a2, the phasor representation of

a1x1(t) + a2x2(t) is a1A1 + a2A2. Beginning with our two sinusoids as real

parts of scaled complex exponentials,

x1(t) = Re

(
A1e

jωt
)

(8.20)

x2(t) = Re

(
A2e

jωt
)
, (8.21)

we may form the following linear combination with real coefficients a1 and a2:

a1x1(t) + a2x2(t) = Re

(
a1A1e

jωt
)
+ Re

(
a2A2e

jωt
)

(8.22)

= Re

[
(a1A1 + a2A2) e

jωt
]
. (8.23)

Differentiation

Phasors represent differentiation in time as multiplication by jω: if

x(t) = Re

[
Aejωt

]
, (8.24)

then

d

dt
x(t) = Re

 jωA︸  ︷︷  ︸
new phasor

ejωt

 . (8.25)
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8.3. Current and voltage phasors in circuits

Figure 8.1: An RC circuit with a sinusoidal voltage source and its phasor domain

representation.

8.3 Current and voltage phasors in circuits

These three properties translate circuit laws from time domain into phasor

domain:

time ←→ phasor

(kvl)

∑
loop

v = 0 ←→
∑
loop

V = 0 (8.26)

(kcl)

∑
node

i = 0 ←→
∑
node

I = 0 (8.27)

as well as current-voltage relationships:

(resistor) v = Ri ←→ V = RI (8.28)

(capacitor) i = C d

dt
v ←→ I = jωCV (8.29)

(inductor) v = L d

dt
i ←→ V = jωLI (8.30)

RC revisited

Because capacitors establish a proportional relationship between their voltage

and current phasors, they may be regarded as impedances in phasor domain

having impedance
1
jωC

. A sinusoidally-excited RC circuit is translated into

phasor domain in Figure 8.1. In phasor domain, Vo is recognized as the lower

half of a voltage divider spanning Vin:

Vo =

1
jωC

1
jωC

+ R
Vin (8.31)

=
1

1+ jωCR
Vin (8.32)
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8.3. Current and voltage phasors in circuits

Converting back to time domain,

vo(t) = Re

{
Voe

jωt
}

(8.33)

= Re

{
1

1+ jωCR
Vine

jωt

}
(8.34)

Changing Vo to polar form,

= Re

{
1

|1+ jωCR|ej∠(1+jωCR)
Vine

jωt

}
(8.35)

= Re

{
1

|1+ jωCR|ej tan
−1(ωCR)

Vine
jωt

}
(8.36)

= Re

{
Vin

|1+ jωCR|
ej(ωt−tan

−1(ωCR))
}

(8.37)

vo(t) =
Vin

|1+ jωCR|
cos

(
ωt− tan

−1 (ωCR)
)

(8.38)

For low frequencies (ωRC � 1), |1+ jωCR|. The output has about the same

amplitude as the input. For high frequencies (ωRC � 1),1 |1+ jωCR|. As

the amplitude at the filter output vanishes at high frequencies, this RC circuit

functions as a low-pass filter.

1
The approximation is good whenωRC > 10.
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Lecture 9

Frequency Response and Bode Plots

9.1 Phasors review

Phasors analyze a system at a single frequency ω. Because the period of a

complex exponential is 2π, ω is naturally expressed in rad/s. Conversion to

cycles per second (f, in Hz) is given byω = 2πf, and the period is T = 1
f
.

In the differential equation

d

dt
~x = A~x(t) + ~bu(t) (9.1)

with sinusoidal input u(t), phasor analysis can lead to a particular solution for

x(t) with sinusoidal components.

The following identities relate complex numbers to sinusoids:

ejωt = cosωt+ j sinωt (9.2)

cosωt = Re

[
ejωt

]
=
1

2

(
ejωt + e−jωt

)
(9.3)

sinωt = Im

[
ejωt

]
=
1

2

(
ejωt + e−jωt

)
(9.4)

Phasors respect the following properties when translating to and from time

domain:

uniqueness There is a one-to-one correspondencebetween functionsA cos(ωt+ φ)
and phasors Aejφ, where A is real and positive.

linearity If a1 and a2 are real numbers, then the following addition law holds

vertically:

a1x1(t) = A1 cos(ωt+ φ1)←→ A1e
jφ1

(9.5)

a2x2(t) = A2 cos(ωt+ φ2)←→ A2e
jφ2

(9.6)

a1x1(t) + a2x2(t) = . . . ←→ A1e
jφ1 +A2e

jφ2
(9.7)
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9.1. Phasors review

differentiation Differentiation in time domain corresponds to multiplication

by jω in phasor domain.

x(t)←→ Aejφ (9.8)

d

dt
x(t)←→ jωAejφ (9.9)

In a vector-valued system excited by sinusoidal input u,

d

dt
~x(t) = A~x(t) + ~bu(t), (9.10)

Let
~X be a (vector) phasor representing ~x:

~x(t) =
−→
Re

[
~Xejωt

]
, (9.11)

and U a (scalar) phasor representing u:

u(t) = Re

[
ejωtU

]
, (9.12)

so that Equation 9.10 translates,

jω~X = A~X+ ~bU. (9.13)

The particular solution has phasor X.

~X = (jωI−A)−1 ~bU (9.14)

Because of the linearity property, linear laws such as KVL (a linear relationship

of branch voltages) and KCL (a linear relationship of branch currents) apply to

phasor voltages and currents, respectively.

Resistors are linear circuit elements, with a proportionality relationship

between voltage and current that holds in phasor domain:

v = Ri ←→ V = RI (9.15)

Capacitors are also linear circuit elements, however the current-voltage propor-

tionality in phasor domain has an imaginary ratio.

i = C
d

dt
v ←→ I = jωC︸ ︷︷ ︸

admittance

V (9.16)

The proportionality i = Gv (time domain, G real) is called conductance. In

phasor domain with a complex ratio, it is called admittance. The inverse of

admittance is called impedance, and generalizes resistance.

i = C
d

dt
v ←→ V =

1

jωC︸  ︷︷  ︸
cap. impedance

I (9.17)

v = L
d

dt
i ←→ V = jωL︸ ︷︷ ︸

ind. impedance

I (9.18)
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9.2. Transfer functions

Figure 9.1: Bode magnitude plot of Equation 9.19.

9.2 Transfer functions

We can now solve for particular solutions algebraically. From the RC filter

example, Equation 8.32 can be solved for a phasor ratio Vo/Vin:

H(jω) =
Vo

Vin

=
1

1+ jωRC
. (9.19)

H(jω) is called the transfer function of this system. It is a complex-valued

function of angular frequency ω whose magnitude is the amplitude scaling

factor of this input-output signal pair, and whose phase is the phase shift.

Analyzing systems by following algebraic functions of a frequency parameter

ω is a strategy generally called “frequency domain.”1

Bode plots

Engineers like to examine information at log scales, especially when it spans

orders of magnitude.2 Frequency perception in human hearing ranges from

roughly 20Hz to 20 kHz.

A Bode plot of the transfer function H(jω) is the following two things:

1. A log-log plot of

∣∣H(jω)
∣∣
vs. ω.

2. A angle-log plot of ∠H(jω) vs. ω.

Magnitude

For H(jω) above,

∣∣H(jω)
∣∣ = ∣∣∣∣ 1

1+ jωRC

∣∣∣∣ (9.20)

=
1√

1+ω2(RC)2
(9.21)

1
An ideal hi-fi audio system, for example, would convert data on the recording medium to

sound pressure in the air in a way that treats all frequencies equally.

2
A piano keyboard lays out fundamental frequencies from left to right on a log scale.
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9.2. Transfer functions

Figure 9.2: Bode phase plot of Equation 9.19.

On a log-log scale (Figure 9.1), this looks approximately like a flat left asymptote

and a downhill right asymptote, meeting at H(jω)
∣∣
ω= 1

τ

≈ 1.3

Phase

To find the phase of H(jω), we can write it as a complex number in rectangular

form, times a real coefficient:

H(jω) =
1

1+ jωRC
=

1− jωRC

1+ω2(RC)2
=

1− jωτ

(positive real)
(9.22)

The numerator is in the fourth quadrant of the complex plane, and its angle of

depression is given by

θ = tan
−1

(
rise

run

)
(9.23)

= tan
−1

(
−ωτ

1

)
= tan

−1 (−ωτ) (9.24)

= − tan
−1 (ωτ) . (9.25)

For positive inputs on a log scale, the inverse tangent function smoothly

transitions from 0 to 90 degrees, crossing 45 degrees at 1. Our function, plotted

in Figure 9.2, is the opposite. It has a left asymptote of 0 degrees and a right

asyptote of -90 degrees. The transition, centered atω∗ = 1
τ
, is so fast within a

multiple by 10 of ω that the asymptotes look nearly flat left and right of the

transition region.

3
It’s actually

1√
2
(a real number) but this approximation works better with the piecewise linear

style.
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Lecture 10

Resonance in RLC Circuits

To analyze the LRC circuit in Figure 10.1, assign phasors to both vin and vo:

vin(t) = Re

 Vin︸︷︷︸
phasor

ejωt

 (10.1)

vo(t) = Re

 Vo︸︷︷︸
also phasor

ejωt

 (10.2)

Vo spans the rightmost leg of a a three-way voltage divider (Vin among

impedances jωL, R, and 1
jωC

, so the transfer function is the following impedance

ratio:

Vo

Vin

= H(jω) =

1
jωC

1
jωC

+ R+ jωL
(10.3)

=
1

LC (jω)2 + jωRC+ 1
(10.4)

Figure 10.1: An LRC circuit.

47



10.1. Time-domain analysis

Figure 10.2: Eigenvalue locus from imaginary pair at R = 0 to negative real at

critical R, as R increases from 0.

10.1 Time-domain analysis

Eigenvalues, two ways

In Equation 7.25, we found a state space differential equation model of this

circuit with the following matrix:

A =

[
0 1

C

− 1
L

−R
L

]
(10.5)

Its eigenvalues,

λ1,2 = −
1

2

R

L
± j

√(
1

2

R

L

)2
−
1

LC
(10.6)

are a complex conjugate pair on the imaginary axis when R = 0. As R approches

a critical value, they slowly approach the same point on the negative real axis.

Their rendezvous is depicted in Figure 10.2. (Afterwards, they separate but

remain real and negative.) We will reparameterize these eigenvalues in a way

that traces their trajectory. Call the undamped (angular) frequencyωn:

λ1,2

∣∣∣∣
R=0

= ±
√
−
1

LC
= ±jωn, (10.7)

and define a damping coefficient ξ (Greek letter xi) that goes from 0 to 1 as the

two eigenvalues leave the imaginary axis and meet at a negative real.

ξ =
1

2

R√
L
C

(10.8)

This parameterization appears in Figure 10.3.

48

https://en.wikipedia.org/wiki/Xi_(letter)


10.2. Reparameterized transfer function

Figure 10.3: Figure 10.1, but reparameterized usingωn and ξ.

Figure 10.4: Homogeneous response of an LRC circuit with R > 0.

Homogeneous response

With the same choices ofωn and ξ, the eigenvalues of A can be expresssed as

λ1,2 = −ξωn ± jωn
√
1− ξ2. (10.9)

The general form of the homogeneous response (modulo possible scaling and

phase shift) is

v(t) = Re

{
eλ1t
}

(10.10)

= e−ξωnt Re

{
ejωn

√
1−ξ2t

}
(10.11)

= e−ξωnt cos
(
ωn

√
1− ξ2t

)
(10.12)

The graph of v(t), sketched in Figure 10.4, is a sinusoid with period
2π

ωn
√
1−ξ2

,

trapped inside an exponential decaying at rate ξωn.
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10.2. Reparameterized transfer function

Figure 10.5: Bode plot of an LRC filter with ξ = 0.1.

10.2 Reparameterized transfer function

With theωn-ξ parameterization, this circuit’s transfer function becomes

Vo

Vin

= H(jω) =
ω2n

(jω)2 + (jω) 2ξωn +ω2n
(10.13)

We can imagine the Bode plot of H(jω) as having three pieces:

• Whenω� ωn, H(jω) ≈ 1.

• Whenω = ωn, H(jω) = −j
2ξ

. The magnitude is called “Q.”1

• Whenω� ωn, H(jω) ≈ −ω2n
ω2

.

A possible plot is shown in Figure 10.5.

10.3 Applications of (R)LC filtering

Radio

The power amplifier in a cellular handset runs off a low voltage, limited by

the typical single cell lithium-ion battery voltage of about 3.6V. Internally,

the amplifier circuit is only able to generate a sinusoid of voltage in the 1–2V
range. This would create an extreme challenge in driving an antenna with

1
Quality factor, or how selective this filter is of its favorite frequency.
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10.3. Applications of (R)LC filtering

Figure 10.6: An R ≈ 0 LC circuit used as an matching network.

Figure 10.7: An R ≈ 0 LC circuit used in a DC-DC converter.

impedance in the 50–75Ω range; namely, it would be impossible to develop

the ≈ 1W power level without somehow boosting the voltage between the

solid-state amplifier and the antenna. This is exactly where the LC network

of Figure 10.6 comes to the rescue. In this example, the LC network is called

a matching network, and is used to boist the voltage to better “match” the

antenna impedance. A matching network as in Figure 10.6 before the antenna

improves the performance by altering the effective impedance of the antenna.

vin = a(t)︸︷︷︸
slow

cos

ωnt︸︷︷︸
fast

+φ(t)︸ ︷︷ ︸
slow

 (10.14)

Taking the capacitor voltage as an output, we have |vo| ≈ 1
2ξ

|va|.

DC-DC converter

To step down a DC voltage source by 50%, we can use an inverter operating

alternating at a 50% duty cycle to generate an offset square wave whose DC

component is the voltage we are trying to deliver.2 An LC filter reduces the AC

component of the switch output, without dissipating power.

2
For efficiency, we can use parallel NMOS and PMOS transistors to realize the switch to reduce

resistance. We also want an inductor with the smallest possible parasitic resistance.
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10.3. Applications of (R)LC filtering

Figure 10.8: Output of the switch in Figure 10.7, approximated as an offset sine

wave.

The inverter output va can be approximated as a sine wave with a DC offset

(Figure 10.8):

va(t) =
1

2
V
bat

sin(ωt)︸             ︷︷             ︸
ac

+
1

2
V
bat︸  ︷︷  ︸

dc

(10.15)

We can use superposition to compute vo. The filter passes DC at unity gain,

and it scales and shifts the AC component.

vo(t) =
1

2
V
bat

+ Vo cos(ωt+ φ) (10.16)

In order to have a convincing DC output, we need Vo � V
bat

. That sinusoid, as

well as everything else that makes a square wave a square wave, will have to fit

into the

∣∣H(jω)
∣∣ ≈ ω2n

ω2
high-frequency region of Equation 10.13. That means

we need to choose anωn such thatωn � ω. For the DC amplitude to exceed

the AC “ripple” amplitude by a factor of 100, for instance, ω would have to

exceed 10ωn.
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