EE 16B Midterm 2, March 21, 2017

Name:	
SID #:	
Discussion Section and TA:	
Lab Section and TA:	
Name of left neighbor:	
Name of right neighbor:	

Important Instructions:

• Show your work. An answer without explanation is not acceptable and does not guarantee any credit.

• Only the front pages will be scanned and graded. You can use the back pages as scratch paper.

• **Do not remove pages**, as this disrupts the scanning. Instead, cross the parts that you don't want us to grade.

Problem	Points
1	10
2	15
3	10
4	20
5	15
6	15
7	15
Total	100

1. (10 points) The thirteenth century Italian mathematician Fibonacci described the growth of a rabbit population by the recurrence relation:

$$y(t+2) = y(t+1) + y(t)$$

where y(t) denotes the number of rabbits at month t. A sequence generated by this relation from initial values y(0), y(1) is known as a Fibonacci sequence.

a) (5 points) Bring the recurrence relation above to the state space form using the variables $x_1(t) = y(t)$ and $x_2(t) = y(t+1)$.

b) (5 points) Determine the stability of this system.

2. (15 points) Consider the circuit below that consists of a capacitor, an inductor, and a third element with the nonlinear voltage-current characteristic:

a) (5 points) Write a state space model of the form

$$\frac{dx_1(t)}{dt} = f_1(x_1(t), x_2(t))$$
$$\frac{dx_2(t)}{dt} = f_2(x_1(t), x_2(t))$$

using the states $x_1(t) = v_C(t)$ and $x_2(t) = i_L(t)$.

 $f_1(x_1, x_2) = f_2(x_1, x_2) =$

b) (5 points) Linearize the state model at the equilibrium $x_1 = x_2 = 0$ and specify the resulting A matrix.

c) (5 points) Determine stability based on the linearization.

3. (10 points) Consider the discrete-time system

$$\vec{x}(t+1) = A\vec{x}(t) + Bu(t)$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

a) (5 points) Determine if the system is controllable.

b) (5 points) Explain whether or not it is possible to move the state vector from $\vec{x}(0) = 0$ to

$$\vec{x}(T) = \begin{bmatrix} 2\\1\\0 \end{bmatrix}.$$

If your answer is yes, specify the smallest possible time T and an input sequence $u(0), \ldots, u(T-1)$ to accomplish this task.

4. (20 points) Consider the system

$$\vec{x}(t+1) = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u(t)$$

where θ is a constant.

a) (5 points) For which values of θ is the system controllable?

b) (10 points) Select the coefficients k_1, k_2 of the state feedback controller

$$u(t) = k_1 x_1(t) + k_2 x_2(t)$$

such that the closed-loop eigenvalues are $\lambda_1 = \lambda_2 = 0$. Your answer should be symbolic and well-defined for the values of θ you specified in part (a).

Additional workspace for Problem 4b.

c) (5 points) Suppose the state variable $x_1(t)$ evolves as depicted below when no control is applied (u = 0). What is the value of θ ?

5. (15 points) Consider the inverted pendulum below, where p(t) is the position of the cart, $\theta(t)$ is the angle of the pendulum, and u(t) is the input force.

When linearized about the upright position, the equations of motion are

$$\ddot{p}(t) = -\frac{m}{M}g\,\theta(t) + \frac{1}{M}u(t)$$

$$\ddot{\theta}(t) = \frac{M+m}{M\ell}g\,\theta(t) - \frac{1}{M\ell}u(t)$$
(1)

where M, m, ℓ, g are positive constants.

a) (5 points) Using (1) write the state model for the vector

$$\vec{x}(t) = \begin{bmatrix} p(t) & \dot{p}(t) & \theta(t) & \dot{\theta}(t) \end{bmatrix}^T$$
.

b) (5 points) Suppose we measure only the position; that is, the output is $y(t) = x_1(t)$. Determine if the system is observable with this output.

c) (5 points) Suppose we measure only the angle; that is, the output is $y(t) = x_3(t)$. Determine if the system is observable with this output.

6. (15 points) Consider the system

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \end{bmatrix} = \underbrace{\begin{bmatrix} 0.9 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}, \quad y(t) = \underbrace{\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}}_{C} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}.$$

a) (5 points) Select values for ℓ_1 , ℓ_2 , ℓ_3 in the observer below such that $\hat{x}_1(t)$, $\hat{x}_2(t)$, $\hat{x}_3(t)$ converge to the true state variables $\vec{x}_1(t)$, $\vec{x}_2(t)$, $\vec{x}_3(t)$ respectively.

$$\begin{bmatrix} \hat{x}_1(t+1) \\ \hat{x}_2(t+1) \\ \hat{x}_3(t+1) \end{bmatrix} = \begin{bmatrix} 0.9 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_1(t) \\ \hat{x}_2(t) \\ \hat{x}_3(t) \end{bmatrix} + \underbrace{ \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix} }_{L} (\hat{x}_2(t) - y(t)).$$

Additional workspace for Problem 6a.

b) (5 points) Professor Arcak found a solution to part (a) that guarantees convergence of $\hat{x}_3(t)$ to $x_3(t)$ in one time step; that is

$$\hat{x}_3(t) = x_3(t)$$
 $t = 1, 2, 3, \dots$

for any initial $\vec{x}(0)$ and $\hat{x}(0)$. Determine his ℓ_3 value based on this behavior of the observer. Explain your reasoning.

c) (5 points) When Professor Arcak solved part (a), he found the convergence of $\hat{x}_1(t)$ to $x_1(t)$ to be rather slow no matter what L he chose. Explain the reason why <u>no</u> choice of L can change the convergence rate of $\hat{x}_1(t)$ to $x_1(t)$.

7. (15 points) Consider a system with the symmetric form

$$\frac{d}{dt} \begin{bmatrix} \vec{x}_1(t) \\ \vec{x}_2(t) \end{bmatrix} = \begin{bmatrix} F & H \\ H & F \end{bmatrix} \begin{bmatrix} \vec{x}_1(t) \\ \vec{x}_2(t) \end{bmatrix} + \begin{bmatrix} G \\ G \end{bmatrix} \vec{u}(t), \tag{2}$$

where \vec{x}_1 and \vec{x}_2 have identical dimensions and, therefore, F and H are square matrices.

a) (5 points) Define the new variables

$$\vec{z}_1 = \vec{x}_1 + \vec{x}_2$$
 and $\vec{z}_2 = \vec{x}_1 - \vec{x}_2$,

and write a state model with respect to these variables:

$$\frac{d}{dt} \begin{bmatrix} \vec{z}_1(t) \\ \vec{z}_2(t) \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} \vec{z}_1(t) \\ \vec{z}_2(t) \end{bmatrix} + \begin{bmatrix} & & \\ & & \\ & & \\ \end{bmatrix} u(t).$$

b) (5 points) Show that the system (2) is \underline{not} controllable.

c) (5 points) Write a state model for the circuit below using the inductor currents as the variables. Show that the model has the symmetric form (2).

