EE 16B Midterm 2, March 21, 2017

Name: \qquad
SID \#: \qquad
Discussion Section and TA: \qquad
Lab Section and TA: \qquad
Name of left neighbor: \qquad
Name of right neighbor: \qquad

Important Instructions:

- Show your work. An answer without explanation is not acceptable and does not guarantee any credit.
- Only the front pages will be scanned and graded. You can use the back pages as scratch paper.
- Do not remove pages, as this disrupts the scanning. Instead, cross the parts that you don't want us to grade.

Problem	Points
1	10
2	15
3	10
4	20
5	15
6	15
7	15
Total	100

1. (10 points) The thirteenth century Italian mathematician Fibonacci described the growth of a rabbit population by the recurrence relation:

$$
y(t+2)=y(t+1)+y(t)
$$

where $y(t)$ denotes the number of rabbits at month t. A sequence generated by this relation from initial values $y(0), y(1)$ is known as a Fibonacci sequence.
a) (5 points) Bring the recurrence relation above to the state space form using the variables $x_{1}(t)=y(t)$ and $x_{2}(t)=y(t+1)$.
b) (5 points) Determine the stability of this system.
2. (15 points) Consider the circuit below that consists of a capacitor, an inductor, and a third element with the nonlinear voltage-current characteristic:

$$
i=-v+v^{3}
$$

a) (5 points) Write a state space model of the form

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=f_{1}\left(x_{1}(t), x_{2}(t)\right) \\
& \frac{d x_{2}(t)}{d t}=f_{2}\left(x_{1}(t), x_{2}(t)\right)
\end{aligned}
$$

using the states $x_{1}(t)=v_{C}(t)$ and $x_{2}(t)=i_{L}(t)$.

$$
f_{1}\left(x_{1}, x_{2}\right)=\quad \quad f_{2}\left(x_{1}, x_{2}\right)=
$$

b) (5 points) Linearize the state model at the equilibrium $x_{1}=x_{2}=0$ and specify the resulting A matrix.
c) (5 points) Determine stability based on the linearization.
3. (10 points) Consider the discrete-time system

$$
\vec{x}(t+1)=A \vec{x}(t)+B u(t)
$$

where

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

a) (5 points) Determine if the system is controllable.
b) (5 points) Explain whether or not it is possible to move the state vector from $\vec{x}(0)=0$ to

$$
\vec{x}(T)=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

If your answer is yes, specify the smallest possible time T and an input sequence $u(0), \ldots, u(T-1)$ to accomplish this task.
4. (20 points) Consider the system

$$
\vec{x}(t+1)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \vec{x}(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

where θ is a constant.
a) (5 points) For which values of θ is the system controllable?
b) (10 points) Select the coefficients k_{1}, k_{2} of the state feedback controller

$$
u(t)=k_{1} x_{1}(t)+k_{2} x_{2}(t)
$$

such that the closed-loop eigenvalues are $\lambda_{1}=\lambda_{2}=0$. Your answer should be symbolic and well-defined for the values of θ you specified in part (a).

Additional workspace for Problem 4b.
c) (5 points) Suppose the state variable $x_{1}(t)$ evolves as depicted below when no control is applied $(u=0)$. What is the value of θ ?

5. (15 points) Consider the inverted pendulum below, where $p(t)$ is the position of the cart, $\theta(t)$ is the angle of the pendulum, and $u(t)$ is the input force.

When linearized about the upright position, the equations of motion are

$$
\begin{align*}
& \ddot{p}(t)=-\frac{m}{M} g \theta(t)+\frac{1}{M} u(t) \tag{1}\\
& \ddot{\theta}(t)=\frac{M+m}{M \ell} g \theta(t)-\frac{1}{M \ell} u(t)
\end{align*}
$$

where M, m, ℓ, g are positive constants.
a) (5 points) Using (1) write the state model for the vector

$$
\vec{x}(t)=\left[\begin{array}{llll}
p(t) & \dot{p}(t) & \theta(t) & \dot{\theta}(t)
\end{array}\right]^{T} .
$$

b) (5 points) Suppose we measure only the position; that is, the output is $y(t)=x_{1}(t)$. Determine if the system is observable with this output.
c) (5 points) Suppose we measure only the angle; that is, the output is $y(t)=$ $x_{3}(t)$. Determine if the system is observable with this output.
6. (15 points) Consider the system

$$
\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1)
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0.9 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad y(t)=\underbrace{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]}_{C}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right] .
$$

a) (5 points) Select values for $\ell_{1}, \ell_{2}, \ell_{3}$ in the observer below such that $\hat{x}_{1}(t)$, $\hat{x}_{2}(t), \hat{x}_{3}(t)$ converge to the true state variables $\vec{x}_{1}(t), \vec{x}_{2}(t), \vec{x}_{3}(t)$ respectively.

$$
\left[\begin{array}{l}
\hat{x}_{1}(t+1) \\
\hat{x}_{2}(t+1) \\
\hat{x}_{3}(t+1)
\end{array}\right]=\left[\begin{array}{ccc}
0.9 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1}(t) \\
\hat{x}_{2}(t) \\
\hat{x}_{3}(t)
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right]}_{L}\left(\hat{x}_{2}(t)-y(t)\right)
$$

Additional workspace for Problem 6a.
b) (5 points) Professor Arcak found a solution to part (a) that guarantees convergence of $\hat{x}_{3}(t)$ to $x_{3}(t)$ in one time step; that is

$$
\hat{x}_{3}(t)=x_{3}(t) \quad t=1,2,3, \ldots
$$

for any initial $\vec{x}(0)$ and $\hat{x}(0)$. Determine his ℓ_{3} value based on this behavior of the observer. Explain your reasoning.
c) (5 points) When Professor Arcak solved part (a), he found the convergence of $\hat{x}_{1}(t)$ to $x_{1}(t)$ to be rather slow no matter what L he chose. Explain the reason why no choice of L can change the convergence rate of $\hat{x}_{1}(t)$ to $x_{1}(t)$.
7. (15 points) Consider a system with the symmetric form

$$
\frac{d}{d t}\left[\begin{array}{l}
\vec{x}_{1}(t) \tag{2}\\
\vec{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
F & H \\
H & F
\end{array}\right]\left[\begin{array}{l}
\vec{x}_{1}(t) \\
\vec{x}_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
G \\
G
\end{array}\right] \vec{u}(t)
$$

where \vec{x}_{1} and \vec{x}_{2} have identical dimensions and, therefore, F and H are square matrices.
a) (5 points) Define the new variables

$$
\vec{z}_{1}=\vec{x}_{1}+\vec{x}_{2} \quad \text { and } \quad \vec{z}_{2}=\vec{x}_{1}-\vec{x}_{2},
$$

and write a state model with respect to these variables:

$$
\frac{d}{d t}\left[\begin{array}{l}
\vec{z}_{1}(t) \\
\vec{z}_{2}(t)
\end{array}\right]=\left[\begin{array}{l|l}
& \\
\hline
\end{array}\right]\left[\begin{array}{l}
\vec{z}_{1}(t) \\
\vec{z}_{2}(t)
\end{array}\right]+[\square] u(t) .
$$

b) (5 points) Show that the system (2) is not controllable.
c) (5 points) Write a state model for the circuit below using the inductor currents as the variables. Show that the model has the symmetric form (2).

