
EE 16B Midterm 2, March 21, 2017
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SID #:

Discussion Section and TA:

Lab Section and TA:
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Important Instructions:

• Show your work. An answer without explanation

is not acceptable and does not guarantee any credit.

• Only the front pages will be scanned and

graded. You can use the back pages as scratch paper.

• Do not remove pages, as this disrupts the scanning.

Instead, cross the parts that you don’t want us to grade.

Problem Points

1 10

2 15

3 10

4 20

5 15

6 15

7 15

Total 100
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1. (10 points) The thirteenth century Italian mathematician Fibonacci de-
scribed the growth of a rabbit population by the recurrence relation:

y(t + 2) = y(t + 1) + y(t)

where y(t) denotes the number of rabbits at month t. A sequence generated
by this relation from initial values y(0), y(1) is known as a Fibonacci sequence.

a) (5 points) Bring the recurrence relation above to the state space form using
the variables x1(t) = y(t) and x2(t) = y(t + 1).
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b) (5 points) Determine the stability of this system.
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2. (15 points) Consider the circuit below that consists of a capacitor, an
inductor, and a third element with the nonlinear voltage-current characteristic:

i = −v + v3.

C L

iL i

vC v
+ +

− −

a) (5 points) Write a state space model of the form

dx1(t)

dt
= f1(x1(t), x2(t))

dx2(t)

dt
= f2(x1(t), x2(t))

using the states x1(t) = vC(t) and x2(t) = iL(t).

f1(x1, x2) = f2(x1, x2) =
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b) (5 points) Linearize the state model at the equilibrium x1 = x2 = 0 and
specify the resulting A matrix.

5



c) (5 points) Determine stability based on the linearization.
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3. (10 points) Consider the discrete-time system

�x(t + 1) = A�x(t) + Bu(t)

where

A =




0 1 0
0 0 0
0 0 0


 B =




0
1
0


 .

a) (5 points) Determine if the system is controllable.
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b) (5 points) Explain whether or not it is possible to move the state vector
from �x(0) = 0 to

�x(T ) =




2
1
0


 .

If your answer is yes, specify the smallest possible time T and an input sequence
u(0), . . . , u(T − 1) to accomplish this task.
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4. (20 points) Consider the system

�x(t + 1) =

�
cos θ − sin θ
sin θ cos θ

�
�x(t) +

�
0
1

�
u(t)

where θ is a constant.

a) (5 points) For which values of θ is the system controllable?

b) (10 points) Select the coefficients k1, k2 of the state feedback controller

u(t) = k1x1(t) + k2x2(t)

such that the closed-loop eigenvalues are λ1 = λ2 = 0. Your answer should be
symbolic and well-defined for the values of θ you specified in part (a).
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Additional workspace for Problem 4b.
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c) (5 points) Suppose the state variable x1(t) evolves as depicted below when
no control is applied (u = 0). What is the value of θ?
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5. (15 points) Consider the inverted pendulum below, where p(t) is the position
of the cart, θ(t) is the angle of the pendulum, and u(t) is the input force.

p

u M

m

θ

When linearized about the upright position, the equations of motion are

p̈(t) = −m

M
g θ(t) +

1

M
u(t)

θ̈(t) =
M + m

M�
g θ(t) − 1

M�
u(t)

(1)

where M , m, �, g are positive constants.

a) (5 points) Using (1) write the state model for the vector

�x(t) =
�
p(t) ṗ(t) θ(t) θ̇(t)

�T
.
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b) (5 points) Suppose we measure only the position; that is, the output is
y(t) = x1(t). Determine if the system is observable with this output.
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c) (5 points) Suppose we measure only the angle; that is, the output is y(t) =
x3(t). Determine if the system is observable with this output.
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6. (15 points) Consider the system




x1(t + 1)
x2(t + 1)
x3(t + 1)


 =




0.9 0 0
0 1 1
0 1 0




� �� �
A




x1(t)
x2(t)
x3(t)


 , y(t) =

�
0 1 0

�
� �� �

C




x1(t)
x2(t)
x3(t)


 .

a) (5 points) Select values for �1, �2, �3 in the observer below such that x̂1(t),
x̂2(t), x̂3(t) converge to the true state variables �x1(t), �x2(t), �x3(t) respectively.




x̂1(t + 1)
x̂2(t + 1)
x̂3(t + 1)


 =




0.9 0 0
0 1 1
0 1 0






x̂1(t)
x̂2(t)
x̂3(t)


 +



�1
�2
�3




� �� �
L

(x̂2(t) − y(t)).
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Additional workspace for Problem 6a.
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b) (5 points) Professor Arcak found a solution to part (a) that guarantees
convergence of x̂3(t) to x3(t) in one time step; that is

x̂3(t) = x3(t) t = 1, 2, 3, . . .

for any initial �x(0) and x̂(0). Determine his �3 value based on this behavior of
the observer. Explain your reasoning.
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c) (5 points) When Professor Arcak solved part (a), he found the convergence
of x̂1(t) to x1(t) to be rather slow no matter what L he chose. Explain the
reason why no choice of L can change the convergence rate of x̂1(t) to x1(t).
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7. (15 points) Consider a system with the symmetric form

d

dt

�
�x1(t)
�x2(t)

�
=

�
F H
H F

� �
�x1(t)
�x2(t)

�
+

�
G
G

�
�u(t), (2)

where �x1 and �x2 have identical dimensions and, therefore, F and H are square
matrices.

a) (5 points) Define the new variables

�z1 = �x1 + �x2 and �z2 = �x1 − �x2,

and write a state model with respect to these variables:

d

dt

�
�z1(t)
�z2(t)

�
=






�
�z1(t)
�z2(t)

�
+





 u(t).
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b) (5 points) Show that the system (2) is not controllable.
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c) (5 points) Write a state model for the circuit below using the inductor
currents as the variables. Show that the model has the symmetric form (2).

u
x1 x2

L L R
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