Due	For	Available from	Until
-	1 student	Apr 10 at 11:10am	Apr 10 at 1:25pm
-	1 student	Apr 9 at 10pm	Apr 9 at 10:35pm
-	1 student	Apr 10 at 11:10am	Apr 10 at 2:10pm
-	Apr 10 at 11:10am	Apr 10 at 12:40pm	
		Preview	

(1) Correct answers are hidden.

Score for this quiz: $\mathbf{2 5}$ out of 25
Submitted Apr 15 at 10:42pm
This attempt took 3 minutes.

Question 1

A dynamical system model for an epidemic with total population $N=S+I+R$, where S is the number of susceptible individuals, I is the number of infected, and R is the number of recovered, is modeled by

$$
\begin{aligned}
\frac{d}{d t} S & =-\beta \frac{I S}{N} \\
\frac{d}{d t} I & =\beta \frac{I S}{N}-\gamma I \\
\frac{d}{d t} R & =\gamma I
\end{aligned}
$$

Here, we use real numbers since integer granularity is not required. Consider the situation before the onset of the epidemic, with $S=N$, $I=0$, and $R=0$. The linearized state-space model is given by

$$
\frac{d}{d t}\left[\begin{array}{c}
\tilde{s} \\
\tilde{i} \\
\tilde{r}
\end{array}\right]=A\left[\begin{array}{c}
\tilde{s} \\
\tilde{i} \\
\tilde{r}
\end{array}\right]
$$

where the lower case variables with tildes are the linearized variables for the model. Then, the matrix A is given by:

$$
A=\left[\begin{array}{ccc}
-\beta & -\beta & 0 \\
\beta & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
0 & -\beta & 0 \\
0 & \gamma-\beta & 0 \\
0 & \gamma & 0
\end{array}\right]
$$

$$
\text { (०) } A=\left[\begin{array}{ccc}
0 & -\beta & 0 \\
0 & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
-\beta & -\beta & 0 \\
0 & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right]
$$

A system $\frac{d}{d t} \vec{x}=A \vec{x}+B \vec{u}$ has controllability matrix $\mathcal{C}=\left[\begin{array}{llll}B & A B & \ldots & A^{n-1} B\end{array}\right]$.

Suppose that $\vec{z}=T \vec{x}$, where T is an invertible matrix. What is the controllability matrix for the system resulting from this change of coordinates?

- TC
$T C T^{-1}$
$\mathcal{C} T^{-1}$
\mathcal{C}
$T^{-1} \mathcal{C}$

Question 3

Given the matrix $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$,
Which of the following are true statements about the Singular Value Decomposition (SVD) of A ?

1. All eigenvalues λ_{i} of $A A^{\top}$ are identical to each other.
2. Non zero singular values are $\sigma_{1}=3, \sigma_{2}=2, \sigma_{3}=1$.
3. Removing the last row of A doesn't change the non-zero singular values.

1 and 2 only.
(-) 2 and 3 only.

1 and 3 only.

1 only.

1,2 , and 3 .

Question 4

1 / 1 pts

Which of the following statements about the Singular Value
Decomposition (SVD) is true when written in the form
$A=\sigma_{1}{\overrightarrow{u_{1}}}_{\vec{v}_{1}}{ }^{\top}+\sigma_{2}{\overrightarrow{u_{2}}}_{v_{2}}{ }^{\top}+\cdots$? Assume that all σ_{i}, the singular values, are non-zero.

- $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots\right\}$ is an orthonormal basis for the column space of A.

The singular values, σ_{i}, are real numbers of arbitrary sign.

The SVD separates a rank r matrix A into a sum of $r-1$ rank 1 matrices.

The SVD of a matrix A is unique.

None of the others.

Question 5

The dynamics of an epidemic, with a fixed population N are sometimes modeled with a state-space model of the form:

$$
\begin{aligned}
\frac{d}{d t} S & =-\beta \frac{I S}{N} \\
\frac{d}{d t} I & =\beta \frac{I S}{N}-\gamma I \\
\frac{d}{d t} R & =\gamma I
\end{aligned}
$$

where S is the number of susceptible individuals, I is the number of infected individuals, R is the number of recovered individuals, and $N=S+I+R$ is the total population. Although numbers of individuals are integer valued, we use real numbers in this exercise since integer granularity is not needed. Positive constants β and γ parametrize the epidemic dynamics.

How many equilibrium points does the epidemic dynamics of the model above have?

3

- Infinitely many
- 1

2

0

Any point with $I=0$ is an equilibrium point. There are infinitely many such choices.

When the system $\frac{d}{d t} \vec{x}=A \vec{x}$ is discretized at a certain sampling period, the resulting discrete-time state space model is $\vec{x}_{d}(t+1)=A_{d} \vec{x}_{d}(t)$. What is the state space model when $\frac{d}{d t} \vec{x}=2 A \vec{x}$ is discretized at the same sampling period?

$$
\vec{x}_{d}(t+1)=2 A_{d} \vec{x}_{d}(t)
$$

$$
\text { © } \vec{x}_{d}(t+1)=A_{d}^{2} \vec{x}_{d}(t)
$$

$$
\vec{x}_{d}(t+1)=\left(A_{d}+2 I\right) \vec{x}_{d}(t)
$$

$$
\vec{x}_{d}(t+1)=\left(A_{d}^{2} / 2+I\right) \vec{x}_{d}(t)
$$

```
Not enough information to determine
```


Question 7

Suppose the following linear dynamical system is controllable:
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\vec{b}_{1} u$
Which additional conditions are necessary for the following system to be controllable?
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\mathbf{B} \vec{u}$
where $\mathbf{B}=\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right]$.

$$
\text { The system } \frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\vec{b}_{2} u \text { must also be controllable. }
$$

The system cannot be controllable under any conditions.

- None, the system is already controllable.

The controllability matrix of the system can be written as $\mathbf{C}=\left[\begin{array}{llll}\mathbf{B} & \mathbf{A B} & \ldots & \mathbf{A}^{\mathbf{n}-\mathbf{1}} \mathbf{B}\end{array}\right]$, where \boldsymbol{n} is the number of state variables.

We can rewrite the controllability matrix as
$\mathbf{C}=\left[\begin{array}{lll}\vec{b}_{1} & \vec{b}_{2} & \mathbf{A} \vec{b}_{1}\end{array}\right.$
$\left.\mathbf{A} \vec{b}_{2} \quad \ldots \quad \mathbf{A}^{\mathbf{n}-\mathbf{1}} \vec{b}_{1} \quad \mathbf{A}^{\mathbf{n}-\mathbf{1}} \vec{b}_{2}\right]$.

Because the first system is already controllable, we know that the matrix $\left[\begin{array}{llll}\vec{b}_{1} & \mathbf{A} \vec{b}_{1} & \ldots & \mathbf{A}^{n-1} \vec{b}_{1}\end{array}\right]$ has rank n, so \mathbf{C} must have rank n as well.

> A and \mathbf{B} have orthogonal columns.
> \vec{b}_{1} and \vec{b}_{2} must be orthogonal.

Question 8

Suppose we have a linear dynamical system $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)+B \vec{u}(t)$ where $\vec{x}(t) \in \mathbb{R}^{n}$ and $\vec{u}(t) \in \mathbb{R}^{m}$.

Which of the following are necessarily true:
I. $\vec{x}=0$ is an equilibrium point for $\vec{u}=0$.
II. For any given input \vec{u}, there must exist a unique equilibrium point \vec{x}^{*}.
III. Suppose $\left(\vec{x}^{*}, \vec{u}^{*}\right)$ is an equilibrium point, $\vec{x}(0)=\vec{x}^{*}$, and $\vec{u}(t)=\vec{u}^{*}$ for all $t \geq 0$. Then $\vec{x}(t)$ is constant for $t \geq 0$.
IV. If A is invertible, there exists an input for which there are no equilibrium points.
V. If \vec{x}_{1}^{*} and \vec{x}_{2}^{*} are equilibrium points for $\vec{u}=0, \vec{x}_{1}^{*}+\vec{x}_{2}^{*}$ is also an equilibrium point.

I only.

II, III, IV
(I I, III, V

I, II, III, IV

I, II, III, IV, V

I , III, and V are correct.
Note that:
I. If we plug in $\vec{x}(t)=0$ and $\vec{u}(t)=0$ to the right hand side of the system equation, we see that $\frac{d}{d t} \vec{x}(t)=0$, showing that it is an equilibrium point.
II. Note that the equilibrium point isn't necessarily unique. We are seeking solutions for $A \vec{x}=-B \vec{u}$. If A is non-singular, there only exist solutions if $B \vec{u} \in \operatorname{Range}(A)$. There can also be several solutions of the form $\vec{x}_{p}+\vec{x}_{h}$, where $\vec{x}_{h} \in \operatorname{null}(A)$.
III. This is true. If we start at an equilibrium point, $\frac{d}{d t} \vec{x}(t)=0$ for all $t \geq 0$, so $\vec{x}(t)$ will be a constant.
IV. This is false. If A is invertible, $\vec{x}=-A^{-1} B \vec{u}$ will be an equilibrium point.

Question 9

Consider the discrete time system

$$
\vec{x}(k+1)=A \vec{x}(k)+\vec{b} u(k)
$$

with $\vec{x}(\cdot) \in \mathbb{R}^{3}, A \in \mathbb{R}^{3 \times 3}$, and $\vec{b} \in \mathbb{R}^{3}$.

Suppose that the system is controllable from the origin $\vec{x}(0)=0$ in 10 steps. That is, one can design a control sequence
$\{u(0), u(1), \ldots, u(9)\}$ to reach any target state $\vec{x}^{*}=\vec{x}(10)$ in 10 steps. Which of the following is true?

For any target state \vec{x}^{*}, one can find an initial condition $\vec{x}(0)$ and a two step input sequence $\{u(0), u(1)\}$ to reach \vec{x}^{*}.

None of the other answers is correct.

Any state \vec{x}^{*} can be also be reached with a shorter input sequence $\{u(0), u(1)\}$ in two steps.

The state \vec{x}^{*} cannot be reached from the origin in 9 steps with any
possible sequence $\{u(0), u(1), \ldots, u(8)\}$.

The input sequence $\{u(0), u(1), \ldots, u(9)\}$ to reach \vec{x}^{*} is unique.

Suppose we want

$$
\begin{aligned}
\vec{x}(2)=\vec{x}^{*}=A \vec{x} & (1)+\vec{b} u(1) \\
& =A(A \vec{x}(0)+\vec{b} u(0))+\vec{b} u(1) \\
& =A^{2} \vec{x}(0)+A \vec{b} u(0)+\vec{b} u(1) \\
& =A^{2} \vec{b} \alpha+A \vec{b} u(0)+\vec{b} u(1)
\end{aligned}
$$

In the last line, we choose $\vec{x}(0)=\alpha \vec{b}$ for some scalar α.

We can rewrite this as
$\vec{x}^{*}=\left[\begin{array}{lll}A^{2} \vec{b} & A \vec{b} & \vec{b}\end{array}\right]\left[\begin{array}{c}\alpha \\ u(0) \\ u(1)\end{array}\right]$
Since the system is controllable, $\left[\begin{array}{lll}A^{2} \vec{b} & A \vec{b} & \vec{b}\end{array}\right]$ has rank 3 , and since we can choose $\alpha, u(0), u(1)$, and state \vec{x}^{*} can be reached.

Question 10

How many non-zero singular values does the following matrix A have?
$A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \\ 4 & 4 & 8 \\ 5 & 1 & 2\end{array}\right]$

This is a rank 2 matrix. Because the third column is linearly dependent on the second column. So, the number of non-zero singular values will be 2 .

4

3

Suppose we have the relation $\vec{y}=D \vec{p}+\vec{e}$, as seen from lecture. In order to determine $\overrightarrow{\hat{p}}$, the least squares estimate, which of the following assumptions were made?
D is diagonal.
(-) $D^{\top} D$ is invertible.
\vec{e} is orthogonal to \vec{y}.

None of the others assumptions.
D^{\top} is invertible.

Consider the scalar system $x(t+1)=b u(t)+e(t)$, where, b is the only unknown parameter and $e(t)$ is a disturbance term. Suppose, we apply the input, $u(0)=u(1)=u(2)=u(3)=1$ and observe the resulting
state trajectory to obtain a least-squares estimate \hat{b} for b. Which of the following state trajectories would result in the estimate $\hat{b}=1$?
$x(1)=1.1, x(2)=0.9, x(3)=1.2, x(4)=1$
$x(1)=0.1, x(2)=0.9, x(3)=1.7, x(4)=1.2$
$x(1)=0.1, x(2)=1.9, x(3)=1, x(4)=0.9$
$x(1)=1.2, x(2)=0.9, x(3)=0.6, x(4)=1.0$
(- $x(1)=0.1, x(2)=1.1, x(3)=1.9, x(4)=0.9$

According to the general answer comment,
$x(1)+x(2)+x(3)+x(4)=4$, which is true in this case.

$$
\left[\begin{array}{l}
x(1) \\
x(2) \\
x(3) \\
x(4)
\end{array}\right]=\left[\begin{array}{l}
u(0) \\
u(1) \\
u(2) \\
u(3)
\end{array}\right] b+\left[\begin{array}{l}
e(0) \\
e(1) \\
e(2) \\
e(3)
\end{array}\right]
$$

So,
$\vec{y}=D b+\vec{e}$, where,
$\vec{y}=\left[\begin{array}{l}x(1) \\ x(2) \\ x(3) \\ x(4)\end{array}\right], D=\left[\begin{array}{l}u(0) \\ u(1) \\ u(2) \\ u(3)\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], e=\left[\begin{array}{l}e(0) \\ e(1) \\ e(2) \\ e(3)\end{array}\right]$
The least-squares estimate of b is,
$\hat{b}=\left(D^{T} D\right)^{-1} D^{T} \vec{y}=$
$\left(\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)^{-1}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x(1) \\ x(2) \\ x(3) \\ x(4)\end{array}\right]$
$\hat{b}=\frac{1}{4}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x(1) \\ x(2) \\ x(3) \\ x(4)\end{array}\right]$
$=\frac{1}{4}(x(1)+x(2)+x(3)+x(4))$

1. If a square matrix Q is orthonormal ($Q Q^{\top}=I$), then its singular values are all 1.
2. A matrix with rank r will have exactly r singular values greater than 0 .
3. Every real matrix has an SVD.

1 only.

2 and 3 only.

1 and 2 only.

- 1,2 , and 3 .

1 and 3 only.

Consider a linear system, $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)+B \vec{u}(t)$, where $\vec{x}(t) \in \mathbb{R}^{n}$ and $\vec{u}(t) \in \mathbb{R}^{m}$.

Which of the the following conditions can, on its own, determine whether the system is controllable or not?

I.	$m<n$
II.	$A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
III.	$m=n$ and B is invertible
IV.	$A B=0$ and $m<n$
V	$\operatorname{rank}(A)=n$

- II, III, and IV only

I, II, III, IV, and V

I, III, and V only

I, II, III, and IV only

II and III only

Question 15

Consider the discrete time dynamical system

$$
y(k+1)=b_{1} u(k)+b_{2} u(k-1)+e(k),
$$

where $e(k)$ accounts for additive noise, and we get to measure the $y(\cdot)$ and the $u(\cdot)$ data sequences exactly. We set up an estimation scheme to estimate the unknown real parameters b_{1}, and b_{2} :

$$
\left[\begin{array}{cc}
u(1) & u(0) \\
u(2) & u(1) \\
\vdots & \vdots \\
u(N) & u(N-1)
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
y(2) \\
y(3) \\
\vdots \\
y(N+1)
\end{array}\right] .
$$

Suppose that $u(k)=\lambda^{k}$. For this input, what is the minimum number of steps, i.e. samples of $y(\cdot)$, needed to uniquely estimate the parameters b_{1} and b_{2} ?

2

1

4

- Cannot be uniquely estimated, no matter how many samples

With the provided input, the first column of
$\left[\begin{array}{cc}u(1) & u(0) \\ u(2) & u(1) \\ \vdots & \vdots \\ u(N) & u(N-1)\end{array}\right]$
is λ times the second column.
Those two columns are thus linearly dependent, and a least squares estimate cannot be calculated.

Question 16

Consider the following dynamical system:
$\frac{d}{d t}\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}x_{1}(t) x_{2}(t)+u(t) x_{1}^{2}(t) \\ \cos \left(\frac{\pi}{2} x_{1}(t)\right)\end{array}\right]$
For $u(t)=1$, consider the following equilibrium point $\vec{x}^{*}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
Let $\overrightarrow{\tilde{x}}(t)=\vec{x}(t)-\vec{x}^{*}$ and $\tilde{u}(t)=u(t)-1$. We wish to write a system as
$\frac{d}{d t} \overrightarrow{\tilde{x}}(t)=A \overrightarrow{\tilde{x}}(t)+B \tilde{u}(t)$
Which of the following is a correct linearization:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
1 & 1 \\
-\frac{\pi}{2} & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
A & =\left[\begin{array}{cc}
x_{2}(t) & x_{1}(t) \\
-\frac{\pi}{2} \sin \left(\frac{\pi}{2} x_{1}(t)\right) & 0
\end{array}\right], B=\left[\begin{array}{c}
x_{1}^{2}(t) \\
0
\end{array}\right]
\end{aligned}
$$

$A=\left[\begin{array}{cc}x_{2}(t)+2 u(t) x_{1}(t) & x_{1}(t) \\ -\frac{\pi}{2} \sin \left(\frac{\pi}{2} x_{1}(t)\right) & 0\end{array}\right], B=\left[\begin{array}{c}x_{1}^{2}(t) \\ 0\end{array}\right]$
$A=\left[\begin{array}{cc}1 & -\frac{\pi}{2} \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0\end{array}\right]$
$A=\left[\begin{array}{cc}1 & 1 \\ 0 & \frac{\pi}{2}\end{array}\right], B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$A=\left[\begin{array}{cc}1 & 1 \\ -\frac{\pi}{2} & 0\end{array}\right], B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is correct.
The respective Jacobians are
$A=\left[\begin{array}{cc}x_{2}(t)+2 u(t) x_{1}(t) & x_{1}(t) \\ -\frac{\pi}{2} \sin \left(\frac{\pi}{2} x_{1}(t)\right) & 0\end{array}\right], B=\left[\begin{array}{c}x_{1}^{2}(t) \\ 0\end{array}\right]$
and they need to be evaluated at the equilibrium points.

$$
\begin{aligned}
& \text { Which of the following is a valid SVD for } A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] ? \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1 \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=-1 \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \sigma_{1}=0.5, \sigma_{2}=0.5
\end{aligned}
$$

$$
\vec{u}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1
$$

Let's multiply out,

$$
\begin{aligned}
& U \Sigma V^{T}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Question 18

Consider the circuit below, where $u(t)$ is the input and $i_{1}(t)$ and $i_{2}(t)$ are the state variables:

Suppose, $R_{1}=1 \mathrm{~m} \Omega, L_{1}=1 \mathrm{mH}, L_{2}=2 \mathrm{mH}$. For which value of R_{2} is this system uncontrollable?
$\mathrm{R}_{2}=1 \mathrm{~m} \Omega$
$\mathrm{R}_{2}=0 \Omega$

- $\mathrm{R}_{2}=2 \mathrm{~m} \Omega$

None. It is controllable for all values of R_{2}.
$\mathrm{R}_{2}=0.5 \mathrm{~m} \Omega$

Here, $\frac{R_{1}}{L_{1}}=\frac{R_{2}}{L_{2}}$.
As, $R_{1}=1 \mathrm{~m} \Omega, L_{1}=1 \mathrm{mH}$, and $L_{2}=2 \mathrm{mH}$. So, $R_{2}=1 \mathrm{~m} \Omega$.
Using KVL, $u=R_{1} i_{1}+L_{1} \frac{d i_{i}}{d t}=R_{2} i_{2}+L_{2} \frac{d i_{2}}{d t}$.
It follows,
$\frac{d i_{1}}{d t}=-\frac{R_{1}}{L_{1}} i_{1}+\frac{1}{L_{1}} u$, and
$\frac{d i_{2}}{d t}=-\frac{R_{2}}{L_{2}} i_{2}+\frac{1}{L_{2}} u$.
So,
$\frac{d}{d t} \vec{i}=\left[\begin{array}{cc}-\frac{R_{1}}{L_{1}} & 0 \\ 0 & -\frac{R_{2}}{L_{2}}\end{array}\right] \vec{i}+\left[\frac{1}{L_{1}} \frac{1}{L_{2}}\right] u$.
So, $A=\left[\begin{array}{cc}-\frac{R_{1}}{L_{1}} & 0 \\ 0 & -\frac{R_{2}}{L_{2}}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}\frac{1}{L_{1}} \\ \frac{1}{L_{2}}\end{array}\right]$
There are 2 state vectors. Controllability matrix, $C=[B A B]$.
$C=\left[\begin{array}{cc}\frac{1}{L_{1}} & -\frac{R_{1}}{L_{1}^{2}} \\ \frac{1}{L_{2}} & -\frac{R_{2}}{L_{2}^{2}}\end{array}\right]$.
For matrix C to have rank <2, we need, ratio of the matrix elements in each column equal.

So, $\frac{R_{1}}{L_{1}}=\frac{R_{2}}{L_{2}}$.

Let A be an $m \times n$ real matrix with SVD in standard outer product form

$$
A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{\top}+\sigma_{3} \vec{u}_{3} \vec{v}_{3}^{\top} \text { with } \sigma_{1} \geq \sigma_{2} \geq \sigma_{3}>0 .
$$

Which of the following is NOT true:

$$
A^{\top} A \vec{v}_{2}=\sigma_{2}^{2} \vec{v}_{2}
$$

$n \geq 3$

$$
\operatorname{rank}\left(A^{\top}\right)=3
$$

($\vec{v}_{1} \vec{v}_{1}^{\top}=1$
$\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]^{\top}\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Question 20

Consider the system:

$$
\begin{aligned}
\frac{d x(t)}{d t} & =(a-b y(t)) x(t) \\
\frac{d y(t)}{d t} & =(c x(t)-d) y(t)
\end{aligned}
$$

where, $x(t)$ and $y(t)$ are non-negative state variables and a, b, c, and d are positive constants. Professor Arcak linearized this model around one of its equilibrium points (he won't tell you which) and found that the resulting matrix A has complex eigenvalues. What are these eigenvalues?

- $\lambda_{1,2}= \pm j \sqrt{a d}$
$\lambda_{1,2}=-b d / c \pm j a c / b$
$\lambda_{1,2}=a \pm j d \sqrt{b / c}$
$\lambda_{1,2}=-d \pm j a$
$\lambda_{1,2}=-d \pm j a \sqrt{c / b}$

For equilibrium,
$\frac{d x}{d t}=\left(a-b y^{*}\right) x^{*}=0$ and
$\frac{d x}{d t}=\left(c x-d^{*}\right) y^{*}=0$
So, the two equilibrium conditions are,
$x^{*}=0, y^{*}=0$ and $x^{*}=\frac{d}{c}, y^{*}=\frac{a}{b}$.
The Jacobian matrix for linearization corresponding to the equilibrium, $x^{*}=0, y^{*}=0$ is,
$\left[\begin{array}{cc}a & 0 \\ 0 & -d\end{array}\right]$. So,
$\lambda=a,-d$.
Similarly, for $x^{*}=\frac{d}{c}, y^{*}=\frac{a}{b}$, Jacobian,
$J=\left[\begin{array}{cc}0 & -\frac{b d}{c} \\ \frac{a c}{b} & 0\end{array}\right]$. Solving the characteristic equation,
$\lambda= \pm \mathrm{j} \sqrt{a d}$

Question 21

A linear dynamical system is given below:
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\mathbf{B} \vec{u}$
The input \vec{u} is a constant. What property of the matrix \mathbf{A} is required so that the system has exactly two distinct equilibrium points?

Always possible

- Not possible

The following equation must be satisfied if x^{*} is an equilibrium point:
$\overrightarrow{0}=\mathbf{A} \vec{x}^{*}+\mathbf{B} \vec{u}$
$\mathbf{A} \vec{x}^{*}=-\mathbf{B} \vec{u}$
Solving for x^{*} is solving a linear system, which cannot have exactly two distinct solutions.
$\mathbf{B} \vec{u}$ is in the column space of \mathbf{A}

The system is controllable
\mathbf{A} is not invertible

An invertible $n \times n$ matrix A has n distinct non-zero singular values. How many singular value decompositions $A=U \Sigma V^{\top}$ does A have?

$$
2^{n-1}
$$

n^{2}
$n!$

- 2^{n}

Not enough information to determine

Question 23

Which of the following could be a non-zero singular value for matrix B below?
$B=\left[\begin{array}{lllll}1 & 5 & 1 & 1 & 2 \\ 2 & 7 & 2 & 9 & 4 \\ 3 & 3 & 3 & 4 & 6\end{array}\right]$
1.01+2.14j
-1.05
1.01-2.14j
-100
© 4.04

The question is asking for non-zero singular value. We know for an SVD for a real matrix the singular value cannot be complex or negative. So, the only answer we are left with is the positive real number.

Question 24

A discrete-time system is modeled by the following equation:
$x(t+1)=a x(t)+b u(t)+e(t)$, where $e(t)$ is the system disturbance. The inputs and outputs at different time steps are :
$x(0)=1, x(1)=2, x(2)=1, x(3)=-2, u(0)=1, u(1)=0, u(2)=1$ 。 What are the least-squares estimates of the parameters a and b ?

$$
a=\frac{1}{2} \text { and } b=1
$$

- $a=\frac{1}{2}$ and $b=-\frac{1}{2}$
$a=1$ and $b=-\frac{1}{2}$
$a=1$ and $b=1$

$$
a=1 \text { and } b=-1
$$

$D^{T} D=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 2 & 2\end{array}\right]$
$\left(D^{T} D\right)^{-1}=\frac{1}{12-4}\left[\begin{array}{cc}2 & -2 \\ -2 & 6\end{array}\right]=\left[\begin{array}{cc}\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]$
So,
$\overrightarrow{\hat{p}}=\left(D^{T} D\right)^{-1} D^{T} y=\left[\begin{array}{cc}\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2}\end{array}\right]$
Using the given conditions,
$2=a+b$
$1=2 a$
$-2=a+b$
$\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}e(0) \\ e(1) \\ e(2)\end{array}\right]$
Which can be represented as,
$\vec{y}=D \vec{p}+\vec{e}$, where,
$\vec{y}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right], D=\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1\end{array}\right], \vec{p}=\left[\begin{array}{l}a \\ b\end{array}\right], \vec{e}=\left[\begin{array}{l}e(0) \\ e(1) \\ e(2)\end{array}\right]$.
The least-square estimate for p,
$\overrightarrow{\hat{p}}=\left(D^{T} D\right)^{-1} D^{T} \vec{y}$.

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=x_{2}(t) \\
& \frac{d x_{2}(t)}{d t}=u(t)
\end{aligned}
$$

where $u(t)$ is the input. Professor Sanders discretized this model with a sampling period T and obtained,
$\overrightarrow{x_{d}}(k+1)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \overrightarrow{x_{d}}(k)+\left[\begin{array}{c}0.5 \\ 1\end{array}\right] u_{d}(k)$.
What is the sampling period, T Professor Sanders used?

$$
T=0.5
$$

- $T=1$

$$
\mathrm{T}=1 / \sqrt{2}
$$

$$
T=0.1
$$

$$
T=0.2
$$

We found,

$$
\left[\begin{array}{l}
x_{1}(t+T) \\
x_{2}(t+T)
\end{array}\right]=\left[\begin{array}{cc}
1 & T \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{T^{2}}{2} \\
T
\end{array}\right] u(t), \text { which is true }
$$

if $T=1$.
Calculating the change in x_{1} and x_{2} in T,
$x_{2}(t+T)-x_{2}(t)=\int_{t}^{t+T} u(\tau) d \tau=T u(t)$
$x_{1}(t+T)-x_{1}(t)=\int_{t}^{t+T} x_{2}(\tau) d \tau$
$=\int_{t}^{t+T}\left[x_{2}(t)+(\tau-t) u(t)\right] d \tau$
$=\int_{t}^{t+T} x_{2}(t) d \tau+\int_{t}^{t+T}(\tau-t) u(t) d \tau$
$=T x_{2}(t)+\frac{T^{2}}{2} u(t)$
So,
$x_{1}(t+T)=x_{1}(t)+T x_{2}(t)+\frac{T^{2}}{2} u(t)$
$x_{2}(t+T)=x_{2}(t)+T u(t)$
In matrix form,

$$
\left[\begin{array}{c}
x_{1}(t+T) \\
x_{2}(t+T)
\end{array}\right]=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{T^{2}}{2} \\
T
\end{array}\right] u(t)
$$

