
Final Exam @ 2021-05-11 08:16:20Z

EECS 16B Designing Information Devices and Systems II
Spring 2021 UC Berkeley Final Exam

Read the following instructions before the exam.

Good luck on the exam! We know you’ve worked hard, and we are rooting for you to do well!

Our advice to you: if you can’t solve a particular problem, move on to another, or try a simpler one. You will perhaps
find yourself on a path to the solution. We believe in you!

Format & How to Submit Answers

This exam starts with the honor code and and introductory questions, followed by 7 exam questions containing
subparts with varying points. The problems are of varying difficulty, so pace yourself accordingly and avoid
spending too much time on any one question until you have gotten all of the other points you can. If you are
having trouble with one subpart, there may be easier points available later!

Complete your exam using either the template provided or appropriately created sheets of paper. Either way, you
should submit your answers to the Gradescope assignment that is marked FINAL for your specific exam group. Make
sure you submit your assignment to the correct Gradescope assignment. You MUST select pages for each question. We
cannot grade your exam if you do not select pages for each question. If you are having technical difficulties submitting
your exam, make a private Piazza post. You can email your answers to eecs16b-sp21@berkeley.edu, to meet
the deadline and then upload to Gradescope as soon as possible after.

In general, show all your work legibly to receive full credit; we cannot grade anything that we cannot read. For some
problems, we may try to award partial credit for substantial progress on a problem, and showing your work clearly and
legibly will help us do that.

Timing & Academic Honesty

You are expected to follow the rules provided in the Exam Proctoring Guidelines.

https://docs.google.com/document/d/1ZCr6Vl8c5p90UzeUO7zYCmM_kc74KRNE9ZIy1tEygbE/edit?usp=sharing

The exam will be available to you at the link sent to you via email. The exam will be from 8am-11am Pacific Time,
Thursday, May 13th, 2021, unless you have an exam accommodation. Most of you will finish working at 11am, and
will submit your exam by 11:40am (11:30am with tablet), unless you have an accommodation confirmed by course
staff. An exam that is submitted N minutes after the end of the submission period will lose 2N points. This means
that if you are 1 minute late you will lose 2 points; if you are 5 minutes late you will lose 32 points and so on.

You may consult only 3 (three) handwritten 8.5” by 11” cheat sheets (front and back of one piece of paper). Do not
attempt to cheat in any way. We have a zero tolerance policy for violations of the Berkeley Honor Code. On your
browser, the only websites you may have open are

• the exam PDF
• the Google doc with exam link (and where clarifications will be added during the exam)
• the detailed proctoring guidelines and/or the proctoring summary
• Piazza if necessary for emergencies
• Gradescope to submit the exam
• if necessary, other websites or programs related to compiling or submitting your exam

Any other open website will be considered a violation of policy.
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EECS 16B Designing Information Devices and Systems II
Spring 2021 UC Berkeley Final Exam
There is a total of 126 points on this exam and 106 points will be counted as a
full score.

1. Honor Code

If you have not already done so, please copy the following statements into the box provided for the honor
code on your answer sheet, and sign your name.

I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

• I have read the instructions for this exam. I understand them and will follow them.

• All of the work submitted here is my original work.

• I did not reference any sources other than my allocated reference cheat sheet(s).

• I did not collaborate with any other person on this exam.

2. Pre-Exam Questions

(a) [2 points] Tell us about something that excites you.
All answers will be awarded full credit.

(b) [2 points] What are you looking forward to doing over the summer?
All answers will be awarded full credit.
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3. Potpourri [11 points]

(a) [4 points] Consider:

~v1 =

0
3
4

 , ~v2 =

0
1
0

 . (1)

Run Gram-Schmidt on these vectors in this order (that is, start with ~v1 then ~v2), and extend this
set to form an orthonormal basis for R3. Show your work.

Solution: The concepts needed to solve this problem were explored in Note 10, Homework 10 Q2,
and Discussion 9B.
We run the Gram-Schmidt process:

~q1 =
~v1

‖~v1‖
=
~v1

5
=

 0
3/5
4/5

 . (2)

~z2 = ~v2 − 〈~v2, ~q1〉 ~q1 = ~v2 −
3

5
~q1 =

0
1
0

−
 0

9/25
12/25

 =

 0
16/25
−12/25

 (3)

~q2 =
~z2

‖~z2‖
=

~v2

4/5
=

 0
4/5
−3/5

 . (4)

To find a suitable final vector, we just note that

1
0
0

 completes the orthonormal basis. We can also

get this through Gram-Schmidt by adjoining the standard basis ~v3 = ~e1, ~v4 = ~e2, ~v5 = ~e3 (where ~ei
corresponds to each of our standard basis vectors) to our list:

~z3 = ~v3 − 〈~v3, ~q1〉 ~q1 − 〈~v3, ~q2〉 ~q2 = ~v3 =

1
0
0

 (5)

=⇒ ~q3 =
~z3

‖~z3‖
=

1
0
0

 (6)

~z4 = ~v4 − 〈~v4, ~q1〉 ~q1 − 〈~v4, ~q2〉 ~q2 − 〈~v4, ~q3〉 ~q3 = ~0 (7)

~z5 = ~v5 − 〈~v5, ~q1〉 ~q1 − 〈~v5, ~q2〉 ~q2 − 〈~v5, ~q3〉 ~q3 = ~0. (8)

(b) [3 points] Consider the symmetric matrix

A =

[
2 −1
−1 2

]
,
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which by the Spectral Theorem has an eigendecomposition A = WDW−1 where

W =

[
1√
2

1√
2

− 1√
2

1√
2

]
, D =

[
3 0
0 1

]
.

Write the SVD of A = UΣV > and identify U,Σ, V .

Solution: The concepts needed to solve this problem were explored in Note 13, Homework 11 Q3,
and Discussion 11A/B and 12A/B.
The natural way to solve this problem is by computing the SVD as you have done many times in HW
and discussion.
There is also a quick way to do it by observing that symmetric matrices inspired our SVD decom-
position – and for symmetric matrices, the EVD and SVD are the same up to sign changes in the
eigenvalues and eigenvectors and reordering of the eigenvalues to be in decreasing order. Since the
eigenvalues are all positive, then we don’t need any sign changes. Since the eigenvalue matrix D al-
ready has decreasing eigenvalues, we don’t need to reorder it either. Thus the SVD of A = UΣV > is
U = W , Σ = D, V = W .

EECS 16B, Spring 2021, Final Exam 4



Final Exam @ 2021-05-18 04:53:33Z

(c) [4 points] In digital design, we often use ‘synchronous’ circuits, i.e. circuits which evaluate when
a clock signal transitions from 0 to VDD. One such implementation, called domino CMOS logic, is
shown in Figure 1. Initially Vclk = 0 (‘reset phase’) for a long time, so the output node is high, i.e.
Vout = VDD and the capacitor is fully charged, regardless of the values of VA and VB . We want to
complete the Truth Table 1 during the ‘evaluation phase’. For cases (ii) and (iv), when Vclk transitions
from 0 to VDD and VA and VB are equal to the values specified in the table, what is Vout? Justify
your answer.
Note that if all transistors connected to the output node are switched off, then the capacitor C at the
output node ‘holds’ the voltage since there is no charging / discharging path in that case.

Vclk

Vout

C

VB

VA

VDD

Figure 1: Domino Logic Gate

Case Vclk VA VB Vout

(i) 0→ VDD 0 0 VDD → VDD
(ii) 0→ VDD 0 VDD VDD → ?
(iii) 0→ VDD VDD 0 VDD → VDD
(iv) 0→ VDD VDD VDD VDD → ?

Table 1: Truth Table

Solution: The concepts needed to solve this problem were explored in Note 1B, Discussion 9A Q2,
and Discussion 2A Q3.
Since Vclk = VDD, the PMOS is switched off and the NMOS closest to ground is switched on.
In Case (ii), VA = 0, which means the corresponding NMOS is switched off, so the entire NMOS
network is ‘off’. Hence the output node is floating, so it stays at the voltage stored in the capacitor,
hence Vout = VDD.
In Case (iv), is VA = VDD and VB = VDD, so all the NMOS are switched on and the output node can
discharge to ground. Hence Vout = 0.
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4. Analog Signal Processing [24 points]

In this problem, we will study an example of one of the most common applications in signal processing:
removing noise and amplifying the desired signal in a receiver.

In 16B we have learned about filters, so we can selectively remove specific noise frequency bands. Assume
that we have a low frequency desired signal s(t) = cos

(
ωsigt

)
, where ωsig = 10 rad

s , and a high frequency
noise n(t) = 2 cos(ωnoiset), where ωnoise = 1000 rad

s , at the receiver input. We wish to amplify the desired
signal and also reject the noise.

(a) [7 points] Let’s first attempt to use a low-pass filter to achieve this goal. Since we wish to amplify the
desired signal, we need to use a low-pass filter with gain > 1 (i.e. use an amplifier combined with a
filter). Assume that the op-amps are ideal and follow the golden rules.

i. Derive a transfer function for the filter configuration in Figure 2a. Show your work.
ii. Derive a transfer function for the filter configuration in Figure 2b. Show your work.

iii. Out of the two filter configurations in Figure 2, which one is the low-pass filter? Justify your
answer.

−

+

R1

Ṽin(ω)

C

R2

Ṽout(ω)

(a) Config 1

−

+

R1

Ṽin(ω)

R2

C

Ṽout(ω)

(b) Config 2

Figure 2: Active filter receiver configurations

Solution: The concepts needed to solve this problem were explored in Note 5, Homework 7 Q4, and
EECS 16A.

i. For the first configuration in Figure 2a,

Zin,1 = R1 +
1

jωC

Zfb,1 = R2

H1(ω) =
Ṽout(ω)

Ṽin(ω)
= −

Zfb,1
Zin,1

= − R2

R1 + 1
jωC

= − jωCR2

1 + jωCR1
= −R2

R1
· 1

1− j
ωCR1
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Notice, that this transfer function has a gain component
(
−R2
R1

)
and a high-pass filter component(

1
1− j

ωCR1

)
.

ii. For the second configuration in Figure 2b,

Zin,2 = R1

Zfb,2 = R2||
1

jωC
=

R2

1 + jωCR2

H2(ω) =
Ṽout(ω)

Ṽin(ω)
= −

Zfb,2
Zin,2

= −R2

R1
· 1

1 + jωCR2

Notice, that this transfer function has a gain component
(
−R2
R1

)
and a low-pass filter component(

1
1+jωCR2

)
.

iii. Analyzing the transfer functions of the two configurations we see that Config 2 represents a low-
pass filter. Example justification answers - Config 2 transfer function has a single pole. Looking at
frequency extremes ω → 0 and ω →∞we conclude that the Config 2 transfer function represents
a low-pass filter.

(b) [5 points] Suppose that the transfer function of the low-pass filter with gain from part (a) wasHLPF(ω) =
− A

1+j ω
ωc

, where the cutoff frequency frequency is ωc = 100 rad
s and the gain is A = 10. The Bode

plots for the low-pass filter with gain are shown below. Read-off the numerical values corresponding
to the appropriate points on the Bode plots.

i. What are the magnitude and phase of the filter output signal when the input into the filter is
s(t) = cos

(
ωsigt

)
, where ωsig = 10 rad

s ? Derive the time domain expression for the filter
output signal.

ii. What are the magnitude and phase of the filter output signal when the input into the filter is
n(t) = 2 cos(ωnoiset), where ωnoise = 1000 rad

s ? Derive the time domain expression for the
filter output signal.

100 101 102 103 104 105
10−3

10−2

10−1

100

101

102

ω
(

rad
s

)

|H
L

P
F
(ω

)|

Bode plot of magnitude with A = 10

100 101 102 103 104 105

−π
−3π

4

−π
2

−π
4

0

π
4

π
2

3π
4

π

ω
(

rad
s

)

∠
H

L
P

F
(ω

)

Bode plot of phase
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Solution: The concepts needed to solve this problem were explored in Note 5, Note 6, and Homework
7 Q3.

i. From the Bode plots, we can read that HLPF(ωsig) = 10ejπ. Hence

s(t) = cos(10t)

=⇒ S̃ = 0.5ej0

=⇒ S̃1 = S̃ ·HLPF(ωsig)

= 5ejπ

=⇒ s1(t) = 10 cos(10t+ π) = −10 cos(10t)

Alternatively, realize that the transfer function directly affects the signal amplitude and phase to
write the time domain answer s1(t) = 10 cos(10t+ π) = −10 cos(10t).

ii. From the Bode plots, we can read that HLPF(ωnoise) = ej
π
2 . Hence

n(t) = 2 cos(1000t)

=⇒ Ñ = ej0

=⇒ Ñ1 = Ñ ·HLPF(ωnoise)

= ej
π
2

=⇒ n1(t) = 2 cos

(
1000t+

π

2

)
= −2 sin(1000t)

Alternatively, realize that the transfer function directly affects the noise amplitude and phase to
write the time domain answer n1(t) = 2 cos

(
1000t+ π

2

)
= −2 sin(1000t).

(c) [6 points] We wish to have the signal be more amplified with respect to the noise. One approach is to
cascade two copies of the filter HLPF(ω) to make a second-order low-pass filter with gain. Note that
it is not necessary to put a unity gain buffer between the two filters, because the Vout loading does not
affect the behavior of this specific filter configuration.

i. Derive the transfer function Hcasc(ω) of the second-order low-pass filter by cascading 2 of
the first order transfer functionHLPF(ω) = − A

1+j ω
ωc

from part (b) with ωc = 100 rad
s andA = 10.

Show your work.
ii. Sketch the Bode magnitude and phase plots of Hcasc(ω) on the charts in your answer tem-

plate.
(Hint: Pay attention to the direction of the slopes.)

Solution: The concepts needed to solve this problem were explored in Note 5, Note 6, and Homework
7 Q3.

i. Since there is no loading effect, the transfer function of the cascaded filter is

Hcasc(ω) = H2
LPF(ω)

=
A2

(1 + j ωωc )2

ii. The Bode magnitude plot satisfies the following properties:
• At frequencies ω ≤ ωc = 100 rad

s , magnitude is A2 = 100.
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• At frequencies ω > ωc = 100 rad
s , magnitude drops by 100× per power of 10 of ω.

The Bode phase plot satisfies the following properties:
• At frequencies ω ≤ ωc

10 = 10 rad
s , phase is 0 rad = 0◦.

• At frequencies ω ≥ 10ωc = 1000 rad
s , phase is −π rad = −180◦.

• At ω = ωc = 100 rad
s , phase is −π

2 rad = −90◦.
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Alternatively the phase plot can also be drawn as follows, because −π rad = π rad.
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(d) [6 points] Our implementation of the cascaded second-order filter from part (c) uses 2 op-amps. Can
we get even more noise attenuation by using a single op-amp? One approach is to use a Notch filter
that ideally completely rejects the noise.
Let’s consider the cascade of an LC Notch filter with a non-inverting amplifier in Figure 3. We wish to
have a notch at the noise frequency so that the noise n(t) = 2 cos(ωnoiset), where ωnoise = 1000 rad

s ,
is completely rejected, while the the signal s(t) = cos

(
ωsigt

)
, where ωsig = 10 rad

s , is amplified.

i. Derive the transfer function Hnotch(ω) = Ṽout(ω)

Ṽin(ω)
of the filter in Figure 3. Assume that the

op-amp is ideal and follows the golden rules. Show your work.
ii. Using C = 0.5 mF, find the inductance value L so that the notch (i.e. the frequency at which

the magnitude of the transfer function is 0) is at the noise frequency ωnoise = 1000 rad
s . Show

your work.

−

+

Ṽout(ω)

R3

R2

Ṽ−(ω)

Ṽ+(ω)

L

C

R1

Ṽin(ω)

Figure 3: LC Notch filter and non-inverting amplifier

Solution: The concepts needed to solve this problem were explored in Lecture 6A and Homework 6
Q7.

i. The overall circuit in Fig 3 is the cascade of a voltage divider from Ṽin(ω) to Ṽ+(ω) and a non-
inverting amplifier from Ṽ+(ω) to Ṽout(ω). The transfer function is derived as follows (op-amp in
negative feedback implying Ṽ+(ω) = Ṽ−(ω)) :

Ṽ+(ω)

Ṽin(ω)
=

jωL+ 1
jωC

R1 + jωL+ 1
jωC

=
jω(L− 1

ω2C
)

R1 + jω(L− 1
ω2C

)

Ṽout(ω)

Ṽ+(ω)
=
Ṽout(ω)

Ṽ−(ω)
=
R2 +R3

R2

=⇒ Hnotch(ω) =
Ṽout(ω)

Ṽin(ω)
=

(
1 +

R3

R2

)
·

jω(L− 1
ω2C

)

R1 + jω(L− 1
ω2C

)

=

(
1 +

R3

R2

)
· 1− ω2LC

1− ω2LC + jωCR1

ii. We wish to place the notch at the noise frequency. The notch is at the frequency where the
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magnitude of the transfer function is 0, i.e. magnitude of the numerator is 0. Hence

|Hnotch(ωnoise)| = 0

=⇒ L− 1

ω2
noiseC

= 0

=⇒ L =
1

ω2
noiseC

=
1

10002 × 0.5× 10−3
= 2× 10−3

Therefore the inductance is L = 2 mH.

EECS 16B, Spring 2021, Final Exam 11
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5. Optimization and Singular Values [14 points]

We are going to focus on a special optimization problem that is related to the underlying structure of the
SVD. More specifically, we want to solve for s in the following maximization problem

s = max
‖~x‖6=0

‖A~x‖2

‖~x‖2
. (9)

Here, we have A ∈ Rm×n. Let m > n so that A is a tall matrix and rank(A) = n. Let the full SVD be
given by A = UΣV >.

Define ~x∗ ∈ Rn to be the optimal vector that achieves the maximum in equation (9). That is,

~x∗ = argmax
‖~x‖6=0

‖A~x‖2

‖~x‖2
, (10)

s =
‖A~x∗‖2

‖~x∗‖2
. (11)

(a) [3 points] We start by attempting to simplify the optimization problem. Prove that for any ~x, we have
‖A~x‖ = ‖ΣV >~x‖. Note that you must justify and explain every step for full credit, just equations
without an explanation may not be awarded full credit.

Solution: The concepts needed to solve this problem were explored in Note 13, Discussion 11A, and
Homework 12 Q4b.
We can directly plug in the SVD of A into the left hand side:

‖A~x‖ = ‖UΣV >~x‖
= ‖U(ΣV >~x)‖
= ‖ΣV >~x‖.

We used the fact that U is an orthonormal matrix and therefore preserves the norm of any vector. This
was proven in lecture, and also in HW 11 Q2(c).
Alternative Solution:
Alternatively, we can use the inner product definition of the norm in order to simplify the expression.
Recall that ‖~x‖ =

√
〈~x, ~x〉 =

√
~x>~x. Using this fact, we can write out

‖A~x‖ =
√

(A~x)>(A~x)

=
√

(UΣV >~x)>(UΣV >~x)

=
√
~x>V Σ>(U>U)ΣV >~x.

We use the fact that U is an orthonormal matrix, implying that U>U = I . Substituting this back in
gives us

‖A~x‖ =
√
~x>V Σ>ΣV >~x

EECS 16B, Spring 2021, Final Exam 12
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=
√

(ΣV >~x)>(ΣV >~x)

= ‖ΣV >~x‖.

(b) [3 points] Using a change of variables, we can in fact turn our original maximization problem into

s = max
‖~w‖6=0

‖Σ~w‖2

‖~w‖2
. (12)

Find the correct change of variables that relates ~x and ~w and show that optimization problems
(9) and (12) are equivalent.
Hint: The change of variables you are looking for can also be thought of as a change of basis.

Solution: The concepts needed to solve this problem were explored in Lecture 11B and Homework
12 Q4.
Plugging in the result from part (a) into the original maximization problem yields

s = max
‖~x‖6=~0

‖ΣV >~x‖2

‖~x‖2
.

Seeing what the maximization problem transforms into, we see we want to choose V >~x = ~w. This
is since multiplication by V > won’t change the norm of a vector due to it being orthonormal. So, the
problem becomes

s = max
‖V ~w‖6=~0

‖Σ~w‖2

‖V ~w‖2

= max
‖~w‖6=~0

‖Σ~w‖2

‖~w‖2
.

(c) [3 points] Let σ1 be the largest singular value of matrixA. Find a ~w∗, such that ‖Σ~w∗‖2 = σ2
1‖~w∗‖2.

Justify your answer.

Solution: The concepts needed to solve this problem were explored in Note 4, Homework 12 Q3
and Q4.
We first define ~ei (the ith standard basis vector) as the vector with a 1 in the ith entry and zero ev-

erywhere else (i.e. the ith column of the identity matrix). If ~w∗ = c~e1 =
[
c 0 . . . 0

]>
for some

constant c, then
||Σ~w∗||2 = ||Σc~e1||2 = σ2

1c
2 = σ2

1||~w∗||2

Part (d) will tell us that for all ~w, ||Σ~w||||~w||
2
≤ σ2

1 . This means that we have found the ~w∗ that achieves
the upper bound. So, the value of s from (9) must be equal to σ2

1 .

(d) [5 points] Prove that for all ~w we have ‖Σ~w‖2 ≤ σ2
1‖~w‖2. Show your work.

Hint: Remember that Σ has n non-zero entries σ1 ≥ σ2... ≥ σn along the diagonal, and all other
entries are zero.
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Solution: The concepts needed to solve this problem were explored in Note 4, Homework 12 Q3
and Q4.
We first note that σ1 is the largest singular value, so it is greater than or equal to all σi. We start by
rewriting ‖Σ~w‖2 as a summation,

||Σ~w||2 =

n∑
i=1

σ2
iw

2
i .

Next, we use the fact that σ1 is greater than or equal to all of the σi and invoke the inequality,

n∑
i=1

σ2
iw

2
i ≤

n∑
i=1

σ2
1w

2
i .

Finally, we can pull out the common σ2
1 from the summation and substitute

∑n
i=1w

2
i as the norm-

squared of ~w,

n∑
i=1

σ2
1w

2
i = σ2

1

n∑
i=1

w2
i = σ2

1||~w||2,

as desired.
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6. I bet Cal will win this year [14 points]

As huge fans of the Big Game, you and your friend want to bet on whether Cal or Stanford will win this
year. You want to predict this year’s result by analyzing historical records. Therefore, you decide to model
this as a binary classification problem and do PCA for dimension reduction on the data you collected. The
"+1" class represents victories of Cal and "−1" represents victories of Stanford.

After some research, you obtained a data matrix A ∈ Rn×d,

A =


− ~x>1 −
− ~x>2 −

...
− ~x>n −

 (13)

where each of the n rows ~x>i denotes a game and each of the d columns of A contains information of a
possibly relevant factor of the games (weather, location, date, air quality, etc).

(a) [4 points] Let the full SVD of A = UΣV >, where A is given in eq. (13).
You project your data along ~v1 and ~v2 (the first two principal components along the rows), and for
comparison you also project your data along two randomly chosen directions ~w1 and ~w2 as well. You
get the two pictures in Figure 4, but you forgot to label the axes. Of the two figures below, which
one is the projection onto the principal components and which one is the projection onto the random
directions? Match axes (i), (ii), (iii), (iv) to ~w1, ~w2, ~v1, and ~v2, and justify your answer.
Note that there may be multiple correct matchings; you only need to find and justify one of them.

Figure 4: Projected datasets.

Solution: The concepts needed to solve this problem were explored in Note 14 and Homework 12
Q5, Q6, and Q7.
You may recall from the notebook on neuron classification — when we project data along principal
components the data is aligned to orthogonal axes where as when we projected it along random com-
ponents it was not aligned to any axes. So we can deduce from this that (i) and (ii) must correspond
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in some order to the principal components and (iii) and (iv) must correspond to the random direc-
tions. Further observation leads us to see that axis (ii) has more spread than axis (i) and therefore must
correspond to the larger singular value, i.e. to the first principal component ~v1.

i. ~v2 – the corresponding axis to ~v1 and also an axis for which the spread of the data is axis-aligned.
ii. ~v1 – This is the axis with the maximal spread of the data and therefore must correspond to the

largest singular value. the single axis, across both plots, across which there is maximal spread of
the data.

iii. ~w1 or ~w2 – seemingly a random projection. We don’t know which one is ~w1 and ~w2 since they
are random unit vectors and as such are independent of the data, so we can’t tell from the plot.

iv. ~w2 or ~w1 – seemingly a random projection. We don’t know which one is ~w1 and ~w2 since they
are random unit vectors and as such are independent of the data, so we can’t tell from the plot.

(b) [4 points] In order to reduce the dimension of the data, we would like to project the data onto the first
k principal components along the rows of A, where k is less than the original data dimension d. Show
how to find the new coordinates ~zi of the data point ~xi after this projection. You may use the SVD
of A.

Solution: The concepts needed to solve this problem were explored in Note 14 and Homework 12
Q5, Q6, and Q7.
Let

Vk =
[
~v1 ~v2 · · · ~vk

]
(14)

Since we are projecting onto the columns of Vk, the new coordinate of ~xi after dimension reduction is
~zi = (V >k Vk)

−1V >k ~xi = V >k ~xi. Note that V >k Vk = Ik since Vk has orthonormal columns.
Note also that this is equivalent to saying ~zi is obtained by taking the first k entries of V >~xi.

(c) [3 points] Using the data you have, you trained a classifier ~w?. For any new data point after dimension
reduction ~znew, the value of sign(~w>? ~znew) tells you whether the data point belongs to the "+1" class
or to the "−1" class. Now suppose you have obtained two new data points, ~za and ~zb. Based on Figure
5 showing ~w?, ~za and ~zb, predict the class of ~za and ~zb using ~w?, and justify your answer.

~v1

~v2

~w?

~za

~zb

Figure 5: Dataset projected onto ~v1 and ~v2 with ~w?
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Solution: The concepts needed to solve this problem were explored in Note 14, Note 16, and
Homework 12 Q5, Q6, and Q7.
Since we are classifying based on sign(~w>? ~znew), from the graph we can see that ~w>? ~za > 0, thus ~za is
predicted to be in class "+1". Similarly, ~w>? ~zb < 0, and thus ~zb is predicted to be in class "−1".

(d) [3 points] Assume d = 6, k = 4, and ~w? =
[
0 1 0 0

]>
. Let A = UΣV > for A defined in

eq. (13), and you find that V is given by the identity matrix, i.e. V = Id. Now suppose the data point

for this year’s big game ~x2021 =
[
3 6 4 1 9 6

]>
. Would you bet on Cal or Stanford to win?

Justify your answer. A quick reminder that "+1" denotes victories of Cal and "−1" denotes victories
of Stanford. A correct guess will yield 0 points.
Hint: Don’t forget to project your data onto the principal components.

Solution: The concepts needed to solve this problem were explored in Note 14, Note 16, and
Homework 12 Q5, Q6, and Q7.
First, we need to preprocess this data point and project it onto the k-dimensional subspace just like
what we did to the training points

~z2021 = V >k ~x2021

= V >k



3
6
4
1
9
6



=


3
6
4
1


Then, we compute the classifier’s predicted value

p2021 = ~w>? ~z2021

=
[
0 1 0 0

]
3
6
4
1


= 6

Therefore, the classifier predicts the label for this data point to be "+1", thus you should bet for Cal to
win this year!
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7. Cruise Control [24 points]

Suppose that we’re working with a more advanced version of the robot car we built in the lab. Its state at
timestep k is n dimensional, captured in ~x[k] ∈ Rn. The control at each timestep ~u[k] ∈ Rm. The system
evolves according to the discrete-time equation

~x[k + 1] = A~x[k] +B~u[k]. (15)

We know the values of the n × n matrix A and the n × m matrix B (say for example estimated through
system identification). For all parts, the initial condition is ~x[0] = ~0.

(a) [3 points] We want to transform our system to a nicer set of coordinates in the S basis. S is an n× n
invertible matrix. Let us write the transformed state as ~z[k] = S−1~x[k] for all k. Show that eq. (15)
can be written in the form

~z[k + 1] = Ã~z[k] + B̃~u[k]. (16)

with Ã = S−1AS and B̃ = S−1B. Show your work.

Solution: The concepts needed to solve this problem were explored in Note 3A and Discussion 4B.

~x[k + 1] = A~x[k] +B~u[k] (17)

S~z[k + 1] = AS~z[k] +B~u[k] (18)

~z[k + 1] = S−1AS~z[k] + S−1B~u[k] (19)

(b) [5 points] Prove that the system in eq. (16) is controllable if and only if the system in eq. (15) is
controllable. Show your work.
(Hint: Connect the controllability matrix of the system in eq. (16) to the controllability matrix of the
system in eq. (15).)

Solution: The concepts needed to solve this problem were explored in Note 9 and Homework 9 Q2.
We have

C~z =
[
B̃ ÃB̃ · · · Ãn−1B̃

]
(20)

Note that

At =
(
SÃS−1

)t
= SÃS−1SÃS−1

(
SÃS−1

)t−2
= SÃ2S−1

(
SÃS−1

)t−2
= · · · (21)

= SÃtS−1. (22)

So now we can write the controllability matrix for eq. (15):

C~x =
[
B AB · · · An−1B

]
(23)

=
[
B SÃS−1B · · · SÃn−1S−1B

]
(24)

=
[
SS−1B SÃS−1B · · · SÃn−1S−1B

]
(25)

= S
[
S−1B ÃS−1B · · · Ãn−1S−1B

]
(26)

= S
[
B̃ ÃB̃ · · · Ãn−1B̃

]
(27)
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= SC~z. (28)

Since S is a basis matrix, rank(C~x) = rank(C~z), and so rank(C~x) = n if and only if rank(C~z) = n.

(c) [6 points] Suppose (just for this problem subpart) that the system in (15) is controllable, and define its
controllability matrix as C ∈ Rn×mn. We want to reach a goal state ~g ∈ Rn in exactly n timesteps;
that is, we want ~x[n] = ~g. Recall ~x[0] = ~0.

We define the sequence of minimum energy controls as ~u? =


~u?[n− 1]

...
~u?[0]

 where

~u? = argmin
~u
‖~u‖2 (29)

s.t. C~u = ~g. (30)

Prove that ~u∗ is orthogonal to the nullspace of C.
(Hint: Consider a solution of C~u = ~g as ~usol = ~unull + ~uother, where ~unull is the component of ~usol in
the nullspace of C, (i.e. ~unull the projection of ~usol onto the nullspace of C).)
While you have seen this proof in lecture/HW/notes, we are asking you to redo it from scratch here,
just stating that it was done in class will receive no credit.

Solution: The concepts needed to solve this problem were explored in Note 12, Lecture 10B, and
Homework 11 Q4.
Let us suppose that we found some ~usol that satisfies (30). We decompose ~usol into a component
~unull ∈ Null(C) and a component ~uother ⊥ Null(C) such that

~usol = ~unull + ~uother.

Plugging this into (30) gives us

~g = C~usol

= C(~unull + ~uother)

= C~unull + C~uother

= C~uother.

The implication above tells us that ~uother also satisfies (30).

Now we can consider the norm squared of ~usol

‖~usol‖2 = ~u>sol~usol

= (~unull + ~uother)
>(~unull + ~uother)

= ~u>null~unull + ~u>null~uother + ~u>null~uother + ~u>other~uother.

Recall that we ~unull is orthogonal to ~uother by definition, meaning that ~u>null~uother = 0. So, we can
clean up the expression above as

‖~usol‖2 = ~u>null~unull + ~u>other~uother
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=⇒ ‖~usol‖2 = ‖~unull‖2 + ‖~uother‖2

which is essentially the Pythagorean Theorem. If we are trying to minimize ‖~usol‖2 then we should
set ~unull = ~0 since ~uother already solves (30). Thus, our final optimal solution is ~u∗ = ~uother, which is
completely orthogonal to the nullspace of C.

(d) [5 points] Now let us work in the standard basis, with the system in eq. (15). Suppose n = 3 and
m = 1 (so that A ∈ R3×3 , B ∈ R3, ~x[k] ∈ R3, and u[k] ∈ R). The SVD of the controllability matrix
C is given as

C =
[
~w1 ~w2 ~w3

]α 0 0
0 β 0
0 0 0


~v>1~v>2
~v>3

 , (31)

with α > β > 0.
Is the system controllable? Justify your answer.

If the system is controllable, find a sequence of inputs ~u =
[
u[2] u[1] u[0]

]>
, such that ~x[3] = ~g,

for a specific ~g ∈ R3. (Here ~u should be a function of ~g).
If the system is not controllable, find a ~g ∈ R3 that is unreachable by the system, i.e. find ~g such
that there is no sequence of inputs ~u that makes ~x[3] = ~g.
All answers for this problem part should be in terms of ~wi, ~vi, α, and β.
(Hint: Remember how the SVD is connected to the column space and null space of the matrix and that
~x[0] = ~0.)

Solution: The concepts needed to solve this problem were explored in Note 9, Discussion 8B Q3,
Note 13, and Discussion 12A Q1.
The system is not controllable; we have rank(C) = 2 < 3 = n, since C has one zero singular value.
Since the initial condition ~x[0] = ~0, we know that

~x[3] = A3~x[0] + C~u = C~u. (32)

Thus, the vectors that are reachable are exactly col(C). Since from the properties of SVD we know
that col (C) = span(~w1, ~w2) and ~w3 ⊥ span(~w1, ~w2), we know that ~w3 is unreachable.

(e) [5 points] We continue the setup of the previous part, repeated here. We work in the standard basis,
with the system in eq. (15). The SVD of the controllability matrix C is given as in (31), with α > β >
0.

Let H ⊆ R3 be the vector subspace of inputs ~u =
[
u[2] u[1] u[0]

]>
which set ~x[3] = ~0. Give a

basis for H . Justify your answer.
All answers for this problem part should be in terms of ~wi, ~vi, α, and β. Show your work.
(Hint: Remember that ~x[0] = ~0 and ~x[3] = C~u.)

Solution: The concepts needed to solve this problem were explored in Note 9, Discussion 8B Q3,
Note 13, and Discussion 12A Q1.
Again, we know that

~x[3] = C~u. (33)

Then ~x[3] = ~0 if and only if ~u ∈ null (C) = span(~v3) — since this is the part of V that corresponds
to the 0 singular value. Thus ~v3 will be the basis for H .
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8. Nonlinear Circuit Analysis and Control [18 points]

So far, we have mainly focused on analyzing circuits with linear circuit elements, including resistors, capac-
itors, and inductors. However, we now have the tools to analyze circuits with nonlinear components. One
such component is the diode. Diodes show up in many circuit applications, such as a buck-boost converter,
which is a DC-to-DC converter commonly used to raise or lower some supply voltage and feed it to some
other part of your circuit. We give a circuit diagram of a diode as well as its defining IV relationship below.

+ −
vD

iD

(a) Diode circuit diagram

vD

iD
iD = I0(e

vD
vth − 1)

(b) iD = I0(e
vD
vth − 1)

Figure 6: Diode circuit element description

For simplicity, we will be assuming parameters (perhaps unrealistically) such that the I-V relationship for
our diode is:

iD = evD − 1. (34)

(a) [5 points] We want to analyze the circuit below.

−
+u(t)

t ≥ 0

+ −
vD(t)

+ −
vC(t)

iL(t)

t ≥ 0

Figure 7: Diode LC Circuit Diagram

First, we’ll define a model where ~x(t) =

[
x1(t)
x2(t)

]
=

[
vC(t)
iL(t)

]
.

Use KCL, KVL, and the element I-V relationships to get a system of differential equations that
describe ~x(t) for t ≥ 0 as a vector-valued function in terms of vC(t), iL(t), u(t):

d

dt
~x(t) = ~f(vC , iL, u) =

[
f1(vC , iL, u)
f2(vC , iL, u)

]
.

What are f1 and f2? Note that these may be non-linear functions, but they cannot contain
derivatives. Show your work.
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Solution: The concepts needed to solve this problem were explored in Homework 2 Q4 and EECS
16A.
KCL at the node between the capacitor and inductor gives:

C
d

dt
vC(t) = iL(t) =⇒ d

dt
vC(t) =

1

C
iL(t) = f1

KVL gives:

u(t) = vD(t) + vC(t) + L
d

dt
iL(t)

=⇒ u(t) = ln
(
iL(t) + 1

)
+ vC(t) + L

d

dt
iL(t)

=⇒ d

dt
iL(t) = − 1

L
vC(t)− 1

L
ln
(
iL(t) + 1

)
+

1

L
u(t) = f2

Putting everything together, we get

d

dt
~x(t) =

d

dt

[
vC(t)
iL(t)

]
=

[
1
C iL(t)

− 1
LvC(t)− 1

L ln
(
iL(t) + 1

)
+ 1

Lu(t)

]

(b) [4 points] Say that one of the equations you got above was in the form:

d

dt
y(t) =

1

L
ln
(
y(t) + a

)
+

1

L
u(t), (35)

where a ∈ R is a constant and u(t) can be thought of as a control input. (This is not necessarily the
correct answer for the earlier part). You choose y∗ = 0 and u∗ = 1 V as the operating point. Linearize
the above equation (35) about this operating point. Recall that d

dz ln(z) = 1
z . Show your work.

Solution: The concepts needed to solve this problem were explored in Note 15 and Homework 13
Q2.
We have the system

d

dt
y(t) = f

(
y(t), u(t)

)
.

The function can be linearized around y∗ = 0 and u∗ = 1 V as follows:

f
(
y(t), u(t)

)
≈ f(y∗, u∗) +

(
∂f

∂y

∣∣∣
y(t)=y∗

)(
y(t)− y∗

)
+

(
∂f

∂u

∣∣∣
u(t)=u∗

)(
u(t)− u∗

)
=

1

L
ln(0 + a) +

1

L
· 1 +

1

L

(
1

y(t) + a

∣∣∣
y(t)=0

)(
y(t)− 0

)
+

1

L

(
u(t)− 1

)
=

1

aL
y(t) +

1

L
u(t) +

1

L
ln(a)

=⇒ d

dt
y(t) =

1

aL
y(t) +

1

L
u(t) +

1

L
ln(a)

Alternatively, you could have noticed that f is already linear with respect to u(t) and so you only need
to linearize the ln term.
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(c) [5 points] Now suppose you chose a capacitance and inductance such that the linearized model for the
system in Fig. 7 around a particular equilibrium point looked like:

d

dt
~x(t) =

[
0 1
−4 −4

]
︸ ︷︷ ︸

A

~x(t) +

[
0
4

]
u(t) (36)

In order to solve this system, you need to convert A into a more convenient form.
Find an orthonormal matrix V and an upper-triangular matrix T such that A = V TV >. Show
your work.
Hint: You may use the fact that the eigenvalues of A are −2,−2, with eigenspace span(~v1), where

~v1 =

[
− 1√

5
2√
5

]
.

Solution: The concepts needed to solve this problem were explored in Note 11, Homework 10 Q5,
and Discussion 10A.
From the algorithm discussed in lecture, we can construct an orthonormal basis recursively, starting
with the single eigenvector given to us. We first want to find some vector ~r1 that is orthonormal to ~v1,
which can be done either from inspection or Gram-Schmidt.

If you use Gram-Schmidt, then there will be 2 cases as you will orthonormalize ~e1 =

[
1
0

]
or ~e2 =

[
0
1

]
.

Case 1:

~q1 = ~e1 − 〈~v1, ~e1〉~v1

=

[
1
0

]
−
[
1 0

] [− 1√
5

2√
5

][
− 1√

5
2√
5

]

=

[
1
0

]
+

1√
5

[
− 1√

5
2√
5

]
=

[
4
5
2
5

]

=⇒ ~r1 =
~q1

‖~q1‖
=

[
2√
5

1√
5

]

Case 2:

~q1 = ~e2 − 〈~v1, ~e2〉~v1

=

[
0
1

]
−
[
0 1

] [− 1√
5

2√
5

][
− 1√

5
2√
5

]

=

[
0
1

]
− 2√

5

[
− 1√

5
2√
5

]
=

[
2
5
1
5

]

=⇒ ~r1 =
~q1

‖~q1‖
=

[
2√
5

1√
5

]
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Then from lecture we know the V basis should upper-triangularize a 2× 2 matrix:

V =

~v1 ~r1

 =

[
− 1√

5
2√
5

2√
5

1√
5

]

T = V >AV =

[
~v>1 A~v1 ~v>1 A~r1

~r>1 A~v1 ~r>1 A~r1

]

=

[
λ1~v
>
1 ~v1 ~v>1 A~r1

λ1~r
>
1 ~v1 ~r>1 A~r1

]

=

[
−2 −5
0 −2

]

Alternatively, if we use ~r1 =

[
− 2√

5

− 1√
5

]

V =

~v1 ~r1

 =

[
− 1√

5
− 2√

5
2√
5
− 1√

5

]

T = V >AV =

[
~v>1 A~v1 ~v>1 A~r1

~r>1 A~v1 ~r>1 A~r1

]

=

[
λ1~v
>
1 ~v1 ~v>1 A~r1

λ1~r
>
1 ~v1 ~r>1 A~r1

]

=

[
−2 5
0 −2

]

(d) [4 points] We now want to move the eigenvalues of our linearized system more left in the complex
plane to have our state approach the equilibrium point faster. The system is given below again for
convenience:

d

dt
~x(t) =

[
0 1
−4 −4

]
︸ ︷︷ ︸

A

~x(t) +

[
0
4

]
︸︷︷︸
~b

u(t).

Design a state-feedback controller u = ~k>~x =
[
k1 k2

]
~x to move the eigenvalues of the system

to λ = −4,−5. That is, find k1, k2 to give the desired eigenvalues.
Solution: The concepts needed to solve this problem were explored in Note 8 and Homework 9 Q2.

If we set δu = ~k>δ~x =
[
k1 k2

]
x, then the closed loop system becomes

d

dt
δ~x = (A+~b~k>)δ~x
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=

[ 0 1
−4 −4

]
+

[
0 0

4k1 4k2

] δ~x

=

[
0 1

−4 + 4k1 −4 + 4k2

]
δ~x

We want the eigenvalues to be −4,−5 so the desired characteristic polynomial is (λ + 4)(λ + 5) =
λ2 + 9λ+ 20. The characteristic polynomial of our closed loop matrix is

−λ(−4 + 4k2 − λ)− (−4 + 4k1) = λ2 + (4− 4k2)λ+ (4− 4k1)

= λ2 + 9λ+ 20

Thus, we need k1 = −4, and k2 = −5
4 so ~k> =

[
−4 −5

4

]
.
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9. Sensors and DFT [17 points]
You just bought a drone online. Unfortunately, the sensor the manufacturer used was faulty. Using what you
know about the DFT, let’s try and analyze the data from the drone’s sensor.

(a) [4 points] One of the problems with the sensor is that it has errors. If there were no errors, then over
N = 9 samples, you would record the height of the drone as

h[n] = cos

(
2π

9
n

)
.

What are the length 9 DFT coefficients ~H of the correct height ~h? Show your work.

Solution: The concepts needed to solve this problem were explored in Lecture 14B, Discussion 14B,
and Homework 14 Q5.
Let uk[n] = 1√

9
ej

2πk
9
n be the kth DFT basis vector.

cos

(
2π

9
n

)
=

1

2

(
ej

2π
9
n + e−j

2π
9
n
)

=

√
9

2
(~u1 + ~u8)

∴ ~H =
[
0 3

2 0 0 0 0 0 0 3
2

]>
(b) [4 points] Instead due to errors, the height measured by the sensor is

y[n] = sin

(
8π

9
n

)
.

What are the length 9 DFT coefficients ~Y of the data you record ~y? Show your work.

Solution: The concepts needed to solve this problem were explored in Lecture 14B and Discussion
14B.
Let uk[n] = 1√

9
ej

2πk
9
n be the kth DFT basis vector.

sin

(
8π

9
n

)
=

1

2j

(
ej

2π·4
9
n − e−j

2π·4
9
n
)

=

√
9

2j
(~u4 − ~u5)

∴ ~Y =
[
0 0 0 0 3

2j
−3
2j 0 0 0

]>
(c) [4 points] You try a new sensor but instead of computing ~H (the DFT coefficients of~h, where U ~H = ~h

and U is the DFT basis), you compute the DFT coefficients ~G of a vector ~g = Q~h where Q is a known
real orthonormal square matrix. How can you recover ~H from ~G, U , and Q? Justify your answer.

Solution: This problem was just really about the basics of linear transformations — more was
explored in Discussion 14B and Homework 14.

~G = U∗~g = U∗Q~h

~h = Q>U ~G

~H = U∗~h = U∗Q>U ~G

Full credit as assigned even if U−1 was used correctly in place of U∗.
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(d) [5 points] Recall that ~uk = 1√
N

[
1 ej

2πk
N · · · ej

2πk(N−1)
N

]>
. For any real vector ~x ∈ RN , show

that

〈~x, ~uk〉 = 〈~x, ~uN−k〉. (37)

Hint: Recall that you proved in HW that ~uk = ~uN−k, so you may use it.

Solution: The concepts needed to solve this problem were explored in Lecture 14A, Discussion 14A,
and Homework 14 Q3.
The important thing to notice here is that since ~x is real it is its own conjugate. With this justification,
there are two straightforward approaches.

〈~x, ~uk〉 = ~u∗k~x = ~u>N−k~x = ~u∗N−k~x = 〈~x, ~uN−k〉.

Alternatively a correct solution could also be:

〈~x, ~uk〉 = 〈~x, ~uN−k〉 = 〈~x, ~uN−k〉.
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