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Track Memorization 
•  Objective: use prior knowledge to run 

the track faster on the second lap 
–  “Anticipate” turns 
–  Optimize path 

•  Two related problems:  
–  Mapping: where is the track? 
–  Localization: where am I? 

–  Note: we do not need Simultaneous Localization and 
Mapping (SLAM); we will do one, then the other 



Track Memorization 
•  Three steps: 

1.   Map the track 
2.   Plan a trajectory for lap two 
3.   Follow the planned trajectory with localization and 

control (you already have control) 



1. Mapping 



1. Mapping 
•  Objective: record the track layout 
•  During mapping phase, assume the car’s position 

estimate is perfect to record location of track features 
•  Use wheel odometry, integrated velocity, etc. for distance 

–  Go slow so the car doesn’t slip or behave oddly 



1. Mapping 
•  Several possible parameterizations: 

–  2D track path (like a map) 
•  con: complex loop closures 

Note:	NATCAR	explicitly	bans	pre-coding	the	track	and	allows	memorizing	it	



1. Mapping 
•  Several possible parameterizations: 

–  1D list of track features (like driving directions) 
•  Steps, heading, etc. 
•  Most important: curvature 
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1. Mapping 
•  How to store the map? 
•  A 1D map of curvature could be stored simply in a very 

long array of ints 
–  I’m using a 20,000 element array of ints recording 

curvature in centi-radians/meter every 10 cm 



2. Trajectory Planning 



2. Trajectory Planning 
•  Recall the friction performance limits 
•  The car can corner only so fast and 

accelerate/brake only so fast 

•  Back of the envelope limits: 
–  ar = v2/r 
–  aθ = dv/dt 
–  a = ||ar + aθ||2 ≤ µg  

•  Car dynamics caveats: 
–  Lateral and longitudinal weight shift 
–  More complex tire dynamics 
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2. Trajectory Planning 
•  Optimal trajectory operates the car near the friction limit 

as much as possible 
–  Take corners at maximum cornering speed 
–  Maximum acceleration/braking on the straightaways 

•  How do we come up with a good velocity plan? 

Friction cone 
Fn + Ff Ff 

Friction cone top view 



2. Trajectory Planning 
Justin’s strategy: simplifying assumptions: 

1.  Ignore coupling between ar and aθ 
2.  Top speed vmax 
3.  Max acceleration amax 
4.  Max braking amin 

Max acceleration 

Max deceleration 

Max  
cornering 

FricGon	“Box”?	
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Friction cone top view 



2. Trajectory Planning 
Justin’s strategy: 

–  1. v = √µgr 
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Note	r	=		
1/curvature	

to	infinity	
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Justin’s strategy: 
–  2. v ≤ vmax 

2. Trajectory Planning 
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2. Trajectory Planning 
Justin’s strategy: 

–  3. dv/dt ≤ amax 
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2. Trajectory Planning 
Justin’s strategy: 

–  4. dv/dt ≥ amin 



2. Trajectory Planning 
Justin’s strategy can be computed in two for loops: one 
forwards and one backwards 

–  Forwards: set v = √µgr, v ≤ vmax, dv/dt ≤ amax 
–  Backwards: set dv/dt ≥ amin 



2. Trajectory Planning 

I didn’t save the plan, so here is the TA car telemetry from following it 



3. Localization 



•  Assume the map is perfect and correlate observed 
sensor readings with the map to estimate location 

•  This can be formulated as Bayesian estimation 
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3. Localization 
•  This can be formulated as Bayesian estimation: 

–  Probability distribution for distance along track 
–  1. Initial location (a “tracking” problem: we know start) 
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3. Localization 
•  This can be formulated as Bayesian estimation: 

–  2. Use dynamics to predict our position (x += v Δt) 
–  Move forward and uncertainty increases 
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3. Localization 
•  This can be formulated as Bayesian estimation: 

–  3. Compare sensor readings to environment 
–  Uncertainty should decrease (e.g., we see a step) 
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3. Localization 
•  This can be formulated as Bayesian estimation: 

–  2. Use dynamics to predict our position x 
–  3. Compare sensor readings y to map 
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3. Localization 
•  This can be formulated as Bayesian estimation: 

–  2. Use dynamics to predict our position x 
–  3. Compare sensor readings y to map 
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p(x|y) =  
p(y|x) 

p(y) 

previous distribution new distribution 

sensor match 

p(x) 

normalization 

Bayes	rule	



3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  For each point, compare sensor reading and map: 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  Heuristic likelihood of p(y|x) 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  Heuristic likelihood of p(y|x) 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  For each point, apply Bayes rule: 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  For each point, apply Bayes rule: 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  Update distribution (note I used only the mean and 

ignored the standard deviation as a hack) 
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3. Localization 
•  Justin’s strategy: 

–  Distribution is discretized into five points 
–  Update distribution (note I used only the mean and 

ignored the standard deviation as a hack) 
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3. Localization 
•  More principled approaches (fewer hacks): 

–  Kalman filters (with adjustment for nonlinearity): 
•  Extended Kalman filter (using linearization) 
•  Unscented Kalman filter (principled sampling) 

–  Particle filters (many random samples) 
–  (Justin’s approach uses heuristic hacky sampling) 

–  All methods use the two step process: 
1.  Use dynamics to predict location 
2.  Update location with sensor correlation (Bayes rule) 



3. Localization 
•  For more information, see presentations like: 

https://www.cs.cmu.edu/~motionplanning/lecture/Chap9-
Bayesian-Mapping_howie.pdf 


