
EECS192 Lecture 11

Apr. 7, 2020

Notes:

1. Progress Report due Fri 4/10 at 6 pm on bcourses (no checkpoints

after C9)

2. Round 1 4/14 and Round 2 4/28 during class time. Logistics to be

arranged. Submit python code and we run.

Python 3.7 (?)

3. Quiz 5 on 4/21 on bicycle model

4. HW #3 later this week (simulation with learning of track).

Better is the enemy of the good.

Optimism:

underestimate complexity+

overestimate ability

Topics
• Progress Report questions?

• HW2 notes

• Discrete Time control/timing

• Software Robustness

3

HW2 Notes- slew rate limit
Team Speed (m/s) Error

1 3 29 cm

2 2.7 32 cm

3 3.5 30 cm

4 3.3 30 cm

5 3 24 cm

6 2.7 27 cm

7 2.5 23 cm

8 2.7 27 cm

10 2.5 32 cm

11 2.6 13 cm

Note cone is at: 15” = 38 cm

Steering saturation

Lesson: if tracking is

good, steering angle

change is small

Simulation notes

• What are other line tracking errors in addition
to 128 pixel quantization?

• What are some practical limits on steering
control?

Topics
• Progress Report questions?

• HW2 notes

• Discrete Time control/timing

• Software Robustness

7

Control Synopsis

State equations:

Output equations:

Control Law (P):

Control Synopsis

Control Law (P):

New state equations:

Zero Input Response (non-zero init condx, r(t)=0):

Total Response (non-zero init condx) by convolution:

Step Response (zero init condx) by convolution:

a’=a – b kp b’ = b kp

0

1

Control Synopsis- Discrete Time

Superposition of Step Responses

Control Synopsis- Discrete Time

State equations:

Output equations:

Total Response (non-zero init condx) by convolution:

Control Synopsis- Discrete Time

Control Law (P):

New state equations:

U(kT) = kp [r(kT) – x(kT)]

For stability:

Notes: stability depends on gain and T!

Discrete Time Control

u[k] = kp*(r[k]-x[k])

Let x[k] = y[k]

e(t), u=kp e(t)

Topics
• Progress Report questions?

• HW2 notes

• Discrete Time control/timing

• Software Robustness

14

10 Questions to Consider when Reviewing Code
Jacob Beningo

Embedded Systems Conference -2017
https://www.designnews.com/electronics-test/10-questions-consider-when-reviewing-

code/143583201956491?cid=nl.x.dn14.edt.aud.dn.20170329

1. Does the program build without warnings?

2. Are there any blocking functions?

3. Are there any potential infinite loops?

4. Should this function parameter be const?

6. Has extern been limited with a liberal use of static?

7. Do all if … else if … conditionals end with an else?

8. Are assertions and/or input/output checks present?

9. Are header guards present? The guard prevents double

inclusion of the #include directives.

10. Is floating point mathematics being used?

Software Robustness

• Checksums for bit rot

• Lost track detection

• Autocalibration at startup

– (sanity check for steering angle vs line error)

– AGC

• State Observer/estimator

• Discrete State observer

• Watch dog timer/computer operating
properly COP

FSM Recognizer (generalized WDT)

State 1 State 2

Left turn,

velocity

right turn

Time outTime out

Software Robustness: Observer
(on board)Steering

command

d
sensed

y position

y position error

State feedback:

Lateral position and velocity
N. Nise, 6th edition, Fig. 12.23

Digital Filtering

• Moving average

– y1[n] = (y[n-2]+y[n-1]+y[n])/3

• Median filter (outlier rejection)

• Notch filter (mechanical vibration)

– y[n] = (x[n-2]+2x[n-1]+x[n])/4

• Model based filtering (or Kalman filter)

Moving Average vs. Median Filter

Example: motor brush noise, back EMF measurement

Time (ms)

{0,2,-1,4,0,2,1,1,20,1,0,2} ➔

{0,2,-1,2,0,1,1,1,1,1} 3 element median filter

{0,2, 0.3,1.7, 2, 1,1.3, 7.3, 7.3, 7,1…} 3 elem MA

C.O.P. Watchdog timer

• Despite extensive software and hardware
testing, faults will still occur in real devices.
Even momentary noise spikes on a power
supply can lock up a processor occasionally.
Such events will occur on the power grid
several times a year. Watchdog timers provide
a last line of defense to prevent system failure
with minimal hardware cost.

• https://developer.mbed.org/cookbook/Watch
Dog-Timer

Beaglebone Blue

TI Sitara™ AM335x Processors
ARM Cortex A8

4GB Flash

512 MB RAM

32 bit ARM 7 core

1 GHz

A/D

3x SPI

Timers

WiFi

USB

microSD card

ARM Cortex A8 Overview

Watch Dog Timer

Watchdog reset

20.4.3.8 Start/Stop Sequence for Watchdog Timers
(Using the WDT_WSPR Register)

To start and stop a watchdog timer, access must be made through the

start/stop register (WDT_WSPR) using a specific sequence.

To disable the timer, follow this sequence:

1. Write XXXX AAAAh in WDT_WSPR.

2. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.

3. Write XXXX 5555h in WDT_WSPR.

4. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.

To enable the timer, follow this sequence:

1. Write XXXX BBBBh in WDT_WSPR.

2. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.

3. Write XXXX 4444h in WDT_WSPR.

4. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.

All other write sequences on the WDT_WSPR register have no effect on the

start/stop feature of the module.

