EECS192 Lecture 11
Apr. 7, 2020

Notes:
1. Progress Report due Fri 4/10 at 6 pm on bcourses (no checkpoints

after C9)

2. Round 1 4/14 and Round 2 4/28 during class time. Logistics to be
arranged. Submit python code and we run.
Python 3.7 (?)
3. Quiz 5 on 4/21 on bicycle model

4. HW #3 later this week (simulation with learning of track).



Better is the enemy of the good.

Optimism:
underestimate complexity+
overestimate ability



Topics

mmm) - Progress Report questions?
« HW2 notes
 Discrete Time control/timing
« Software Robustness



HW?2 Notes- slew rate limit

Team Speed (m/s) Error
1 3 29 cm
2 2.7 32cm
3 3.5 30cm
4 3.3 30 cm
5 3 24 cm
6 2.7 27 cm
7 2.5 23 cm
8 2.7 27 cm
10 2.5 32cm
11 2.6 13 cm

Note cone is at: 15" = 38 cm




Steering saturation

steer_angle (deg)
I I

s o

Lmubsto

Steering Angle vs Time

I

Angle at Worst Overshoot=-30_000 Deg

Steering &ngle (Deg)

Time {5]

Lesson: if tracking is
good, steering angle

change is small



Simulation notes

 What are other line tracking errors in addition
to 128 pixel quantization?

 What are some practical limits on steering
control?



Topics
* Progress Report questions?
« HW2 notes

mmm) ° Discrete Time control/timing
o Software Robustness



Control Synopsis

output

reference control
input error input
¥ Controller Plant
r(t) + N e(t Cum H
gria o pixeis

Sensor -

ys(t)

State equations: :C(t) — ax (t) + bu(t)

Output equations: y(t) — cx(t) —+ du(t)

"y(t)

Control Law (P): u(t) — kpe(t) — kp(’]“(t) — ’y(t))



Control Synopsis
Control Law (P):  u(t) = kye(t) = k,(r(t) — y(t)).

New state equations:
& = ax + bkye(t) = ax + bk,(r — x) = (a — bky)x + bk,r.
Zero Input Response (non-zero init condx, r(t)=0):
x(t) = z(0)el* ) for t>0.
a=a-bk, b’ =Db k,

Total Response (non-zero init condx) by convolution:

(t,) = e?tox +/ @t~ Y (1) dr (10)

Step Response (zero init condx) by convolution: 0

_blea’to o b .
¢ k5 —a(l—e toy (11)

to ' /
x(t,) = b’/ et loeT " Tdr =
0



Control Synopsis- Discrete Time

Superposition of Step Responses discrete time input _I_Il_

u(kD) T | T T >
0 T 2T 3T 4T 5T

system response /\/—\
-

y(t) | T T T ] T
0 T 2T 3T 4T 5T

(k+1)T
2((k + D)T) = 2D 4(0) 4 ok +DT f e~ bu(r)dr . (15)
0

kT
x(kT) = e 2(0) + e“k’Tf e “Thu(T)dT . (14)
0

T
r((k+1)T) = e“T:E(kT)—I—e“(kH)Tf e “Thu(t)dr = eaT:L’(kT)—I—/ e “bu(kT)d\ , (16)
0



Control Synopsis- Discrete Time

G(I)=eT  and H(T)=b fo Do (17)
State equations:
z((k+ 1D)T) = G(T)x(kT) + H(T)u(kT) (18)
Output equations:

y(kT) = Cx(kT) + Du(kT) . (19)

Total Response (non-zero init condx) by convolution:

r(k) = G*2(0) + f GFI=1 Hu(j) . (23)

3=0



Control Synopsis- Discrete Time

Control Law (P): U(KT) = k, [r(KT) - x(KT)]

New state equations:

o((k+ 1)7T) = G(T)a(kKT) + H(T)k,(r(kT) — 2(kT)) = [G — Hk,Ja(kT) + Hk,r(kT) . (24)

2((k+1DT) = [e"" + %(1 — e"NNa(kT) + Hkyr (kT) = G'x(kT) + Hk,r(KT) . (25)
For stability:
e — %(eaT — 1) < 1. (26)

Notes: stability depends on gain and T!



Discrete Time Control

control

reference ;

input error Input output

@ Controller Plant
M0 4 e(t) Ut H 0

e(t), u=kp e(t)
Sensor
ys(t)
Time Series Plot:unnamed

ulk] = kp™(r[k]-x[k])
Let x[k] = y[K]

time



Topics

* Progress Report questions?

« HW2 notes

 Discrete Time control/timing
mmm) - Software Robustness



10 Questions to Consider when Reviewing Code

Jacob Beningo
Embedded Systems Conference -2017

https://www.designnews.com/electronics-test/10-questions-consider-when-reviewing-
code/1435832019564917?cid=nl.x.dn14.edt.aud.dn.20170329

1. Does the program build without warnings?

2. Are there any blocking functions?

3. Are there any potential infinite loops?

4. Should this function parameter be const?

6. Has extern been limited with a liberal use of static?
/. Do allif ... else if ... conditionals end with an else?
8. Are assertions and/or input/output checks present?

9. Are header guards present? The guard prevents double
inclusion of the #include directives.

10. Is floating point mathematics being used?



Software Robustness

e Checksums for bit rot
e Lost track detection
e Autocalibration at startup

— (sanity check for steering angle vs line error)
— AGC

e State Observer/estimator
 Discrete State observer

* Watch dog timer/computer operating
properly COP



FSM Recognizer (generalized WDT)

Time out Left turn, Time out

velocity
—)

right turn



Software Robustness: Observer

Steering (on board)
command
o
r=0 + u
-
Observer
LI . + X / _i c Yo + y
+A
Ye
- y position error
-
L [~ Y
1l
L State feedback:

-K [«— Lateral position and velocity

N. Nise, 6t edition, Fig. 12.23




Digital Filtering

* Moving average
—y1[n] = (y[n-2]+y[n-1]+y[n])/3
 Median filter (outlier rejection)

* Notch filter (mechanical vibration)
— vy[n] = (x[n-2]+2x[n-1]+x[n])/4

 Model based filtering (or Kalman filter)



Moving Average vs. Median Filter

Example: motor brush noise, back EMF measurement

0.8
0.6
0.4

0.2
ool *
-0.2}

04|
—0.61}

_0-8 | | | | | |
0 500 1000 1500 2000 2500 3000 3500

Time (ms)

Back EMF (V)

{0,2,-1,4,0,2,1,1,20,1,0,2} =>»
{0,2,-1,2,0,1,1,1,1,1} 3 element median filter
{0,2,0.3,1.7,2,1,1.3,7.3,7.3,7,1...} 3 elem MA



C.0.P. Watchdog timer

* Despite extensive software and hardware
testing, faults will still occur in real devices.
Even momentary noise spikes on a power
supply can lock up a processor occasionally.
Such events will occur on the power grid
several times a year. Watchdog timers provide
a last line of defense to prevent system failure
with minimal hardware cost.

* https://developer.mbed.org/cookbook/Watch
Dog-Timer



ARM Cortex A8 Overview

ARM® Graphics Display
Cortex"-A8 PowerVR 24-bit LCD controller
Up to 1 Ghz SGX
3D GEX Touch screen controller
32KB and 32KB L1 + SED Crypto PRUICSS
EtherCAT, PROFINET,
256KB L2 + ECC 64KB EtherNetIP.
176KB ROM| 64KB RAM share and more
FAM
L3 and L4 interconnect
Serial System Parallel
UART x6 DMA BCAF X
X e MMC, SD and
: ADC (8 channel) '
C x3 ( wot ) GPIO
McASP x2 Nee— JTAG
(4 channel) eHRPWM x3 .
CAN x2 rystal
(Ver. 2 A and B) eQEP x3 Oscillator x2
USBE 2.0 HS PRCM Memory interface
DRD + PHY x2 mDDR(LPDDR), DDRZ,
EMAC (2-port) 10M, 100M, 1G ~ DDR3, DDR3L
IEEE 1538‘!.-’2: and switch {1E—|:Ilt EDD, EEE, 400, 400 MHZ:I
(MIT, RMII, RGMIT) NAND and NOR (16-bit ECC)

Beaglebone Blue
TI Sitara™ AM335x Processors
ARM Cortex A8
4GB Flash

512 MB RAM

32 bit ARM 7 core
1 GHz

A/D

3x SPI

Timers

WiFi

USB

microSD card



Watch Dog Timer

Figure 20-94. 32-Bit Watchdog Timer Functional Block Diagram

r-r—-—-———"""""—"—"—"—"—"¥"—"¥—-"—"—"—"—"—"—"—"—"———— g
[ Watchdog timer |

I I

| WDTi_FCLK § Prescaler Counter | RESET
: (1:128 ratio) ——»>  (32-bit) |

I v |

| I

| Registers L -1 »iRQ

I generation |

I I

S I

L4 interface



Watchdog reset

20.4.3.5 Overflow/Reset Generation

When the watchdog timer counter register (WDT_WCRR) overflows, an active-low reset pulse is
generated to the PRCM module. This RESET pulse causes the PRCM module to generate global WARM
reset of the device, which causes the nRESETIN_OUT pin to be driven out of the device. This pulse is
one prescaled timer clock cycle wide and occurs at the same time as the timer counter overflow.

After reset generation, the counter is automatically reloaded with the value stored in the watchdog load
register (WDT_WLDR) and the prescaler is reset (the prescaler ratio remains unchanged). When the reset
pulse output is generated, the timer counter begins incrementing again.

Figure 20-95 shows a general functional view of the watchdog timers.

Figure 20-95. Watchdog Timers General Functional View

Trigger register
(WDT_WTGR)

Delay interrupt is
/\ generated when counter
0000 0000h FFFF FFFFh

matches this value

| o | |

| | | >
Load register Counter register Delay register Overflow
(WDT_WLDR) (WDT WCRR) (WDT_WDLY) reset pulse is
- generated.
k\_
_/




20.4.3.8 Start/Stop Sequence for Watchdog Timers
(Using the WDT_WSPR Register)

To start and stop a watchdog timer, access must be made through the
start/stop register (WDT_WSPR) using a specific sequence.

To disable the timer, follow this sequence:

1. Write XXXX AAAAh in WDT_WSPR.

2. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.
3. Write XXXX 5555h in WDT_WSPR.

4. Poll for posted write to complete using WDT_WWPS.W_PEND_ WSPR.

To enable the timer, follow this sequence:

1. Write XXXX BBBBh in WDT_WSPR.

2. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.
3. Write XXXX 4444h in WDT_WSPR.

4. Poll for posted write to complete using WDT_WWPS.W_PEND_WSPR.
All other write sequences on the WDT_ WSPR register have no effect on the
start/stop feature of the module.



