EECS192 Lecture 2 Jan. 28, 2020

- Checkoff 2/1: Hello World/LED Blink/Switch
- Checkoff 2/8: Benchtop motor and steering (using provided PCB)
- Project proposal (due 2/11 before class)
 - Documentation
 - Block Diagram/Software Model
- Cloud 9 quick demo
- LED/Port Information
- PWM Intro
- Motor Model

Notes: Check off- Hello World+LED blink+switch ``look don't touch" Github repo

Project Proposal: Documentation

Eagle: File \rightarrow export \rightarrow image (300 dpi png)

Eagle parts layout- no copper

Black: tNames, tValues, tPlace White or off: tOrigins, Unrouted

KiCad EDA https://kicad-pcb.org/

Project Proposal: Documentation

2. Detailed Mechanical Drawing of Vehicle a. Side view of vehicle Line scanning camera emergency stop switch 25 cm Flag 15cm On and off switch 12cm Microcontroller Motor driver 5cm Steering Optical Encoder x2 Battery Sevor Motor

27cm

Include a labelled photo which indicates good lo

Project Proposal: Motor Drive with UCC21222 gate driver

3) Snubbing

UCC21222 pin functions- E-stop

PIN		LIC (1)	Description				
NAME	NO.		Description				
DIS	5	I	Disables both driver outputs if asserted high, enables if set low or left open. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity. Bypass using a \approx 1-nF low ESR/ESL capacitor close to DIS pin when connecting to a μ C with distance.				
DT	6	1	Programmable dead time function. Tying DT to VCCI or leaving DT open allows the outputs to overlap. Placing a resistor (R_{DT}) between DT and GND adjusts dead time according to the equation: DT (in ns) = 10 × R_{DT} (in k Ω). TI recommends bypassing this pin with a ceramic capacitor, 2.2 nF or greater, to achieve better noise immunity. Place this capacitor and R_{DT} close to the DT pin.				
GND	4	Р	Primary-side ground reference. All signals in the primary side are referenced to this ground.				
INA	1	I	Input signal for A channel. INA input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.				
INB	2	I	Input signal for B channel. INB input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.				
	7						
NC	12] -	No internal connection.				
	13						
OUTA	15	0	Output of driver A. Connect to the gate of the A channel FET or IGBT.				
OUTB	10	0	Output of driver B. Connect to the gate of the B channel FET or IGBT.				
VCCI	3	Р	Primary-side supply voltage. Locally decoupled to GND using a low ESR/ESL capacitor located as close to the device as possible.				
VCCI	8	Р	This pin is internally shorted to pin 3.				
VDDA	16	Р	Secondary-side power for driver A. Locally decoupled to VSSA using a low ESR/ESL capacitor located as close to the device as possible.				
VDDB	11	Р	Secondary-side power for driver B. Locally decoupled to VSSB using a low ESR/ESL capacitor located as close to the device as possible.				
VSSA	14	P	Ground for secondary-side driver A. Ground reference for secondary side A channel.				
VSSB	9	Р	Ground for secondary-side driver B. Ground reference for secondary side B channel.				

Project Proposal: Input/Output

Line camera: 128 pixels, 200 Hz

TSL1401CL 128 × 1 LINEAR SENSOR ARRAY WITH HOLD

TAOS136 - JULY 201

- 128 × 1 Sensor-Element Organization
- 400 Dots-Per-Inch (DPI) Sensor Pitch
- High Linearity and Uniformity
- Wide Dynamic Range . . . 4000:1 (72 dB)
- Output Referenced to Ground
- Low Image Lag . . . 0.5% Typ
- Operation to 8 MHz
- Single 3-V to 5-V Supply
- Bail-to-Bail Output Swing (AO)
- No External Load Resistor Required
- Replacement for TSL1401R–LF
- RoHS Compliant

CL PACKAGE SI 1 8 NC CLK 2 10 7 GNE AO 3 6 GND V_{DD} 4 5 NC

> NC - No internal connection Package Drawing is Not to Scale

Description

The TSL1401CL linear sensor array consists of a 128 × 1 array of photodiodes, associated charge amplifier circuitry, and an internal pixel data-hold function that provides simultaneous-integration start and stop times for all pixels. The array is made up of 128 pixels, each of which has a photo-sensitive area of 3,524.3 square micrometers. There is 8-um spacing between pixels. Operation is simplified by internal control logic that requires only a serial-input (SI) signal and a clock

Functional Block Diagram

Texas Advanced Optoelectronic Solutions Inc. 1001 Klein Road • Suite 300 • Plano, TX 75074 • (972) 673-0759 www.taosinc.com

Order Now Technical Tools & Software Support & Community

TEXAS INSTRUMENTS UCC21222 SLUSCX6A - FEBRUARY 2018-REVISED APRIL 2018

UCC21222 4-A, 6-A, 3.0-kV_{RMS} Isolated Dual-Channel Gate Driver with Dead Time

3 Description

1 Features

- Resistor-Programmable Dead Time
- Universal: Dual Low-Side, Dual High-Side or Half-
- Bridge Driver 4-A Peak Source, 6-A Peak Sink Output
- 3-V to 5.5-V Input VCCI Range
- Up to 18-V VDD Output Drive Supply
- 8-V VDD UVLO
- Switching Parameters:
- 28-ns Typical Propagation Delay
- 10-ns Minimum Pulse Width
- 5-ns Maximum Delay Matching
- 5.5-ns Maximum Pulse-Width Distortion
- TTL and CMOS Compatible Inputs
- Integrated Deglitch Filter
- · I/Os withstand -2-V for 200 ns Common-Mode Transient Immunity (CMTI)
- Greater than 100-V/ns
- Isolation Barrier Life >40 Years Surge Immunity up to 7800-VPK
- Narrow Body SOIC-16 (D) Package
- Safety-Related Certifications (Planned):
 - 4242-VPK Isolation per DIN V VDE V 0884-11:2017-01 and DIN EN 61010-1
- 3000-V_{BMS} Isolation for 1 Minute per UL 1577 - CSA Certification per IEC 60950-1, IEC 62368-
- 1 and IEC 61010-1 End Equipment Standards - CQC Certification per GB4943.1-2011
- Create a Custom Design Using the UCC21222 With the WEBENCH® Power Designer

2 Applications

- Isolated converters in AC-to-DC and DC-to-DC Power Supplies
- Server, Telecom, IT and Industrial Infrastructures
- Motor Drives and Solar Inverters
- HEV and EV Battery Chargers
- Industrial Transportation
- Uninterruptible Power Supply (UPS)

The UCC21222 device is an isolated dual channel gate driver with programmable dead time. It is designed with 4-A peak-source and 6-A peak-sink current to drive power MOSFET, IGBT, and GaN transistors.

The UCC21222 device can be configured as two lowside drivers, two high-side drivers, or a half-bridge driver. 5ns delay matching performance allows two outputs to be paralleled, doubling the drive strength for heavy load conditions without risk of internal shoot-through.

The input side is isolated from the two output drivers by a 3.0-kV_{RMS} isolation barrier, with a minimum of 100-V/ns common-mode transient immunity (CMTI).

Resistor programmable dead time gives the capability to adjust dead time for system constraints to improve efficiency and prevent output overlap. Other protection features include: Disable feature to shut down both outputs simultaneously when DIS is set high integrated deglitch filter that rejects input transients shorter than 5-ns, and negative voltage handling for up to -2-V spikes for 200-ns on input and output pins. All supplies have UVLO protection.

Device Information⁽¹⁾

PART NUMBER PACKAGE BODY SIZE (NOM) UCC21222 SOIC (16) 9.9 mm × 3.91 mm For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, An IMPORTANT NOTICE at the end of this data street augressus aramaning,

https://www.sparkfun.com/tutorials/283

CPU IO Port Information

Beagle Bone Blue Pins

http://inst.eecs.berkeley.edu/~ee192/sp20/files/BeagleBone_Blue_Pin_Table.xlsx

AutoSave 💽 🖁	<u>り・C・・</u>					Bea	gleBone_Blue_Pin_Tabl	le.xlsx - Excel			Ronald FEARING	b -	
File Home In:	sert Page Layo	ut Formu	ılas	Data Reviev	w View Help ,	♀ Search						🖻 Share	ب
E46 👻 :	$\times \checkmark f_x$	UART2_RXD)										
A	В	с	D	E	G	н	1	J	к	L	м	N	
1 Use on Blue	Use on RC	config-pin name	Ball	Blue Name	MODE0	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	MODE7	
70													
71 SPI: SS1, SS2													
72 SPI1_SCK	SPI1_SCK	P9.31	A13	SPI1_SCLK	mcasp0_aclkx	ehrpwm0A		spi1_sclk	mmc0_sdcd_mux1	pr1_pru0_pru_r30_0	pr1_pru0_pru_r31_0	gpio3[14]	1
73 SPI1_MISO	SPI1_MISO	P9.29	B13	SPI1_D0	mcasp0_fsx	ehrpwm0B		spi1_d0	mmc1_sdcd_mux1	pr1_pru0_pru_r30_1	pr1_pru0_pru_r31_1	gpio3[15]	1
74 SPI1_MOSI	SPI1_MOSI	P9.30	D12	SPI1_D1	mcasp0_axr0	ehrpwm0_tri	pzone	spi1_d1	mmc2_sdcd_mux1	pr1_pru0_pru_r30_2	pr1_pru0_pru_r31_2	gpio3[16]	1
75 SPI1_SS2 (BBBlue)			C18	spi1_cs1	eCAP0_in_PWM0_out	uart3_txd	spi1_cs1	pr1_ecap0_ecap_ca	r spi1_sclk	mmc0_sdwp	xdma_event_intr2	gpio0_7	
76 SPI1_SS1 (BBBlue)			H18	spi1_cs0	rmii1_refclk	xdma_event_	i spi1_cs0	uart5_txd	mcasp1_axr3	mmc0_pow	mcasp1_ahclkx	gpio0_29	
77													
70													
 Beag 	gleBone_Blue_Pin_Ta	ble BBB-	By con	nector BBBla	ackEquiv 🕂			:	•				
										Display Sett	ngs 🏢 🗉 💾		

Robot Control Library C interface for the Sitara PWM driver. <<u>rc/pwm.h</u>>

These functions provide a general interface to all 3 PWM subsystems, each of which have two available channels A and B. PWM subsystems 1 and 2 are used for controlling the 4 motor drivers on the Robotics Cape, however they may be controlled by the user directly instead of using the motor API.

PWM subsystem 0 channels A and B can be accessed on the GPS <u>or SPI</u> header if set up with the Pinmux API to do so. The user may have exclusive use of that subsystem.

Project Proposal: Block Diagram/Software Model

Project Proposal: Timing and priority of processes

Figure 12.10: Illustration of the priority inheritance protocol. Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on a shared object, entering a critical section. It gets preempted by task 1, which then tries to acquire the lock and blocks. Task 3 inherits the priority of task 1, preventing preemption by task 2.

Lee & Seshia, Introduction to Embedded Systems

EECS192 Lecture 2 Jan. 28, 2020

- Checkoff 2/1: Hello World/LED Blink/Switch
- Checkoff 2/8: Benchtop motor and steering (using provided PCB)
- Project proposal (due 2/11 before class)
 - Documentation
 - Block Diagram/Software Model
- Cloud 9 quick demo
- LED/Port Information
 - PWM Intro
 - Motor Model

Notes: Check off- Hello World+LED blink+switch ``look don't touch" Github repo

LED & CPU Port Information

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human* Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Connecting LED & CPU Port Information

LED & CPU Port Information- typical

1.4 Voltage and current operating ratings

 Table 4. Voltage and current operating ratings

LATCHUP!

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		1.	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

5.7 DC Electrical Characteristics

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	NOM MAX	UNIT	
DDR_RESET 2,DDR_A3,DI R_D1,DDR_D 0,DDR_DQM [*]	n,DDR_C\$n0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CA\$d DR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DD 02,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D4 1,DDR_DQ\$0,DDR_DQ\$n0,DDR_DQ\$1,DDR_DQ\$n1 Pir	n,DDR_RA\$n,DDR PR_A10,DDR_A11,D 8,DDR_D9,DDR_D1 ns (mDDR - LVCMC	_WEn,DDR_BA0,DDR_B/ DR_A12,DDR_A13,DDR 0,DDR_D11,DDR_D12,D 0\$ Mode)	A1,DDR_BA2,DDR_A0,DDR_A1 _A14,DDR_A15,DDR_ODT,DDR DR_D13,DDR_D14,DDR_D15,DI	,DDR_A _D0,DD DR_DQM
VIH	High-level input voltage		0.65 × VDDS_DDR		v
V _{IL}	Low-level input voltage			0.35 × VDDS_DDR	v
V _{HYS}	Hysteresis voltage at an input		0.07	0.25	V
V _{OH}	High level output voltage, driver enabled pullup or pulldown disabled	I _{OH} = 8 mA	VDDS_DDR - 0.4		V
V _{OL}	Low level output voltage, driver enabled, pullup or pulldown disabled	I _{OL} = 8 mA		0.4	V
	Input leakage current, Receiver disabled, pullup or pulled	wn inhibited		10	
lj –	Input leakage current, Receiver disabled, pullup enabled	-240	-80	μΑ	
	Input leakage current, Receiver disabled, pulldown enable	80	240		
I _{oz}	Total leakage current through the terminal connection of a combination that may include a pullup or pulldown. The o disabled and the pullup or pulldown is inhibited.		10	μΑ	

EECS192 Lecture 2 Jan. 28, 2020

- Checkoff 2/1: Hello World/LED Blink/Switch
- Checkoff 2/8: Benchtop motor and steering (using provided PCB)
- Project proposal (due 2/11 before class)
 - Documentation
 - Block Diagram/Software Model
- Cloud 9 quick demo
- LED/Port Information
- PWM Intro
- Motor Model

Notes: Check off- Hello World+LED blink+switch ``look don't touch" Github repo

Project Proposal: Motor Drive with UCC21222 gate driver

3) Snubbing

PWM and Timer Intro: PWM Generation

Functional description

Figure 40-2. Notation used

Beagle Bone Blue Pins

http://inst.eecs.berkeley.edu/~ee192/sp20/files/BeagleBone_Blue_Pin_Table.xlsx

AutoSave 💽 🖁	<u>り・C・・</u>					Bea	gleBone_Blue_Pin_Tabl	le.xlsx - Excel			Ronald FEARING	b -	
File Home In:	sert Page Layo	ut Formu	ılas	Data Reviev	w View Help ,	♀ Search						🖻 Share	ب
E46 👻 :	$\times \checkmark f_x$	UART2_RXD)										
A	В	с	D	E	G	н	1	J	к	L	м	N	
1 Use on Blue	Use on RC	config-pin name	Ball	Blue Name	MODE0	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	MODE7	
70													
71 SPI: SS1, SS2													
72 SPI1_SCK	SPI1_SCK	P9.31	A13	SPI1_SCLK	mcasp0_aclkx	ehrpwm0A		spi1_sclk	mmc0_sdcd_mux1	pr1_pru0_pru_r30_0	pr1_pru0_pru_r31_0	gpio3[14]	1
73 SPI1_MISO	SPI1_MISO	P9.29	B13	SPI1_D0	mcasp0_fsx	ehrpwm0B		spi1_d0	mmc1_sdcd_mux1	pr1_pru0_pru_r30_1	pr1_pru0_pru_r31_1	gpio3[15]	1
74 SPI1_MOSI	SPI1_MOSI	P9.30	D12	SPI1_D1	mcasp0_axr0	ehrpwm0_tri	pzone	spi1_d1	mmc2_sdcd_mux1	pr1_pru0_pru_r30_2	pr1_pru0_pru_r31_2	gpio3[16]	1
75 SPI1_SS2 (BBBlue)			C18	spi1_cs1	eCAP0_in_PWM0_out	uart3_txd	spi1_cs1	pr1_ecap0_ecap_ca	r spi1_sclk	mmc0_sdwp	xdma_event_intr2	gpio0_7	
76 SPI1_SS1 (BBBlue)			H18	spi1_cs0	rmii1_refclk	xdma_event_	i spi1_cs0	uart5_txd	mcasp1_axr3	mmc0_pow	mcasp1_ahclkx	gpio0_29	
77													
70													
 Beag 	gleBone_Blue_Pin_Ta	ble BBB-	By con	nector BBBla	ackEquiv 🕂			:	•				
										Display Sett	ngs 🏢 🗉 💾		

Robot Control Library C interface for the Sitara PWM driver. <<u>rc/pwm.h</u>>

These functions provide a general interface to all 3 PWM subsystems, each of which have two available channels A and B. PWM subsystems 1 and 2 are used for controlling the 4 motor drivers on the Robotics Cape, however they may be controlled by the user directly instead of using the motor API.

PWM subsystem 0 channels A and B can be accessed on the GPS <u>or SPI</u> header if set up with the Pinmux API to do so. The user may have exclusive use of that subsystem.

PWM and Timer Intro: Code

http://strawsondesign.com/docs/librobotcontrol/group

int rc_pwm_set_duty (int ss, char ch, double duty)

Sets the duty cycle of a specific pwm channel.

Parame	eters	
[in]	SS	subsystem 0,1,2
[in]	ch	channel 'A' or 'B'
[in]	duty	between 0.0 (off) and 1.0(full on)

Direction???

PWM subsystem 0 channels A and B can be accessed on the GPS or SPI header if set up with the Pinmux API to do so. The user may have exclusive use of that subsystem.

#define RC_MOTOR_DEFAULT_PWM_FREQ 25000

PWM: 200 Hz for servo motor

Note only on Debian, uses PRU1.

int rc_servo_send_pulse_normalized (int ch, double input)

Like rc_send_pulse_us but translates a desired servo position from -1.5 to 1.5 to a corresponding pulse width from 600 to 2400us.

We cannot gurantee all servos will operate over the full range from -1.5 to 1.5 as that is normally considered the extended range. -1.0 to 1.0 is a more typical safe range but may not utilize the full range of all servos.

Example PRU code:

; Begin	ning of	loop, should always take 48 instructions to complete
CH1:	QBEQ	CLR1, r0, 0 ; If timer is 0, jump to clear channel
	SET	r30, CH1BIT ; If non-zero turn on the corresponding
channel		
	SUB	r0, r0, 1 ; Subtract one from timer
	CLR	r9, r9.t1 ; waste a cycle for timing
	SBCO	&r9, CONST_PRUSHAREDRAM, 0, 4 ; write 0 to shared memory
		red = power

1.0 ms

1.5 ms

2.0 ms

orange = control

rc_motor

int rc_motor_set (int ch, double duty)

Sets the bidirectional duty cycle (power) to a single motor or all motors if 0 is provided as a channel.

Parameters

[in]	ch	The motor channel (1-4) or 0 for all channels.
[in]	duty	Duty cycle, -1.0 for full reverse, 1.0 for full forward

Note: this uses connectors M1...M4 which are 1 amp H Bridge output. Not intended for car motor drive!

EECS192 Lecture 2 Jan. 28, 2020

- Checkoff 2/1: Hello World/LED Blink/Switch
- Checkoff 2/8: Benchtop motor and steering (using provided PCB)
- Project proposal (due 2/11 before class)
 - Documentation
 - Block Diagram/Software Model
- Cloud 9 quick demo
- LED/Port Information
- PWM Intro
- Motor Model

Notes: Check off- Hello World+LED blink+switch ``look don't touch" Github repo

Motor Model

On board....

http://inst.eecs.berkeley.edu/~ee192/sp18/files/NiseAppendixI.pdf

http://inst.eecs.berkeley.edu/~ee192/sp13/pdf/motor_modeling.pdf

Extra Slides

Project Proposal: RTOS timer and threads example

PWM and Timer Intro: PWM (edge)

Figure 40-18. EPWM period and pulse width with ELSnB:ELSnA = 1:0

MOD = 0x0008CnV = 0x0005

Figure 40-19. EPWM signal with ELSnB:ELSnA = 1:0

PWM and Timer Intro

Figure 40-36. Channel (n) output if (C(n+1)V < CNTIN) and (CNTIN < C(n)V < MOD)

PWM and Timer Intro: Dead Time Insertion

Figure 40-66. Deadtime insertion with ELSnB:ELSnA = X:1, POL(n) = 0, and POL(n+1) = 0

NOTE

- The deadtime feature must be used only in Complementary mode.
- The deadtime feature is not available in Output Compare mode.